2017 Edition TABLE of CONTENTS 2017

Total Page:16

File Type:pdf, Size:1020Kb

2017 Edition TABLE of CONTENTS 2017 2017 Edition TABLE OF CONTENTS 2017 Greeting Letter From the President and From the Chair 2 Flatiron Institute Flatiron Institute Inaugural Celebration 4 Center for Computational Quantum Physics 6 Center for Computational Astrophysics: Neutron Star Mergers 8 Center for Computational Biology: Neuronal Movies 10 Center for Computational Biology: HumanBase 12 MPS Scott Aaronson: Quantum and Classical Uncertainty 14 Mathematics and Physical Sciences Sharon Glotzer: Order From Uncertainty 16 Horng-Tzer Yau: Taming Randomness 18 Life Sciences Simons Collaboration on the Origins of Life 20 Nurturing the Next Generation of Marine Microbial Ecologists 22 UNCERTAINTY BY DESIGN Global Brain Simons Collaboration on the Global Brain: Mapping Beyond Space 24 The theme of the Simons Foundation 2017 annual report SFARI The Hunt for Autism Genes is ‘uncertainty’: a concept nearly omnipresent in science 26 Simons Foundation Autism and mathematics, and in life. Embracing uncertainty, we Research Initiative SFARI Research Roundup designed the layouts of these articles using a design 28 algorithm (programmed with only a few constraints) that Sparking Autism Research randomly generated the initial layout of each page. 30 Tracking Twins You can view additional media related to these 32 stories by visiting the online version of the report Outreach and Education Science Sandbox: The Changing Face of Science Museums at simonsfoundation.org/report2017. 34 Math for America: Summer Think 36 COVER Leaders Scientific Leadership 38 This illustration is inspired by the interference pattern Simons Foundation Financials produced by the famous ‘double-slit experiment,’ which 42 provides a demonstration of the Heisenberg uncertainty Investigators principle. That principle, a hallmark of quantum physics, 44 states that there are fundamental limits to how much Supported Institutions scientists can know about the physical properties of a 59 particle. The more precisely scientists learn the momentum Advisory Boards of a particle, for instance, the less they can know about 60 the particle’s position, and vice versa. Board of Directors 63 Staff 64 LETTER FROM On September 6, 2017, in a small morning ceremony, the Simons Foundation inaugurated its new THE PRESIDENT in-house research division, the Flatiron Institute. The guest of honor, New York Gov. Andrew Cuomo, stirred the audience of scientists and mathematicians gathered in the institute’s lobby with the words, “I’m worried about the world that we’re leaving our kids. It’s much more complex, the problems are AND FROM much more difficult, and it’s only getting worse, and many of the solutions, I believe, are going to lie in the work that you do.” They were inspiring — and motivating — words indeed for a challenging THE CHAIR world full of uncertainty. For tens of thousands of years human civilization has endeavored to reduce uncertainty and unpredictability. The development of agriculture addressed the question of where our next meal would come from, and the taming of fire assured us we would not freeze to death during an unexpectedly cold night. As time went on, the rain god and the witch doctor gave way to the meteorologist and the M.D. In recent centuries, science has played an increasingly large role in reducing uncertainty, and, in fact, to a great extent it is uncertainty itself that has driven science forward. For the scientist, the concept of uncertainty includes the degree to which something is known. By systematically studying our natural and physical world, scientists chip away at uncertainty, replacing outmoded theories with more accurate ones. As Edwin Powell Hubble depicted this process and its concomitant mindset back in 1939, “The scientist explores the world of phenomena by successive approximations. He knows that his data are not precise and that his theories must always be tested. It is quite natural that he tends to develop healthy skepticism, suspended judgment, and disciplined imagination.” Through our funding of basic science research, the Simons Foundation supports this rigorous process of investigation, this management of uncertainty. We are interested in fundamental questions about our universe, about life on our planet and about the mysteries of our own bodies and brains. And we are always intent on deepening our knowledge of mathematics, the lingua franca of science. By funding our own in-house computational research division, the Flatiron Institute, and by awarding grants to