Dadmun Cornell 0058O 11029.Pdf (1.396Mb)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alteration of Anthocyanin Glycosylation in Cranberry Through Interspecific Hybridization
J. AMER. Soc. HORT. Sci. 130(5):711-715. 2005. Alteration of Anthocyanin Glycosylation in Cranberry Through Interspecific Hybridization Nicholi Vorsa Philip E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, 125A Lake Oswego Road, Chatsworth, NJ 08019 James J. Polashock1 USDA—ARS Fruit Lab, 125A Lake Oswego Road, Chatsworth, NJ 08019 ADDITIONAL INDEX WORDS. Vaccinium macrocarpon, Vaccinium oxycoccus, antioxidant, bioavailability, flavonoid ABSTRACT. The flavonoids of american cranberry (Vaccinium macrocarpon Alt.) are documented to be beneficial for hu- man health. Among their benefits is a high antioxidant potential, with anthocyanin glycosides being the main contribu- tors. Flavonoid glucose conjugates are reported to be more bioavailable than those with other sugar conjugates. The anthocyanin glycosides of V. macrocarpon fruit are mainly galactosides and arabinosides of the aglycones, cyanidin and peonidin, with less than 8% glucosides. In contrast, the fruit anthocyanins of another cranberry species, V. oxycoccus L. were found to be largely glucosides of cyanidin and peonidin. Interspecific hybrids between these two species were intermediate to the parental species in the proportion of fruit anthocyanin glucosides. About half the progeny (1:1 segregation) in a backcross population (to V. macrocarpon) maintained the relatively high anthocyanin glucoside ratio. In this study, we demonstrate the genetic manipulation of anthocyanin glycosylation in cranberry using interspecific hybridization, resulting in dramatically increased glucose-conjugated anthocyanins. Flavonoids are considered to be secondary metabolites, which The cultivated american cranberry (V. macrocarpon) is recog- have been associated with roles in ultraviolet protection, plant nized for its brilliant red fruit due to an abundance of anthocyanins sexual reproduction, pollinator attraction, symbiotic plant—microbe in the fruit epidermal tissues. -
Research Focus 2016-3B
Research News from Cornell’s Viticulture and Enology Program Research Focus 2016-3b RESEARCH FOCUS Comparing Red Wine Color in V. vinifera and Hybrid Cultivars Claire Burtch and Anna Katharine Mansfield Department of Food Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY KEY CONCEPTS • The color of red wine comes from pigments called anthocyanins. • Wines produced from V. vinifera have antho- cyanin-3-monoglucosides, which polymerize with other wine compounds to form stable color. • Wine produced from interspecific hybrids usu- Bench-top anthocyanin kinetic experiments help researchers ally contain high concentrations of anthocyan- describe color formation in red hybrid wines. Photo by Claire Burtch in-3,5-diglucosides. Red hybrid grapes have a broader and more varied col- • Anthocyanin-3,5-diglucosides don't form poly- lection of phenolic compounds than their Vitis vinifera meric pigment as quickly as monoglucosides. counterparts, and consequently show greater diversity in wine color, structure, and mouthfeel. Hybrid red • Hybrid cultivars have less extractable tannins. wine quality, however, is often measured through com- parison to more familiar V. vinifera varietal wines, so • Interspecific hybrid wines will have low con- obvious color differences may detract from perceived centrations of stable color, polymeric pigment, quality. Winemakers complain that hybrid red wines due to high anthocyanin-3,5-diglucoside con- vary from V. vinifera in color density, hue, and develop- centration and low tannin concentration. ment during aging, but the reasons for these differences have not been extensively studied. To determine the nins. For this reason, understanding the rate and types source of the differences in hybrid and V. -
Effects of Anthocyanins on the Ahr–CYP1A1 Signaling Pathway in Human
