Beta-Decay Studies for Applied and Basic Nuclear Physics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ft-216-1.982
CENTRAL INSTITUTE OF PHYSICS INSTITUTE FOR PHYSICS AND NUCLEAR ENGINEERING Department of Fundamental Physics \tiu- FT-216-1.982 . September THE RELATIVE IMPORTANCE OF RELATIVIST1C INDUCED INTERACTIONS IN THE BETA DECAY OF 17oTm D.Bogdan, Amand Faessler , M.I. Cristu, Suzana HoIan ABSTRACT : The log ft-values, the spectrum shape functions, and the beta-gamma angular correlation coefficients of the 17o Tm beta decay are computed in the framework of relativistic formfactor formalism using asymmetric rotor model wavefunctions, Main vector and axi*l vector hadron currents being strongly bindered, the relative importance of induced interaction matrix elements is accurately estimated» Good agreement with experi - ment is obtained for the beta decay observables when the main induced interaction terms were taken into account. The contri bution of the pseudos'îalar term was found insignificant. *) Permanent address : Institut fur Theoretische PhysiJc, Universităt Tubingen, D-7400 Tubingen, West - Germany 1 - 1. INTRODUCTION The theoretical evaluation of observables in the first forbidden beta decay provides an excellent mean to assess the relative importance of the so-called induced interaction cor - rection terms contributing to the beta decay probability when vector and axial vector nuclear beta matrix elements are strongly hindered by either mutual cancellation or selection rules. In this paper the log ft-values, the shape of the beta spectrum and the beta-gamma angular correlation were computed for the l" -* 2 and l" •• 0* beta transitions of the Tm ground 170 state towards the first excited and the ground state of Yb nucleus, respectively. For the Tm nucleus which is strongly deformed ( 02 = = 0.28)*the dominant coupling scheme should be the strong coupling. -
Discovery of the Isotopes with Z<= 10
Discovery of the Isotopes with Z ≤ 10 M. Thoennessen∗ National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA Abstract A total of 126 isotopes with Z ≤ 10 have been identified to date. The discovery of these isotopes which includes the observation of unbound nuclei, is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented. arXiv:1009.2737v1 [nucl-ex] 14 Sep 2010 ∗Corresponding author. Email address: [email protected] (M. Thoennessen) Preprint submitted to Atomic Data and Nuclear Data Tables May 29, 2018 Contents 1. Introduction . 2 2. Discovery of Isotopes with Z ≤ 10........................................................................ 2 2.1. Z=0 ........................................................................................... 3 2.2. Hydrogen . 5 2.3. Helium .......................................................................................... 7 2.4. Lithium ......................................................................................... 9 2.5. Beryllium . 11 2.6. Boron ........................................................................................... 13 2.7. Carbon.......................................................................................... 15 2.8. Nitrogen . 18 2.9. Oxygen.......................................................................................... 21 2.10. Fluorine . 24 2.11. Neon........................................................................................... -
Photofission Cross Sections of 238U and 235U from 5.0 Mev to 8.0 Mev Robert Andrew Anderl Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1972 Photofission cross sections of 238U and 235U from 5.0 MeV to 8.0 MeV Robert Andrew Anderl Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Nuclear Commons, and the Oil, Gas, and Energy Commons Recommended Citation Anderl, Robert Andrew, "Photofission cross sections of 238U and 235U from 5.0 MeV to 8.0 MeV " (1972). Retrospective Theses and Dissertations. 4715. https://lib.dr.iastate.edu/rtd/4715 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction, 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity, 2. -
R-Process: Observations, Theory, Experiment
r-process: observations, theory, experiment H. Schatz Michigan State University National Superconducting Cyclotron Laboratory Joint Institute for Nuclear Astrophysics 1. Observations: do we need s,r,p-process and LEPP? 2. r-process (and LEPP?) models 3. r-process experiments SNR 0103-72.6 Credit: NASA/CXC/PSU/S.Park et al. Origin of the heavy elements in the solar system s-process: secondary • nuclei can be studied Æ reliable calculations • site identified • understood? Not quite … r-process: primary • most nuclei out of reach • site unknown p-process: secondary (except for νp-process) Æ Look for metal poor`stars (Pagel, Fig 6.8) To learn about the r-process Heavy elements in Metal Poor Halo Stars CS22892-052 (Sneden et al. 2003, Cowan) 2 1 + solar r CS 22892-052 ) H / X CS22892-052 ( g o red (K) giant oldl stars - formed before e located in halo Galaxyc was mixed n distance: 4.7 kpc theya preserve local d mass ~0.8 M_sol n pollutionu from individual b [Fe/H]= −3.0 nucleosynthesisa events [Dy/Fe]= +1.7 recall: element number[X/Y]=log(X/Y)-log(X/Y)solar What does it mean: for heavy r-process? For light r-process? • stellar abundances show r-process • process is not universal • process is universal • or second process exists (not visible in this star) Conclusions depend on s-process Look at residuals: Star – solar r Solar – s-process – p-process s-processSimmerer from Simmerer (Cowan et etal.) al. /Lodders (Cowan et al.) s-processTravaglio/Lodders from Travaglio et al. -0.50 -0.50 -1.00 -1.00 -1.50 -1.50 log e log e -2.00 -2.00 -2.50 -2.50 30 40 50 60 70 80 90 30 40 50 60 70 80 90 Element number Element number ÆÆNeedNeed reliable reliable s-process s-process (models (models and and nu nuclearclear data, data, incl. -