external scientists through their institutions, we strive to advance the frontiers of research in mathematics and the basic sciences. In this 2017 annual report, you will read about the launch of the Flatiron Institute, and about the research being conducted there to better analyze neuronal activity, to predict the dynamical behavior of materials and molecules, and to analyze important astronomical events. From our grant-making division, you will read about how geoscientists are helping us to piece together the mystery of the origins of life. You will also see stories about the geolocation system of the brain, the basic science of autism, and how three Simons Investigators are grappling with the uncertainties inherent in physics and quantum computing. The vision and guidance for all of these programs comes from an outstanding leadership team of scientific directors. In a special section, they each reflect on their work and the uncertainties they manage in helping this enterprise to do all that it does. Their deep scientific knowledge and managerial experience is invaluable to the foundation. Every day, we feel eager to come to work at the foundation because it teems with intellectual activity — and we say that with certainty! We hope that as you read through this report you will enjoy the excitement of learning about the fruits of uncertainty. Marilyn Hawrys Simons, Ph.D. Jim Simons, Ph.D. President Chair FLATIRON “The scientific output of The institute began as the Simons Center for Data Analysis (SCDA), launched in 2013 under Greengard’s leadership. Flatiron is remarkable and INSTITUTE SCDA focused on analyzing the increasingly vast datasets produced by biological research. With the success of this has exceeded my most venture, its scope expanded. In 2016, SCDA transformed optimistic expectations.” into the Center for Computational Biology and became the INAUGURAL first center of a new organization: the Flatiron Institute. That same year, the Center for Computational Astrophysics launched and began modeling the cosmos and analyzing CELEBRATION astronomical datasets. The youngest center, the CCQ, began operations in September 2017. Led by Georges and co- Within a brisk five-year period, the Simons Foundation’s director Andrew Millis, the center new Flatiron Institute has grown from the germ of an idea develops new numerical and floated at a foundation scientific retreat in 2012 to a large, analytical methods to solve the bustling hub for developing computational methods. In quantum many-body problem a ceremony on September 6, 2017, Simons Foundation and uses the solutions to predict co-founders Jim and Marilyn Simons and keynote work. Although several floors of state-of-the-art workspaces the behavior of materials and speaker New York Gov. Andrew Cuomo joined had already emerged from behind construction walls, molecules. The Flatiron Institute Flatiron Institute and Simons Foundation leaders to remodeling continued in the rest of the building. In the will name a fourth and final center dedicate the new research division of the Simons offices, researchers have already established the institute’s — focusing on a soon-to-be-decided Foundation. The event, held in the institute’s newly reputation with innovative software releases and important discipline — in 2018. renovated lobby, celebrated early progress and hopes scientific discoveries. for the future. A unique and crucial part of “I couldn’t be happier about progress in the Flatiron the institute’s framework is The Flatiron Institute is located just across the street from Institute,” Jim Simons says. “The scientific the Scientific Computing Core, the Simons Foundation and was launched to advance output of Flatiron is remarkable and has exceeded which develops the organization’s scientific research through computational methods, my most optimistic expectations.” computing infrastructure including data analysis, modeling and simulation. At full and collaborates with Flatiron capacity, the institute will house around 250 scientists The institute’s mission is an important one for New Institute scientists to create and and programmers across four research centers and York, Cuomo said during the ceremony’s keynote address. implement new computational and Marilyn Simons, Gov. Andrew Cuomo and Jim Simons cut the ribbon during the Flatiron Institute’s inauguration a computing core. “This is a unique place where top Computational science “is where we need to grow and statistical tools for use across the ceremony. Also pictured, from left to right, are center leaders Leslie Greengard, David Spergel and Antoine Georges. people sharing a common interest in the growing impact flourish,” he said. “It’s not just what New York state scientific community. Co-directed of computation on science will exchange ideas across needs, it’s what the world needs.” by Nick Carriero and Ian Fisk, the core hosts an on-site Flatiron Institute researchers don’t have to apply for grants, freeing them scientific fields,” says Antoine Georges, director of the computing cluster comprising 7,000