Toxicology Letters 221 (2013) 1–8 Contents lists available at SciVerse ScienceDirect Toxicology Letters jou rnal homepage: www.elsevier.com/locate/toxlet Effects of anthocyanins on the AhR–CYP1A1 signaling pathway in human hepatocytes and human cancer cell lines a b c d Alzbeta Kamenickova , Eva Anzenbacherova , Petr Pavek , Anatoly A. Soshilov , d e e a,∗ Michael S. Denison , Michaela Zapletalova , Pavel Anzenbacher , Zdenek Dvorak a Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 11, 783 71 Olomouc, Czech Republic b Institute of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic c Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Heyrovskeho 1203, Hradec Kralove 50005, Czech Republic d Department of Environmental Toxicology, University of California, Meyer Hall, One Shields Avenue, Davis, CA 95616-8588, USA e Institute of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic h i g h l i g h t s • Food constituents may interact with drug metabolizing pathways. • AhR–CYP1A1 pathway is involved in drug metabolism and carcinogenesis. • We examined effects of 21 anthocyanins on AhR–CYP1A1 signaling. • Human hepatocytes and cell lines HepG2 and LS174T were used as the models. • Tested anthocyanins possess very low potential for food–drug interactions. a r t i c l e i n f o a b s t r a c t -
B7967c067f54cca2a31c6cca889
molecules Article Effect of Lachancea thermotolerans on the Formation of Polymeric Pigments during Sequential Fermentation with Schizosaccharosmyces pombe and Saccharomyces cerevisiae Carlos Escott 1,* , Antonio Morata 1 , Jorge M. Ricardo-da-Silva 2 , María Jesús Callejo 1, María del Carmen González 1 and José Antonio Suarez-Lepe 1 1 enotecUPM. Chemistry and Food Technology Department, School of Agronomic, Food and Biosystems Engineering. Universidad Politécnica de Madrid, Av. Puerta de Hierro 2, 28040 Madrid, Spain; [email protected] (A.M.); [email protected] (M.J.C.); [email protected] (M.d.C.G.); [email protected] (J.A.S.-L.) 2 LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; [email protected] * Correspondence: [email protected]; Tel.: +34-91-336-57-30; Fax: +34-91-336-57-46 Received: 30 July 2018; Accepted: 12 September 2018; Published: 14 September 2018 Abstract: Anthocyanins in red grape musts may evolve during the winemaking process and wine aging for several different reasons; colour stability and evolution is a complex process that may depend on grape variety, winemaking technology, fermentative yeast selection, co-pigmentation phenomena and polymerization. The condensation of flavanols with anthocyanins may occur either with the flavylium ion or with the hemiacetal formation in order to produce oligomers and polymers. The kinetics of the reaction are enhanced by the presence of metabolic acetaldehyde, promoting the formation of pyranoanthocyanin-type dimers or flavanol-ethyl-anthocyanin structures. The experimental design carried out using white must corrected with the addition of malvidin-3-O-glucoside and flavanols, suggests that non-Saccharomyces yeasts are able to provide increased levels of colour intensity and larger polymeric pigment ratios and polymerization indexes. -
A Biochemical Survey of Some Mendelian Factors for Flower Colour
A BIOCHEMICAL 8UP~VEY OF SOME MENDELIAN FACTOI%S FO].~ FLOWEP~ COLOU~. BY ROSE SCOTT-MONCI~IEFF. (John Inncs Horticultural Institution, London.) (With One Text-figure.) CONTENTS. PAGE P~rb I. Introductory ].17 (a) The plastid 1)igmenl~s ] 21 (b) The a,n~hoxan~hius: i~heir backgromld, co-pigment and interaction effecbs upon flower-colour v~ri~bion 122 (c) The ani~hocyauins ] 25 (c) Col[oidM condition . 131 (f) Anthoey~nins as indic~bors 132 (g) The source of tim ~nl;hoey~nins 133 ]?ar[ II, Experimental 134 A. i~ecen~ investigations: (a) 2Prim,ula si,sensis 134- (b) Pa,l)aver Rhoeas 14.1 (c) Primuln aca.ulis 147 (d) Chc.l)ranth'ss Chci,rl 148 (e) ltosa lmlyanlha . 149 (f) Pelargonium zomdc 149 (g) Lalh,ymts odor~,l,us 150 (h) Vcrbom, hybrids 153 (i) Sl;'e2)loca~'])uG hybrids 15~ (j) T'rol)aeolu,m ,majors ] 55 ]3. B,eviews of published remflts of bhe t~u~horand o~hers.. (a) Dahlia variabilis (Lawreuce and Scol,~-Monerieff) 156 (b) A.nlb'rhinum majors (Wheklalo-Onslow, :Basseb~ a,nd ,~cobb- M.oncrieff ) 157 (c) Pharbilis nil (I-Iagiwam) . 158 (d) J/it& (Sht'itl.er it,lid Anderson) • . 159 (e) Zect d]f.ctys (~&udo, Miiner trod 8borl/lall) 159 Par~, III. The generM beh~wiour of Mendelian £acbors rot' flower colour . 160 Summary . 167 tLefermmes 168 I)AI~T I. II~TI~O])UOTOnY. Slm~C~ Onslow (1914) m~de the first sfudy of biochemica] chal~ges in- volved in flower-eolour va,riadon, our pro'ely chemical knowledge of bhe 118 A Bio&emical Su~'vey oI' Factor's fo~ • Flowe~' Colou~' anthocya.nin pigments has been considerably advanced by the work of Willstgtter, P~obinson, Karrer and their collaborators. -
