The Chemistry of Flavonoids in Model Beverages and Human Milk

Total Page:16

File Type:pdf, Size:1020Kb

The Chemistry of Flavonoids in Model Beverages and Human Milk Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations Fall 2013 The heC mistry of Flavonoids in Model Beverages and Human Milk Brian Jay Song Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Food Science Commons Recommended Citation Song, Brian Jay, "The heC mistry of Flavonoids in Model Beverages and Human Milk" (2013). Open Access Dissertations. 64. https://docs.lib.purdue.edu/open_access_dissertations/64 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School ETD Form 9 (Revised 12/07) PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Brian J. Song Entitled The Chemistry of Flavonoids in Model Beverages and Human Milk Doctor of Philosophy For the degree of Is approved by the final examining committee: Mario Ferruzzi Chair John Burgess Christian Butzke Fernanda San Martin-Gonzalez To the best of my knowledge and as understood by the student in the Research Integrity and Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material. Approved by Major Professor(s): ____________________________________Mario Ferruzzi ____________________________________ Approved by: Brian Farkas 08/21/2013 Head of the Graduate Program Date i THE CHEMISTRY OF FLAVONOIDS IN MODEL BEVERAGES AND HUMAN MILK A Dissertation Submitted to the Faculty of Purdue University by Brian Jay Song In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy i December 2013 Purdue University West Lafayette, Indiana ii To my parents, Ki Hwan and Hyon Sik Song, who made my growth and prosperity possible. ii iii ACKNOWLEDGEMENTS I would like to express my deepest gratitude to my family who have fully supported all my efforts. I would like to thank my major professor, Dr. Mario Ferruzzi, for being a great advisor and always pushing me towards my highest potential. Your encouragement, attitude, and research prowess have been a great influence during my graduate studies and will continue to influence me in the future. I would like to thank my academic committee members, Dr. Jay Burgess, Dr. Christian Butzke, and Dr. Fernanda San Martin. Your insight through my studies have allowed me to become a superior scientist. I would like to thank my fellow lab members, Andrew Neilson, Shellen Goltz, Nicolas Bordenave, Tristan Lipkie, Sydney Moser, and Tzu-Ying Chen, for their aid and support iii throughout my graduate studies. Our combined efforts allowed us to surpass many obstacles and simultaneously created wonderful memories that I will never forget. iv I would like to acknowledge the undergraduate research assistants, Claire Burtch, Stacey Hirt, Christopher Manganais, and Laura Willis, for aiding in the experiments discussed within this dissertation. Finally, I would like to thank Mrs. Patricia Grantuskas, Mrs. Laura Lepore, and Dr. Mary Ann Lovelace for encouraging my academic growth and indulging my scientific interest throughout my youth iv v TABLE OF CONTENTS Page LIST OF TABLES ............................................................................................................. ix LIST OF FIGURES ............................................................................................................ x LIST OF ABBREVIATIONS ........................................................................................... xii ABSTRACT ............................................................................................................... xiv CHAPTER 1. REVIEW OF LITERATURE .................................................................. 1 1.1 Introduction ............................................................................................... 1 1.2 Flavonoid Molecular Structures ................................................................ 1 1.2.1 Flavan-3-ol Molecular Structure ......................................................... 2 1.2.2 Anthocyanidin and Anthocyanin Molecular Structure ........................ 3 1.2.3 Flavonol and Flavanone Molecular Structures .................................... 5 1.3 Biosynthesis of Flavonoids ....................................................................... 6 1.4 Common Dietary Sources of Flavonoids .................................................. 8 1.4.1 Flavan-3-ols ......................................................................................... 9 1.4.2 Anthocyanins ..................................................................................... 11 1.4.3 Flavonols ........................................................................................... 13 1.4.4 Flavanones ......................................................................................... 14 1.5 Flavonoids and Health ............................................................................. 14 1.5.1 Oxidative Stress ................................................................................. 14 1.5.2 Inflammatory Stress .......................................................................... 15 1.5.3 Cardiovascular Disease ..................................................................... 16 1.5.4 Cancer ................................................................................................ 17 1.5.5 Neurodegenerative Diseases .............................................................. 17 1.6 Flavonoid Absorption, Metabolism, and Bioavailability ........................ 18 1.6.1 Flavonoid Absorption ........................................................................ 