Recommended publications
  • Publicity Waves Based on Manipulated Geoscientific Data Suggesting Climatic Trigger for Majority of Tsunami Findings in the Medi
    Zeitschrift für Geomorphologie,Geomorphologie Vol. 58 (2014), Suppl. 3, XXX–XXX Open AccessArticle B Publishedpublished onlineJuly 2014 May 2018 Publicity waves based on manipulated geoscientific data suggesting climatic trigger for majority of tsunami findings in the Mediterranean – Response to ‘Tsunamis in the geological record: Making waves with a cautionary tale from the Mediterranean’ by Marriner et al. (2017) Andreas Vött, Hendrik J. Bruins, Matthijs Gawehn, Beverly N. Goodman-Tchernov, Paolo Marco De Martini, Dieter Kelletat, Giuseppe Mastronuzzi, Klaus Reicherter, Björn R. Röbke, Anja Scheffers, Timo Willershäuser, Pavlos Avramidis, Piero Bellanova, Pedro J.M. Costa, Claudia Finkler, Hanna Hadler, Benjamin Koster, Javier Lario, Eduard Reinhardt, Margret Mathes-Schmidt, Konstantin Ntageretzis, Daniela Pantosti, Ioannis Papanikolaou, Paolo Sansò, Giovanni Scicchitano, Alessandra Smedile, Witek Szczuciński with 3 figures and 3 tables Abstract. This article is a response to the publication by Nick Marriner, David Kaniewski, Christophe Morhange, Clément Flaux, Matthieu Giaime, Matteo Vacchi and James Goff entitled “Tsunamis in the geological record: Making waves with a cautionary tale from the Mediterranean”, published in October 2017 in Science Advances. Making use of radiometric data sets published in the context of selected palaeotsunami studies by independent research groups from different countries, Marriner et al. (2017) carried out statistical and time series analyses. They compared their results with an assessment of Mediterranean storminess since the mid-Holocene that was previously published by Kaniewski et al. (2016) based on a single-core study from coastal Croatia. Marriner et al. (2017) now present “previously unrecognized” 1500-year “tsunami megacycles” which they suggest correlating with Mediterranean climate deterioration. They conclude that up to 90 % of all the ‘tsunamis’ identified in original tsunami papers used for their study are “better as­ cribed to periods of heightened storminess”.
    [Show full text]
  • Spring 2021 Bulletin
    Advancing Access to Civil Justice STEPS TOWARD INTERNATIONAL CLIMATE GOVERNANCE Featuring William Nordhaus, Pinelopi Goldberg, and Scott Barrett HONORING WILLIAM LABOV, RUTH LEHMANN , AND GERTRUD SCHÜPBACH SPRING 2021 SELECT UPCOMING VIRTUAL EVENTS May 6 A Conversation with Architect 27 Reflections on a Full, Consequential, Jeanne Gang and Lucky Life: Science, Leadership, Featuring: Jeanne Gang and Education Featuring: Walter E. Massey (left) in conversation with Don Randel (right) June 14 Lessons Learned from Reckoning with Organizational History Featuring: John J. DeGioia, Brent Leggs, Susan Goldberg, Claudia Rankine, and Ben Vinson 13 Finding a Shared Narrative Hosted by the Library of Congress Featuring: Danielle Allen, winner of the Library’s 2020 Kluge Prize Above: “Our Common Purpose” featuring the Juneteenth flag with one star. Artist: Rodrigo Corral For a full and up-to-date listing of upcoming events, please visit amacad.org/events. SPRING 2021 CONTENTS Flooding beside the Russian River on Westside Road in Healdsburg, Sonoma County, California; February 27, 2019. Features 16 Steps Toward International 38 Honoring Ruth Lehmann and Gertrud Climate Governance Schüpbach with the Francis Amory Prize William Nordhaus, Pinelopi Goldberg, and Scott Barrett Ruth Lehmann and Gertrud Schüpbach 30 Honoring William Labov with the Talcott Parsons Prize William Labov CONTENTS 5 Among the contributors to the Dædalus issue on “Immigration, Nativism & Race” (left to right): Douglas S. Massey (guest editor), Christopher Sebastian Parker, and Cecilia Menjívar Our Work 5 Dædalus Explores Immigration, Nativism & Race in the United States 7 Advancing Civil Justice Access in the 21st Century 7 10 New Reports on the Earnings & Job Outcomes of College Graduates 14 Our Common Purpose in Communities Across the Country Members 53 In Memoriam: Louis W.