Effects of Ph on the Stability of Cyanidin and Cyanidin 3-O-Β-Glucopyranoside in Aqueous Solution
Effects of pH on the stability of cyanidin and cyanidin 3-O-β-glucopyranoside in aqueous solution Violeta P. Rakić1, Mihaela A. Skrt2, Milena N. Miljković3, Danijela A. Kostić3, Dušan T. Sokolović4, Nataša E. Poklar Ulrih2,5 1College of Agriculture and Food Technology, Prokuplje, Serbia 2Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia 3Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia 4Faculty of Medicine, University of Niš, Niš, Serbia 5Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CipKeBiP), Ljubljana, Slovenia Abstract The colour variation, colour intensity and stability at various pH values (2.0, 4.0, 7.0 and SCIENTIFIC PAPER 9.0) of cyanidin 3-O-β-glucopyranoside (Cy3Glc) and its aglycone cyanidin were inves- tigated during a period of 8 hours storage at 25 °C. Our data showed that pH of aqueous UDC 547.973:667.777:543.42:544 solution had impact on spectroscopic profile of cyanidin and Cy3Glc. Beginning with the most acidic solutions, increasing the pH induce bathochromic shifts of absorbance maxi- mum in the visible range for all examined pH values (with the exception pH 4.0 for cya- Hem. Ind. 69 (5) 511–522 (2015) nidin), while the presence of the 3-glucosidic substitution induce hypsochromic shift. Com- pared to cyanidin, Cy3Glc has higher colour intensity and higher stability in the whole pH doi: 10.2298/HEMIND140711072R range, except at pH 7.0. The 3-glucosidic substitution influences on the colour intensity of Cy3Glc in the alkaline region. After 8-hour incubation of Cy3Glc and cyanidin at pH 2.0 and 25 °C, 99% of Cy3Glc and only 27% of cyanidin remained unchanged. -
Anthocyanin Pigments in Redbud (Cercis Spp) Flowers
Veazie et al. J Hortic Sci Res 2017, 1(1):13-18 DOI: 10.36959/745/393 | Volume 1 | Issue 1 Journal of Horticultural Science and Research Research Article Open Access Anthocyanin Pigments in Redbud (Cercis spp) Flowers Penelope Perkins-Veazie*, Guoying Ma and Dennis Werner Department of Horticultural Science, Plants for Human Health Institute, North Carolina State University, USA Abstract Redbud (Cercis spp.) is used as a spring flowering ornamental tree and is found wild in much of North America. Typically flowers are light purple although there are selected cultigens that are white, rose, or red-purple. Flowers from cultigens common to the eastern U.S. and from wild Eastern redbud (C. canadensis) were collected and tested for color and anthocyanin pigment composition. The anthocyanins cyanidin 3-glucoside, petunidin 3-glucoside, peonidin 3-glucoside, and malvidin 3-glucoside were most aboundant in purple, rose, and red-purple redbud flowers and total anthocyanin content was 2263 to 8730 mg.kg DW-1. Small amounts of delphinidin, cyanidin, and petunidin 3, diglucosides were also present. Most of the typical purple-flowered redbuds contained cyanidin 3-glucoside as the dominant pigment, while the red-purple flowered ‘Appalachian Red’ and ‘Crosswicks Red’ contained malvidin 3,5-diglucoside as the dominant anthocyanin. An unknown anthocyanin was present in all redbud flowers, and was higher in the red-purple flowered phenotypes. These results show that the color of redbud flowers is from anthocyanins, predominantly cyanidin 3-glucoside and malvidin 3,5-diglucoside, with malvidin 3,5-diglucoside as the primary pigment in red-purple flowers and cyanidin 3-glucoside dominant in purple flowers. -
Anthocyanin Biosynthesis 21421.Pdf
