REVIEW ARTICLE The measurement and interpretation of superallowed 0+→ 0+ nuclear β decay J C Hardy and I S Towner Cyclotron Institute, Texas A&M University, College Station, TX 77843-3366, U.S.A. E-mail:
[email protected],
[email protected] Abstract. Measurements of the decay strength of superallowed 0+→ 0+ nuclear β transitions shed light on the fundamental properties of weak interactions. Because of their impact, such measurements were first reported 60 years ago in the early 1950s and have continued unabated ever since, always taking advantage of improvements in experimental techniques to achieve ever higher precision. The results helped first to shape the Electroweak Standard Model but more recently have evolved into sensitively testing that model’s predictions. Today they provide the most demanding test of vector-current conservation and of the unitarity of the Cabibbo-Kobayashi-Maskawa matrix. Here, we review the experimental and theoretical methods that have been, and are being, used to characterize superallowed 0+→ 0+ β transitions and to extract fundamentally important parameters from their analysis. 1. Introduction In 1953, Sherr and Gerhart published a paper [1] on “Experimental evidence for the Fermi interaction in the β decay of 14O and 10C.” It was less than five years since Sherr had first discovered these two nuclei [2], yet already the two authors were using the decays to probe for the first time the fundamental nature of β decay. They were arXiv:1312.3587v1 [nucl-ex] 12 Dec 2013 able to identify superallowed transitions in both decays – they called them “allowed favoured transitions” – and recognized that the Fermi theory of β decay predicted that the comparative half-lives, or ft values, for the two transitions should be the same, a prediction they could test.