    [Show full text]
  • Stephanie Wehner – Curriculum Vitae
    Stephanie QuTech, Lorentzweg 1 2628 CJ Delft B [email protected] Wehner Born: 8 May 1977 Nationality: German Curriculum Vitae Languages: German, Dutch, English Highlights Science Over 70 publications (> 4800 citations of which > 1100 in 2016, hindex 35, i10- index 62, Google Scholar November 2017) in Science (2x), Nature (1x), Nature Communications (7x), PNAS (1x), IEEE Transactions on Information Theory (7x), CRYPTO (2x), Physical Review Letters (9x, 2x Editor’s suggestion) and others. Works selected for Science’s “Top 10 Breakthroughs of 2015”, Nature’s “Science Events that shaped 2015”, and voted in Top 10 of 2014 in physics news at phys.org. Leadership Co-Founder QCRYPT, now the largest annual international conference on quantum cryptography. Funding ERC Starting Grant 2015 (1.5M EUR), NWO VIDI Grant 2015 (800k EUR). Previous grants in Singapore (resigned) total ≈ 11.4 M EUR (personal share ≈ 1.4M EUR). Collaborative grants Netherlands (19.4M EUR). Press Popular science coverage in New York Times (Front Page), The Economist, TIME, The Times, Huffington Post, New Scientist, Wired, Vice, and others. Outreach Talks at TEDx, New Scientist Live, as well as the Dutch KNAW and others. Perspective article in Science in 2016. Education 11 distinct classes, of which one has received a perfect score on teaching evaluation. edX MOOC Quantum cryptography in fall 2016. Experience Academic appointments 2016-now Antoni van Leeuwenhoek Professor, QuTech, TU Delft, Delft, Netherlands. Roadmap Leader Quantum Internet 2014-2016 Associate Professor, QuTech, TU Delft, Delft, Netherlands. 2013-2014 Associate Professor, School of Computing, National University of Singapore (NUS), Singapore. 2010-2013 Assistant Professor, School of Computing, National University of Singapore, Singapore.
    [Show full text]
  • Scientific Reasoning Competencies: a Case of Preservice Teacher Education
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Dundee Online Publications University of Dundee Scientific Reasoning Competencies Khan, Samia; Krell, Moritz Published in: Canadian Journal of Science, Mathematics and Technology Education DOI: 10.1007/s42330-019-00063-9 Publication date: 2019 Document Version Publisher's PDF, also known as Version of record Link to publication in Discovery Research Portal Citation for published version (APA): Khan, S., & Krell, M. (2019). Scientific Reasoning Competencies: A Case of Preservice Teacher Education. Canadian Journal of Science, Mathematics and Technology Education, 19(4), 446-464. https://doi.org/10.1007/s42330-019-00063-9 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Dec. 2019 Can. J. Sci. Math. Techn. Educ. (2019) 19:446–464 https://doi.org/10.1007/s42330-019-00063-9 Scientific Reasoning Competencies: a Case of Preservice Teacher Education Samia Khan & Moritz Krell Published online: 19 November 2019 # The Author(s) 2019 Abstract In this study, we analysed the scientific reasoning competencies of preservice science teachers from a Canadian sample at the beginning and end of a science teacher education methods course.