Anthocyanin Biosynthesis – https://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map00942&keyword=flavonoids Anthocyanidins (aglycones) and anthocyanins (glycosides) are common plant pigments and belong to a structural subclass of flavonoids characterized by a 2- phenylbenzopyrylium unit. They are derived along the flavonoid modification pathways and further separated into three types, pelargonidin, cyanidin, and delphinidin, due to the different number of hydroxyl groups in the phenyl group. (Flavonoid Biosynthesis) -> [1,2,3] 1) Pelargonidin -> anthocyanidin 3-O-glucosyltransferase -> Pelargonidin 3-O- glucoside -> [1,2,3,4,5,6,7] 1) anthocyanin 3-O-glucoside-6’’-O- malonyltransferase -> Pelargonidin 3-O-(6-O-malonyl-beta-D-glucoside) -> anthocyanidin 3-O-glucoside-3’’,6’’-O-dimalonyltransferase -> Pelargonidin 3-O-3’’,6’’-O-dimalonylglucoside OR 2) anthocyanidin 3-O-glucoside 2’’-O- glucosyltransferase -> Pelargonidin 3-O-sophoroside OR 3) Pelargonidin 3- O-rutinoside -> cyanidin 3-O-rutinoside 5-O-glucosyltransferase -> Pelargonidin 3-O-rutinoside 5-O-beta-D-glucoside OR 4) cyanidin 3-O- glucoside 7-O-glucosyltransferase (acyl-glucose) -> Pelargonidin 3,7-di-O- beta-D-glucoside OR 5) anthocyanidin 3-O-glucoside 2’’’-O- xylosyltransferase -> Pelargonidin 3-O-beta-D-sambubioside -> anthocyanin 3-O-sambubioside 5-O-glucosyltransferase -> Pelargonidin 5-O-beta-D- glucoside 3-O-beta-D-sambubioside OR 6) anthocyanidin 3-O-glucoside 6’’-O- acyltransferase -> Pelargonidin 3-(6-p-coumaroyl)glucoside &/OR Pelargonidin 3-O-(6-caffeoyl-beta-D-glucoside) -
Review Article Recent Applications of Mass Spectrometry in the Study of Grape and Wine Polyphenols
Hindawi Publishing Corporation ISRN Spectroscopy Volume 2013, Article ID 813563, 45 pages http://dx.doi.org/10.1155/2013/813563 Review Article Recent Applications of Mass Spectrometry in the Study of Grape and Wine Polyphenols Riccardo Flamini Consiglio per la Ricerca e la Sperimentazione in Agricoltura-Centro di Ricerca per la Viticoltura (CRA-VIT), Viale XXVIII Aprile 26, 31015 Conegliano, Italy Correspondence should be addressed to Riccardo Flamini; riccardo.�amini�entecra.it Received 24 September 2012; Accepted 12 October 2012 Academic �ditors: D.-A. Guo, �. Sta�lov, and M. Valko Copyright © 2013 Riccardo Flamini. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Polyphenols are the principal compounds associated with health bene�c effects of wine consumption and in general are characterized by antioxidant activities. Mass spectrometry is shown to play a very important role in the research of polyphenols in grape and wine and for the quality control of products. e so ionization of LC/MS makes these techniques suitable to study the structures of polyphenols and anthocyanins in grape extracts and to characterize polyphenolic derivatives formed in wines and correlated to the sensorial characteristics of the product. e coupling of the several MS techniques presented here is shown to be highly effective in structural characterization of the large number of low and high molecular weight polyphenols in grape and wine and also can be highly effective in the study of grape metabolomics. 1. Principal Polyphenols of Grape and Wine During winemaking the condensed (or nonhydrolyzable) tannins are transferred to the wine and contribute strongly to Polyphenols are the principal compounds associated to the sensorial characteristic of the product. -
The Colour of Red Wine
THE COLOUR OF RED WINE MARIA JOSEPHINE BIRSE THE UNIVERSITY OF ADELAIDE School of Agriculture, Food & Wine Faculty of Sciences A THESIS SUBMITTED FOR THE FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY APRIL 2007 i Abstract The behaviour of pigments in red wine, namely anthocyanins and anthocyanin- derived pigments, was investigated at natural wine pH, at low pH and after addition of SO 2, namely SO 2 bleaching. An examination of current literature demonstrated absences in wine pigment research. Firstly, few researchers have published the colour properties of a particular wine pigment at different pH values and post-SO 2 bleaching. This was demonstrated using the CIELab colours of two individual anthocyanin-derived wine pigments (4-vinylcatechol and 4-vinylsyringol adducts to malvidin 3-glucoside), and an anthocyanin, malvidin 3-glucoside. The colours of the anthocyanin-derived pigments and their resistance to pH change and SO 2 bleaching were compared to malvidin 3-glucoside which was affected by media. Generally, in the literature, wine pigments are characterized as individual components. But many pigments contribute to wine colour. So, two novel methods were created and demonstrated using red wines: Shiraz wines from four regions in Australia, and Cabernet Sauvignon wines made using two different strains, Saccharomyces cerevisiae (SC) or Saccharomyces bayanus (SB). The first method can be used to determine the CIELab colour of chromatographically separated wine pigments and allows their colours to be re-created, regardless of their identity. Thus objective measurement of pigment colour at its natural concentration in wine is now possible. An additional method, the “post-column adjustment method” to pH-adjust and SO 2 bleach HPLC-separated wine pigments was created. -