19 v 1.6.2 Flavonoid Metabolism ....................................................................... 22 1.6.3 Flavonoid Bioavailability .................................................................. 23 1.6.4 Flavonoid Tissue Distribution ........................................................... 24 1.7 Flavonoid Stability .................................................................................. 25 1.7.1 Oxygen and Oxidation ....................................................................... 26 1.7.2 pH Stability ........................................................................................ 29 1.7.3 Temperature ....................................................................................... 31 1.7.4 Light .................................................................................................. 33 1.8 Interactions with Protein ......................................................................... 34 1.9 Research Aims ......................................................................................... 35 vi Page CHAPTER 2. PHOTO AND THERMAL DEGRADATION OF ANTHOCYANINS FROM GRAPE AND PURPLE SWEET POTATOIN MODEL BEVERAGE SYSTEMS ....................................................................... 39 2.1 Introduction ............................................................................................. 39 2.2 Materials and Methods ............................................................................ 41 2.2.1 Materials ............................................................................................ 41 2.2.2 Model Beverages ............................................................................... 42 2.2.3 Photo and Thermal Stresses .............................................................. 42 2.2.4 Anthocyanin Analysis ....................................................................... 43 2.2.5 Kinetic Models .................................................................................. 45 2.2.6 Experimental Design and Statistical Analysis ................................... 45 2.3 Results and Discussion ............................................................................ 46 2.3.1 Anthocyanin Profiles ......................................................................... 46 2.3.2 Impact of Thermal Stress on Grape Anthocyanin Degradation Rates .. .......................................................................................................... 47 2.3.3 Impact of Model Beverages on Anthocyanin Degradation Rates Through Thermal Stress .................................................................... 50 2.3.4 Arrhenius Behavior and Activation Energies .................................... 52 2.3.5 Grape and Purple Sweet Potato Anthocyanins Under Thermal Stress .. .......................................................................................................... 54 2.3.6 Impact of Model Beverages on Anthocyanin Degradation Rates Through Photo Stress ........................................................................ 56 2.3.7 Grape and Purple Sweet Potato Anthocyanins Under Photo Stress .. 58 2.3.8 Conclusions ....................................................................................... 62 CHAPTER 3. ASSESSMENT OF PHYTOCHEMICAL CONTENT IN HUMAN MILK DURING DIFFERENT STAGES OF LACTATION ................ 63 3.1 Introduction ............................................................................................. 63 3.2 Material and Methods .............................................................................. 66 vi 3.2.1 Chemicals and Standards ................................................................... 66 3.2.2 Human
Recommended publications
  • Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: a Review
    molecules Review Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: A Review Hanghang Lou 1,†, Lifei Hu 2,†, Hongyun Lu 1, Tianyu Wei 1 and Qihe Chen 1,* 1 Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; [email protected] (H.L.); [email protected] (H.L.); [email protected] (T.W.) 2 Hubei Key Lab of Quality and Safety of Traditional Chinese Medicine & Health Food, Huangshi 435100, China; [email protected] * Correspondence: [email protected]; Tel.: +86-0571-8698-4316 † These authors are equally to this manuscript. Abstract: Flavonoids belong to a class of plant secondary metabolites that have a polyphenol structure. Flavonoids show extensive biological activity, such as antioxidative, anti-inflammatory, anti-mutagenic, anti-cancer, and antibacterial properties, so they are widely used in the food, phar- maceutical, and nutraceutical industries. However, traditional sources of flavonoids are no longer sufficient to meet current demands. In recent years, with the clarification of the biosynthetic pathway of flavonoids and the development of synthetic biology, it has become possible to use synthetic metabolic engineering methods with microorganisms as hosts to produce flavonoids. This article mainly reviews the biosynthetic pathways of flavonoids and the development of microbial expression systems for the production of flavonoids in order to provide a useful reference for further research on synthetic metabolic engineering of flavonoids. Meanwhile, the application of co-culture systems in the biosynthesis of flavonoids is emphasized in this review. Citation: Lou, H.; Hu, L.; Lu, H.; Wei, Keywords: flavonoids; metabolic engineering; co-culture system; biosynthesis; microbial cell factories T.; Chen, Q.