    [Show full text]
  • Pterossauros Nasciam Sem a Capacidade De Voar
    NOTAS 1 Pterossauros nasciam sem a capacidade de voar Os filhotes de pterossauros, répteis ala- dos já extintos, contemporâneos dos dinossauros, rompiam seus ovos prontos para andar, mas não para bater asas e ga- nhar os ares. Assim que nasciam, os ossos Ovos fossilizados da cintura estavam formados. Isso permi- do pterossauro Hamipterus tia que eles se apoiassem sobre as patas tianshanensis e traseiras e dessem os primeiros passos. reconstituição Porém, a estrutura óssea que dá suporte artística da espécie aos movimentos do músculo peitoral, essencial para sustentar o voo, ainda não estava totalmente constituída. Os recém- -nascidos também não tinham todos os dentes, limitação que provavelmente os impedia de se alimentar sozinhos. Para sobreviver até que os ossos de apoio das asas e os dentes estivessem completos, os filhotes tinham de permanecer um bom tempo sob o cuidado dos pais. Esse cenário, sobre o desenvolvimento embrio- nário e os primeiros movimentos, ainda tímidos, dos filhotes de pterossauros, é sugerido em um estudo feito por paleon- tólogos brasileiros e chineses (Science, 1º de dezembro). “O descompasso entre o desenvolvimento dos ossos da cintura e os da musculatura peitoral indica que os pterossauros não conseguiam voar ao nascer”, comenta o paleontólogo Ale- xander Kellner, do Museu Nacional da Universidade Federal do Rio de Janeiro (UFRJ), um dos autores do trabalho. Com o auxílio de imagens de tomografia com- putadorizada, o grupo analisou o interior de 16 ovos de pterossauros da espécie Hamipterus tianshanensis, que viveu há cerca de 120 milhões de anos na bacia de Turpan-Hami, no noroeste da China.
    [Show full text]
  • Looking at Earth: an Astronaut's Journey Induction Ceremony 2017
    american academy of arts & sciences winter 2018 www.amacad.org Bulletin vol. lxxi, no. 2 Induction Ceremony 2017 Class Speakers: Jane Mayer, Ursula Burns, James P. Allison, Heather K. Gerken, and Gerald Chan Annual David M. Rubenstein Lecture Looking at Earth: An Astronaut’s Journey David M. Rubenstein and Kathryn D. Sullivan ALSO: How Are Humans Different from Other Great Apes?–Ajit Varki, Pascal Gagneux, and Fred H. Gage Advancing Higher Education in America–Monica Lozano, Robert J. Birgeneau, Bob Jacobsen, and Michael S. McPherson Redistricting and Representation–Patti B. Saris, Gary King, Jamal Greene, and Moon Duchin noteworthy Select Prizes and Andrea Bertozzi (University of James R. Downing (St. Jude Chil- Barbara Grosz (Harvard Univer- California, Los Angeles) was se- dren’s Research Hospital) was sity) is the recipient of the Life- Awards to Members lected as a 2017 Simons Investi- awarded the 2017 E. Donnall time Achievement Award of the gator by the Simons Foundation. Thomas Lecture and Prize by the Association for Computational American Society of Hematology. Linguistics. Nobel Prize in Chemistry, Clara D. Bloomfield (Ohio State 2017 University) is the recipient of the Carol Dweck (Stanford Univer- Christopher Hacon (University 2017 Robert A. Kyle Award for sity) was awarded the inaugural of Utah) was awarded the Break- Joachim Frank (Columbia Univer- Outstanding Clinician-Scientist, Yidan Prize. through Prize in Mathematics. sity) presented by the Mayo Clinic Di- vision of Hematology. Felton Earls (Harvard Univer- Naomi Halas (Rice University) sity) is the recipient of the 2018 was awarded the 2018 Julius Ed- Nobel Prize in Economic Emmanuel J.