Genetic Inferences and Breeding Implications from Analysis of Cranberry Germplasm Anthocyanin Profi Les
J. AMER. SOC. HORT. SCI. 128(5):691–697. 2003. Genetic Inferences and Breeding Implications from Analysis of Cranberry Germplasm Anthocyanin Profi les Nicholi Vorsa1 and James Polashock2 Philip E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, Chatsworth, NJ 08019 David Cunningham3 and Robin Roderick4 Ocean Spray Cranberries, Inc., One Ocean Spray Drive, Lakeville-Middleboro, MA 02349 ADDITIONAL INDEX WORDS. Vaccinium macrocarpon, fruit, methoxylation, glycosylation, cyanidin, peonidin ABSTRACT. A diversity of anthocyanins exists among angiosperm species. Studies indicate that various anthocyanins differ in antioxidant potential, their bioavailability, and stability during processing. The fruit of the American cranberry, Vaccinium macrocarpon Ait., is recognized as having six anthocyanins, composed largely of 3-O-galactosides and 3-O-arabinosides, and to lesser amount (≈6%), 3-O-glucosides of the aglycones cyanidin and peonidin. This study analyzed proportions of these six anthocyanins from >250 accessions of a germplasm collection over harvest dates. Fruit samples from 78 selected accessions, based on the fi rst year analysis, were also analyzed a second year. Principal component analysis identifi ed general negative relationships between the proportions of cyanidin versus peonidin, arabinosides versus glucosides, and galactosides versus arabinosides and glucosides. These relationships were consistent across the 2 years. Most variation in germplasm anthocyanin profi les refl ected variation of cyanidin versus peonidin proportions, with cyanidin to peonidin ratios ranging from 3.6:1 to 0.5:1. Variation for glycosylation profi les was also evident, with galactoside proportions ranging from 64% to 75%, arabinoside proportions ranging from 20% to 33%, and glucoside proportions ranging from 3% to 9%. -
The Chemical Reactivity of Anthocyanins and Its Consequences in Food Science and Nutrition
molecules Review The Chemical Reactivity of Anthocyanins and Its Consequences in Food Science and Nutrition Olivier Dangles * ID and Julie-Anne Fenger University of Avignon, INRA, UMR408, 84000 Avignon, France; [email protected] * Correspondence: [email protected]; Tel.: +33-490-144-446 Academic Editors: M. Monica Giusti and Gregory T. Sigurdson Received: 6 July 2018; Accepted: 31 July 2018; Published: 7 August 2018 Abstract: Owing to their specific pyrylium nucleus (C-ring), anthocyanins express a much richer chemical reactivity than the other flavonoid classes. For instance, anthocyanins are weak diacids, hard and soft electrophiles, nucleophiles, prone to developing π-stacking interactions, and bind hard metal ions. They also display the usual chemical properties of polyphenols, such as electron donation and affinity for proteins. In this review, these properties are revisited through a variety of examples and discussed in relation to their consequences in food and in nutrition with an emphasis on the transformations occurring upon storage or thermal treatment and on the catabolism of anthocyanins in humans, which is of critical importance for interpreting their effects on health. Keywords: anthocyanin; flavylium; chemistry; interactions 1. Introduction Anthocyanins are usually represented by their flavylium cation, which is actually the sole chemical species in fairly acidic aqueous solution (pH < 2). Under the pH conditions prevailing in plants, food and in the digestive tract (from pH = 2 to pH = 8), anthocyanins change to a mixture of colored and colorless forms in equilibrium through acid–base, water addition–elimination, and isomerization reactions [1,2]. Each chemical species displays specific characteristics (charge, electronic distribution, planarity, and shape) modulating its reactivity and interactions with plant or food components, such as the other phenolic compounds.