    [Show full text]
  • L.) Leaves Tao Jiang1,3, Kunyuan Guo2,3, Lingdi Liu1, Wei Tian1, Xiaoliang Xie1, Saiqun Wen1 & Chunxiu Wen1*
    www.nature.com/scientificreports OPEN Integrated transcriptomic and metabolomic data reveal the favonoid biosynthesis metabolic pathway in Perilla frutescens (L.) leaves Tao Jiang1,3, Kunyuan Guo2,3, Lingdi Liu1, Wei Tian1, Xiaoliang Xie1, Saiqun Wen1 & Chunxiu Wen1* Perilla frutescens (L.) is an important medicinal and edible plant in China with nutritional and medical uses. The extract from leaves of Perilla frutescens contains favonoids and volatile oils, which are mainly used in traditional Chinese medicine. In this study, we analyzed the transcriptomic and metabolomic data of the leaves of two Perilla frutescens varieties: JIZI 1 and JIZI 2. A total of 9277 diferentially expressed genes and 223 favonoid metabolites were identifed in these varieties. Chrysoeriol, apigenin, malvidin, cyanidin, kaempferol, and their derivatives were abundant in the leaves of Perilla frutescens, which were more than 70% of total favonoid contents. A total of 77 unigenes encoding 15 enzymes were identifed as candidate genes involved in favonoid biosynthesis in the leaves of Perilla frutescens. High expression of the CHS gene enhances the accumulation of favonoids in the leaves of Perilla frutescens. Our results provide valuable information on the favonoid metabolites and candidate genes involved in the favonoid biosynthesis pathways in the leaves of Perilla frutescens. Perilla frutescens (L.), which is a self-compatible annual herb, belongs to the family Lamiaceae. Tis species has been widely cultivated in China, Japan, and Korea for centuries. Perilla frutescens is an important medicinal and edible plant in China with medical and nutritional uses 1. Its leaves can be utilized as a transitional medicinal herb, as a vegetable, and as a spice, and its seeds can be processed into foods and nutritional edible oils 2.
    [Show full text]
  • Alteration of Anthocyanin Glycosylation in Cranberry Through Interspecific Hybridization
    J. AMER. Soc. HORT. Sci. 130(5):711-715. 2005. Alteration of Anthocyanin Glycosylation in Cranberry Through Interspecific Hybridization Nicholi Vorsa Philip E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, 125A Lake Oswego Road, Chatsworth, NJ 08019 James J. Polashock1 USDA—ARS Fruit Lab, 125A Lake Oswego Road, Chatsworth, NJ 08019 ADDITIONAL INDEX WORDS. Vaccinium macrocarpon, Vaccinium oxycoccus, antioxidant, bioavailability, flavonoid ABSTRACT. The flavonoids of american cranberry (Vaccinium macrocarpon Alt.) are documented to be beneficial for hu- man health. Among their benefits is a high antioxidant potential, with anthocyanin glycosides being the main contribu- tors. Flavonoid glucose conjugates are reported to be more bioavailable than those with other sugar conjugates. The anthocyanin glycosides of V. macrocarpon fruit are mainly galactosides and arabinosides of the aglycones, cyanidin and peonidin, with less than 8% glucosides. In contrast, the fruit anthocyanins of another cranberry species, V. oxycoccus L. were found to be largely glucosides of cyanidin and peonidin. Interspecific hybrids between these two species were intermediate to the parental species in the proportion of fruit anthocyanin glucosides. About half the progeny (1:1 segregation) in a backcross population (to V. macrocarpon) maintained the relatively high anthocyanin glucoside ratio. In this study, we demonstrate the genetic manipulation of anthocyanin glycosylation in cranberry using interspecific hybridization, resulting in dramatically increased glucose-conjugated anthocyanins. Flavonoids are considered to be secondary metabolites, which The cultivated american cranberry (V. macrocarpon) is recog- have been associated with roles in ultraviolet protection, plant nized for its brilliant red fruit due to an abundance of anthocyanins sexual reproduction, pollinator attraction, symbiotic plant—microbe in the fruit epidermal tissues.
    [Show full text]
  • Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
    Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility.