    [Show full text]
  • Medical Advisory Board September 1, 2006–August 31, 2007
    hoWard hughes medical iNstitute 2007 annual report What’s Next h o W ard hughes medical i 4000 oNes Bridge road chevy chase, marylaNd 20815-6789 www.hhmi.org N stitute 2007 a nn ual report What’s Next Letter from the president 2 The primary purpose and objective of the conversation: wiLLiam r. Lummis 6 Howard Hughes Medical Institute shall be the promotion of human knowledge within the CREDITS thiNkiNg field of the basic sciences (principally the field of like medical research and education) and the a scieNtist 8 effective application thereof for the benefit of mankind. Page 1 Page 25 Page 43 Page 50 seeiNg Illustration by Riccardo Vecchio Südhof: Paul Fetters; Fuchs: Janelia Farm lab: © Photography Neurotoxin (Brunger & Chapman): Page 3 Matthew Septimus; SCNT images: by Brad Feinknopf; First level of Rongsheng Jin and Axel Brunger; iN Bruce Weller Blake Porch and Chris Vargas/HHMI lab building: © Photography by Shadlen: Paul Fetters; Mouse Page 6 Page 26 Brad Feinknopf (Tsai): Li-Huei Tsai; Zoghbi: Agapito NeW Illustration by Riccardo Vecchio Arabidopsis: Laboratory of Joanne Page 44 Sanchez/Baylor College 14 Page 8 Chory; Chory: Courtesy of Salk Janelia Farm guest housing: © Jeff Page 51 Ways Illustration by Riccardo Vecchio Institute Goldberg/Esto; Dudman: Matthew Szostak: Mark Wilson; Evans: Fred Page 10 Page 27 Septimus; Lee: Oliver Wien; Greaves/PR Newswire, © HHMI; Mello: Erika Larsen; Hannon: Zack Rosenthal: Paul Fetters; Students: Leonardo: Paul Fetters; Riddiford: Steitz: Harold Shapiro; Lefkowitz: capacity Seckler/AP, © HHMI; Lowe: Zack Paul Fetters; Map: Reprinted by Paul Fetters; Truman: Paul Fetters Stewart Waller/PR Newswire, Seckler/AP, © HHMI permission from Macmillan Page 46 © HHMI for Page 12 Publishers, Ltd.: Nature vol.
    [Show full text]
  • Section 1: MIT Facts and History
    1 MIT Facts and History Economic Information 9 Technology Licensing Office 9 People 9 Students 10 Undergraduate Students 11 Graduate Students 12 Degrees 13 Alumni 13 Postdoctoral Appointments 14 Faculty and Staff 15 Awards and Honors of Current Faculty and Staff 16 Awards Highlights 17 Fields of Study 18 Research Laboratories, Centers, and Programs 19 Academic and Research Affiliations 20 Education Highlights 23 Research Highlights 26 7 MIT Facts and History The Massachusetts Institute of Technology is one nologies for artificial limbs, and the magnetic core of the world’s preeminent research universities, memory that enabled the development of digital dedicated to advancing knowledge and educating computers. Exciting areas of research and education students in science, technology, and other areas of today include neuroscience and the study of the scholarship that will best serve the nation and the brain and mind, bioengineering, energy, the envi- world. It is known for rigorous academic programs, ronment and sustainable development, informa- cutting-edge research, a diverse campus commu- tion sciences and technology, new media, financial nity, and its long-standing commitment to working technology, and entrepreneurship. with the public and private sectors to bring new knowledge to bear on the world’s great challenges. University research is one of the mainsprings of growth in an economy that is increasingly defined William Barton Rogers, the Institute’s founding pres- by technology. A study released in February 2009 ident, believed that education should be both broad by the Kauffman Foundation estimates that MIT and useful, enabling students to participate in “the graduates had founded 25,800 active companies.