    [Show full text]
  • Relating Metatranscriptomic Profiles to the Micropollutant
    1 Relating Metatranscriptomic Profiles to the 2 Micropollutant Biotransformation Potential of 3 Complex Microbial Communities 4 5 Supporting Information 6 7 Stefan Achermann,1,2 Cresten B. Mansfeldt,1 Marcel Müller,1,3 David R. Johnson,1 Kathrin 8 Fenner*,1,2,4 9 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, 10 Switzerland. 2Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 11 Zürich, Switzerland. 3Institute of Atmospheric and Climate Science, ETH Zürich, 8092 12 Zürich, Switzerland. 4Department of Chemistry, University of Zürich, 8057 Zürich, 13 Switzerland. 14 *Corresponding author (email: [email protected] ) 15 S.A and C.B.M contributed equally to this work. 16 17 18 19 20 21 This supporting information (SI) is organized in 4 sections (S1-S4) with a total of 10 pages and 22 comprises 7 figures (Figure S1-S7) and 4 tables (Table S1-S4). 23 24 25 S1 26 S1 Data normalization 27 28 29 30 Figure S1. Relative fractions of gene transcripts originating from eukaryotes and bacteria. 31 32 33 Table S1. Relative standard deviation (RSD) for commonly used reference genes across all 34 samples (n=12). EC number mean fraction bacteria (%) RSD (%) RSD bacteria (%) RSD eukaryotes (%) 2.7.7.6 (RNAP) 80 16 6 nda 5.99.1.2 (DNA topoisomerase) 90 11 9 nda 5.99.1.3 (DNA gyrase) 92 16 10 nda 1.2.1.12 (GAPDH) 37 39 6 32 35 and indicates not determined. 36 37 38 39 S2 40 S2 Nitrile hydration 41 42 43 44 Figure S2: Pearson correlation coefficients r for rate constants of bromoxynil and acetamiprid with 45 gene transcripts of ECs describing nucleophilic reactions of water with nitriles.
    [Show full text]
  • Flavonoids and Isoflavonoids Biosynthesis in the Model
    plants Review Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration Margarita García-Calderón 1, Carmen M. Pérez-Delgado 1, Peter Palove-Balang 2, Marco Betti 1 and Antonio J. Márquez 1,* 1 Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; [email protected] (M.G.-C.); [email protected] (C.M.P.-D.); [email protected] (M.B.) 2 Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, Mánesova 23, SK-04001 Košice, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +34-954557145 Received: 28 April 2020; Accepted: 18 June 2020; Published: 20 June 2020 Abstract: Phenylpropanoid metabolism represents an important metabolic pathway from which originates a wide number of secondary metabolites derived from phenylalanine or tyrosine, such as flavonoids and isoflavonoids, crucial molecules in plants implicated in a large number of biological processes. Therefore, various types of interconnection exist between different aspects of nitrogen metabolism and the biosynthesis of these compounds. For legumes, flavonoids and isoflavonoids are postulated to play pivotal roles in adaptation to their biological environments, both as defensive compounds (phytoalexins) and as chemical signals in symbiotic nitrogen fixation with rhizobia. In this paper, we summarize the recent progress made in the characterization of flavonoid and isoflavonoid biosynthetic pathways in the model legume Lotus japonicus (Regel) Larsen under different abiotic stress situations, such as drought, the impairment of photorespiration and UV-B irradiation. Emphasis is placed on results obtained using photorespiratory mutants deficient in glutamine synthetase.
    [Show full text]
  • Effects of Anthocyanins on the Ahr–CYP1A1 Signaling Pathway in Human
    Toxicology Letters 221 (2013) 1–8 Contents lists available at SciVerse ScienceDirect Toxicology Letters jou rnal homepage: www.elsevier.com/locate/toxlet Effects of anthocyanins on the AhR–CYP1A1 signaling pathway in human hepatocytes and human cancer cell lines a b c d Alzbeta Kamenickova , Eva Anzenbacherova , Petr Pavek , Anatoly A. Soshilov , d e e a,∗ Michael S. Denison , Michaela Zapletalova , Pavel Anzenbacher , Zdenek Dvorak a Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 11, 783 71 Olomouc, Czech Republic b Institute of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic c Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Heyrovskeho 1203, Hradec