    [Show full text]
  • Sten Grillner
    BK-SFN-HON_V9-160105-Grillner.indd 108 5/6/2016 4:11:20 PM Sten Grillner BORN: Stockholm, Sweden June 14, 1941 EDUCATION: University of Göteborg, Sweden, Med. Candidate (1962) University of Göteborg, Sweden, Dr. of Medicine, PhD (1969) Academy of Science, Moscow, Visiting Scientist (1971) APPOINTMENTS: Docent in Physiology, Medical Faculty, University of Göteborg (1969–1975) Professor, Department of Physiology III, Karolinska Institute (1975–1986) Director, Nobel Institute for Neurophysiology, Karolinska Institute, Professor (1987) Nobel Committee for Physiology or Medicine, Chair, 1995–1997 (1987–1998) Nobel Assembly at the Karolinska Institutet, Member Chair, 2005 (1988–2008) Chairman Department of Neuroscience, Karolinska Institutet (1993–2000) Distinguished Professor, Karolinska Institutet (2010) HONORS AND AWARDS: Member of Academiae Europaea 1990– Member of Royal Swedish Academy of Science 1993– Chairman Section for Biology and Member of Academy Board, 2004–2010 Member of Norwegian Academy of Science and Letters, 1997– Member American Academy of Arts and Sciences, 2004– Honorary Member of the Spanish Medical Academy, 2006– Foreign Associate of Institute of Medicine of the National Academy, United States, 2006– Foreign Associate of the National Academy, United States, 2010– Associate of the Neuroscience Institute, La Jolla, 1989– Member EMBO, 2014– Florman Award, Royal Swedish Academy of Science, 1977 Grass Lecturer to the Society of Neuroscience, Boston, 1983 Greater Nordic Prize of Eric Fernstrom, Lund, Sweden, 1990 Bristol-Myers
    [Show full text]
  • 2009 SIAM Annual Meeting Is Being Held Rooms Sell out Quickly!) in Conjunction with the Community Lecture Wednesday, July 8, 6:15 – 7:15 PM I.E
    Join SIAM in Denverwww.siam.org/meetings/an09 Organizing Committee Mihai Anitescu, Argonne National Laboratory Andrew Conn, IBM T. J. Watson Research Center Lenore Cowen, Tufts University William McEneaney, University of California, San Diego Esmond Ng, Lawrence Berkeley National Laboratory Donald Estep, Colorado State University Lori Freitag-Diachin (co-chair), Lawrence Livermore National Laboratory Padma Raghavan, Pennsylvania State University Jonathan Rubin, University of Pittsburgh Invited Presentations Björn Sandstede, University of Surrey, United Plenary Speakers Kingdom Heinz-Otto Kreiss, KTH Stockholm, Sweden Rob Schreiber, Hewlett Packard Karl Kunisch*, University of Graz, Austria Tao Tang, Hong Kong Baptist University, Hong Kong Ulisses Mello, IBM Research Andy Wathen (co-chair), University of Oxford, * Joint speaker with the 2009 SIAM Conference on United Kingdom Control and Its Applications Thaleia Zariphopoulou, University of Texas, Austin Topical Speakers Alberto Bressan, Pennsylvania State University Prizes and Awards Luncheon Russel E. Caflisch, University of California, Los Angeles The following prizes and awards will be presented Stephen Coombes, University of Nottingham, at the prizes and awards luncheon on Tuesday, United Kingdom July 7, 12:30 – 2:00 PM. Michael C. Ferris, University of Wisconsin Wen-mei Hwu, University of Illinois at Urbana-Champaign I. E. Block Community Lecture Ioannis Karatzas, Columbia University Theodore von Kármán Prize Lecture Charles E. Leiserson, Cilk Arts and Massachusetts AWM-SIAM Sonia Kovalevsky Lecture Institute of Technology W. T. and Idalia Reid Prize in Mathematics Lecture Lois Curfman McInnes, Argonne National Laboratory The John von Neumann Lecture Denver images courtesy Bruce Younggreen, and Denver Visitors and Convention Bureau and Denver Visitors Younggreen, Denver images courtesy Bruce Juan C.