Kralove 50005, Czech Republic d Department of Environmental Toxicology, University of California, Meyer Hall, One Shields Avenue, Davis, CA 95616-8588, USA e Institute of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic h i g h l i g h t s • Food constituents may interact with drug metabolizing pathways. • AhR–CYP1A1 pathway is involved in drug metabolism and carcinogenesis. • We examined effects of 21 anthocyanins on AhR–CYP1A1 signaling. • Human hepatocytes and cell lines HepG2 and LS174T were used as the models. • Tested anthocyanins possess very low potential for food–drug interactions. a r t i c l e i n f o a b s t r a c t
    [Show full text]
  • Induced Transcriptional Profiling of Phenylpropanoid Pathway Genes
    Ali and McNear BMC Plant Biology 2014, 14:84 http://www.biomedcentral.com/1471-2229/14/84 RESEARCH ARTICLE Open Access Induced transcriptional profiling of phenylpropanoid pathway genes increased flavonoid and lignin content in Arabidopsis leaves in response to microbial products Mohammad Babar Ali* and David H McNear Jr Abstract Background: The production and use of biologically derived soil additives is one of the fastest growing sectors of the fertilizer industry. These products have been shown to improve crop yields while at the same time reducing fertilizer inputs to and nutrient loss from cropland. The mechanisms driving the changes in primary productivity and soil processes are poorly understood and little is known about changes in secondary productivity associated with the use of microbial products. Here we investigate secondary metabolic responses to a biologically derived soil additive by monitoring changes in the phenlypropanoid (PP) pathway in Arabidopsis thaliana. Results: This study was designed to test the influence of one of these products (Soil Builder™-AF, SB) on secondary metabolism after being applied at different times. One time (TI) application of SB to Arabidopsis increased the accumulation of flavonoids compared to multiple (TII) applications of the same products. Fourteen phenolic compounds including flavonols and anothocyanins were identified by mass spectrometry. Kaempferol-3,7-O-bis-α- L-rhamnoside and quercetin 3,7-dirhamnoside, the major compounds, increased 3-fold and 4-fold, respectively compared to control in the TI treatment. The most abundant anthocyanin was cyanidin 3-rhamnoglucoside, which increased 3-fold and 2-fold in TI compared to the control and TII, respectively.
    [Show full text]
  • A Biochemical Survey of Some Mendelian Factors for Flower Colour
    A BIOCHEMICAL 8UP~VEY OF SOME MENDELIAN FACTOI%S FO].~ FLOWEP~ COLOU~. BY ROSE SCOTT-MONCI~IEFF. (John Inncs Horticultural Institution, London.) (With One Text-figure.) CONTENTS. PAGE P~rb I. Introductory ].17 (a) The plastid 1)igmenl~s ] 21 (b) The a,n~hoxan~hius: i~heir backgromld, co-pigment and interaction effecbs upon flower-colour v~ri~bion 122 (c) The ani~hocyauins ] 25 (c) Col[oidM condition . 131 (f) Anthoey~nins as indic~bors 132 (g) The source of tim ~nl;hoey~nins 133 ]?ar[ II, Experimental 134 A. i~ecen~ investigations: (a) 2Prim,ula si,sensis 134- (b) Pa,l)aver Rhoeas 14.1 (c) Primuln aca.ulis 147 (d) Chc.l)ranth'ss Chci,rl 148 (e) ltosa lmlyanlha . 149 (f) Pelargonium zomdc 149 (g) Lalh,ymts odor~,l,us 150 (h) Vcrbom, hybrids 153 (i) Sl;'e2)loca~'])uG hybrids 15~ (j) T'rol)aeolu,m ,majors ] 55 ]3. B,eviews of published remflts of bhe t~u~horand o~hers.. (a) Dahlia variabilis (Lawreuce and Scol,~-Monerieff) 156 (b) A.nlb'rhinum majors (Wheklalo-Onslow, :Basseb~ a,nd ,~cobb- M.oncrieff ) 157 (c) Pharbilis nil (I-Iagiwam) . 158 (d) J/it& (Sht'itl.er it,lid Anderson) • . 159 (e) Zect d]f.ctys (~&udo, Miiner trod 8borl/lall) 159 Par~, III. The generM beh~wiour of Mendelian £acbors rot' flower colour . 160 Summary . 167 tLefermmes 168 I)AI~T I. II~TI~O])UOTOnY. Slm~C~ Onslow (1914) m~de the first sfudy of biochemica] chal~ges in- volved in flower-eolour va,riadon, our pro'ely chemical knowledge of bhe 118 A Bio&emical Su~'vey oI' Factor's fo~ • Flowe~' Colou~' anthocya.nin pigments has been considerably advanced by the work of Willstgtter, P~obinson, Karrer and their collaborators.
    [Show full text]
  • The Science of Flavonoids the Science of Flavonoids
    The Science of Flavonoids The Science of Flavonoids Edited by Erich Grotewold The Ohio State University Columbus, Ohio, USA Erich Grotewold Department of Cellular and Molecular Biology The Ohio State University Columbus, Ohio 43210 USA [email protected] The background of the cover corresponds to the accumulation of flavonols in the plasmodesmata of Arabidopsis root cells, as visualized with DBPA (provided by Dr. Wendy Peer). The structure corresponds to a model of the Arabidopsis F3 'H enzyme (provided by Dr. Brenda Winkel). The chemical structure corresponds to dihydrokaempferol. Library of Congress Control Number: 2005934296 ISBN-10: 0-387-28821-X ISBN-13: 978-0387-28821-5 ᭧2006 Springer ScienceϩBusiness Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer ScienceϩBusiness Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America (BS/DH) 987654321 springeronline.com PREFACE There is no doubt that among the large number of natural products of plant origin, debatably called secondary metabolites because their importance to the eco- physiology of the organisms that accumulate them was not initially recognized, flavonoids play a central role.
    [Show full text]
  • Incorporation of Oxygen Into the Succinate Co-Product of Iron(II) and 2-Oxoglutarate Dependent Oxygenases from Bacteria, Plants and Humans
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 579 (2005) 5170–5174 FEBS 29930 Incorporation of oxygen into the succinate co-product of iron(II) and 2-oxoglutarate dependent oxygenases from bacteria, plants and humans Richard W.D. Welforda,1, Joanna.M. Kirkpatrickb,1, Luke A. McNeillb,1, Munish Puric, Neil J. Oldhamb, Christopher J. Schofieldb,* a UC Berkeley, Department of Chemistry, Berkeley, CA 94720, USA b Chemistry Research Laboratory, Department of Chemistry and Oxford Centre for Molecular Sciences, Mansfield Road, Oxford OX1 3TA, UK c Biochemical Engineering Research and Process Development Centre, Institute of Microbial Technology, Chandigarh, India Received 20 July 2005; revised 17 August 2005; accepted 17 August 2005 Available online 30 August 2005 Edited by Stuart Ferguson during hydroxylation reactions, a less than stoichiometric Abstract The ferrous iron and 2-oxoglutarate (2OG) depen- dent oxygenases catalyse two electron oxidation reactions by incorporation of oxygen into the hydroxyl group of the prod- coupling the oxidation of substrate to the oxidative decarboxyl- uct can occur in some cases (e.g., hydroxylation of some ation of 2OG, giving succinate and carbon dioxide coproducts. substrates catalysed by clavaminic acid synthase and deace- The evidence available on the level of incorporation of one atom toxy/deacetyl cephalosporin C synthase) [9,10]. This is thought from dioxygen into succinate is inconclusive. Here, we demon- to be due to solvent exchange of one of the reactive iron– strate that five members of the 2OG oxygenase family, AlkB oxygen intermediates, although the identity of the particular from Escherichia coli, anthocyanidin synthase and flavonol syn- intermediate(/s) that undergo exchange has not been defined.
    [Show full text]
  • Nutrient Depletion As a Key Factor for Manipulating Gene Expression and Product Formation in Different Branches of the flavonoid Pathway
    Plant, Cell and Environment (2008) 31, 587–601 doi: 10.1111/j.1365-3040.2007.01748.x Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway CATHRINE LILLO, UNNI S LEA & PETER RUOFF Department of Mathematics and Natural Science, University of Stavanger, 4036 Stavanger, Norway ABSTRACT (UV) light and pathogens, and their concentrations gener- ally increase in response to such factors.Although the func- The content of flavonoids increases in response to nitrogen tions of increased flavonoid concentration in response to and phosphorus depletion in plants. Manipulation of these nutrient limitation is obscure, these effects are striking, and macronutrients may therefore be used to control the levels especially the responses to nitrogen and phosphorus are of desirable compounds and improve plant quality. Key profoundly documented during the past years (Stewart et al. enzymes in the shikimate pathway, which feeds pre- 2001;Scheible et al. 2004;Wang et al. 2004;Misson et al. 2005; cursors into the flavonoid pathway, are regulated post- Lea et al. 2007; Morcuende et al. 2007; Müller et al. 2007). translationally by feedback from aromatic amino acids, and The shikimate pathway is present in both plants and possibly by redox control through photosynthesis. Use of microorganisms, but never in animals. In plants, the shiki- microarrays for global transcript analysis in Arabidopsis has mate pathway provides phenylalanine not only for protein revealed that transcript levels are less influenced by mineral synthesis, but also for secondary metabolites such as lignin nutrients in the shikimate pathway compared with the fla- and flavonoids.
    [Show full text]