    [Show full text]
  • Asian Nobel Prize' for Mapping the Universe 27 May 2010
    Scientists win 'Asian Nobel Prize' for mapping the universe 27 May 2010 Three US scientists whose work helped map the category. universe are among the recipients of the one- million-US-dollar Shaw Prize, known as the "Asian (c) 2010 AFP Nobel," the competition's organisers said Thursday. Princeton University professors Lyman Page and David Spergel and Charles Bennett of Johns Hopkins University, won the award for an experiment that helped to determine the "geometry, age and composition of the universe to unprecedented precision." The trio will share the Shaw Prize's award for astronomy, with one-million-US-dollar prizes also awarded in the categories for mathematical sciences and life sciences and medicine. The University of California's David Julius won the award for life sciences and medicine for his "seminal discoveries" of how the skin senses pain and temperature, the organisers' statement said. "(Julius's) work has provided insights into fundamental mechanisms underlying the sense of touch as well as knowledge that opens the door to rational drug design for the treatment of chronic pain," the statement said. Princeton's Jean Bourgain won an award for his "profound work" in mathematical sciences, it said. The Shaw Prize, funded by Hong Kong film producer and philanthropist Run Run Shaw and first awarded in 2004, honours exceptional contributions "to the advancement of civilization and the well-being of humankind." The awards will be presented at a ceremony in Hong Kong on September 28. Last year, two scientists whose work challenged the assumption that obesity is caused by a lack of will power won the life sciences and medicine 1 / 2 APA citation: Scientists win 'Asian Nobel Prize' for mapping the universe (2010, May 27) retrieved 27 September 2021 from https://phys.org/news/2010-05-scientists-asian-nobel-prize-universe.html This document is subject to copyright.
    [Show full text]
  • Mathematics Calendar
    Mathematics Calendar Please submit conference information for the Mathematics Calendar through the Mathematics Calendar submission form at http:// www.ams.org/cgi-bin/mathcal-submit.pl. The most comprehensive and up-to-date Mathematics Calendar information is available on the AMS website at http://www.ams.org/mathcal/. June 2014 Information: http://www.tesol.org/attend-and-learn/ online-courses-seminars/esl-for-the-secondary- 1–7 Modern Time-Frequency Analysis, Strobl, Austria. (Apr. 2013, mathematics-teacher. p. 429) * 2–30 Algorithmic Randomness, Institute for Mathematical Sciences, 2–5 WSCG 2014 - 22nd International Conference on Computer National University of Singapore, Singapore. Graphics, Visualization and Computer Vision 2014, Primavera Description: Activities 1. Informal Collaboration: June 2–8, 2014. 2. Hotel and Congress Centrum, Plzen (close to Prague), Czech Repub- Ninth International Conference on Computability, Complexity and lic. (Jan. 2014, p. 90) Randomness (CCR 2014): June 9–13, 2014. The conference series 2–6 AIM Workshop: Descriptive inner model theory, American “Computability, Complexity and Randomness” is centered on devel- Institute of Mathematics, Palo Alto, California. (Mar. 2014, p. 312) opments in Algorithmic Randomness, and the conference CCR 2014 2–6 Computational Nonlinear Algebra, Institute for Computational will be part of the IMS programme. The CCR has previously been held and Experimental Research in Mathematics, (ICERM), Brown Univer- in Cordoba 2004, in Buenos Aires 2007, in Nanjing 2008, in Luminy sity, Providence, Rhode Island. (Nov. 2013, p. 1398) 2009, in Notre Dame 2010, in Cape Town 2011, in Cambridge 2012, and in Moscow 2013; it will be held in Heidelberg 2015. 3. Informal 2–6 Conference on Ulam’s type stability, Rytro, Poland.
    [Show full text]