Uses of Isotopic Neutron Sources in Elemental Analysis Applications
EG0600081 3rd Conference on Nuclear & Particle Physics (NUPPAC 01) 20 - 24 Oct., 2001 Cairo, Egypt USES OF ISOTOPIC NEUTRON SOURCES IN ELEMENTAL ANALYSIS APPLICATIONS A. M. Hassan Department of Reactor Physics Reactors Division, Nuclear Research Centre, Atomic Energy Authority. Cairo-Egypt. ABSTRACT The extensive development and applications on the uses of isotopic neutron in the field of elemental analysis of complex samples are largely occurred within the past 30 years. Such sources are used extensively to measure instantaneously, simultaneously and nondestruclively, the major, minor and trace elements in different materials. The low residual activity, bulk sample analysis and high accuracy for short lived elements are improved. Also, the portable isotopic neutron sources, offer a wide range of industrial and field applications. In this talk, a review on the theoretical basis and design considerations of different facilities using several isotopic neutron sources for elemental analysis of different materials is given. INTRODUCTION In principle there are two ways to use neutrons for elemental and isotopic abundance analysis in samples. One is the neutron activation analysis which we call it the "off-line" where the neutron - induced radioactivity is observed after the end of irradiation. The other one we call it the "on-line" where the capture gamma-rays is observed during the neutron bombardment. Actually, the sequence of events occurring during the most common type of nuclear reaction used in this analysis namely the neutron capture or (n, gamma) reaction, is well known for the people working in this field. The neutron interacts with the target nucleus via a non-elastic collision, a compound nucleus forms in an excited state. -
Download PDF (1.21
High Precision Measurement of the 19Ne Lifetime by Leah Jacklyn Broussard Department of Physics Duke University Date: Approved: Albert Young Calvin Howell Kate Scholberg Berndt Mueller John Thomas Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the Graduate School of Duke University 2012 Abstract (Nuclear physics) High Precision Measurement of the 19Ne Lifetime by Leah Jacklyn Broussard Department of Physics Duke University Date: Approved: Albert Young Calvin Howell Kate Scholberg Berndt Mueller John Thomas An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the Graduate School of Duke University 2012 Copyright c 2012 by Leah Jacklyn Broussard All rights reserved except the rights granted by the Creative Commons Attribution-Noncommercial Licence Abstract The lifetime of 19Ne is an important parameter in precision tests of the Standard Model. Improvement in the uncertainty of experimental observables of this and other 1 T = 2 mirror isotopes would allow for an extraction of Vud at a similar precision to that obtained by superallowed 0+ → 0+ Fermi decays. We report on a new high precision measurement of the lifetime of 19Ne, performed at the Kernfysich Versneller MeV 19 Instituut (KVI) in Groningen, the Netherlands. A 10.5 A F beam was used to 19 produce Ne using inverse reaction kinematics in a H2 gas target. Contaminant productions were eliminated using the TRIμP magnetic isotope separator. The 19Ne beam was implanted into a thick aluminum tape, which was translated to a shielded detection region by a custom tape drive system. -
Correlated Neutron Emission in Fission
Correlated neutron emission in fission S. Lemaire , P. Talou , T. Kawano , D. G. Madland and M. B. Chadwick ¡ Nuclear Physics group, Los Alamos National Laboratory, Los Alamos, NM, 87545 Abstract. We have implemented a Monte-Carlo simulation of the fission fragments statistical decay by sequential neutron emission. Within this approach, we calculate both the center-of-mass and laboratory prompt neutron energy spectra, the ¢ prompt neutron multiplicity distribution P ν £ , and the average total number of emitted neutrons as a function of the mass of ¢ the fission fragment ν¯ A £ . Two assumptions for partitioning the total available excitation energy among the light and heavy fragments are considered. Preliminary results are reported for the neutron-induced fission of 235U (at 0.53 MeV neutron energy) and for the spontaneous fission of 252Cf. INTRODUCTION Methodology In this work, we extend the Los Alamos model [1] by A Monte Carlo approach allows to follow in detail any implementing a Monte-Carlo simulation of the statistical reaction chain and to record the result in a history-type decay (Weisskopf-Ewing) of the fission fragments (FF) file, which basically mimics the results of an experiment. by sequential neutron emission. This approach leads to a We first sample the FF mass and charge distributions, much more detailed picture of the decay process and var- and pick a pair of light and heavy nuclei that will then de- ious physical quantities can then be assessed: the center- cay by emitting zero, one or several neutrons. This decay of-mass and laboratory prompt neutron energy spectrum sequence is governed by neutrons emission probabilities ¤ ¤ ¥ N en ¥ , the prompt neutron multiplicity distribution P n , at different temperatures of the compound nucleus and the average number of emitted neutrons as a function of by the energies of the emitted neutrons. -
Nuclear Glossary
NUCLEAR GLOSSARY A ABSORBED DOSE The amount of energy deposited in a unit weight of biological tissue. The units of absorbed dose are rad and gray. ALPHA DECAY Type of radioactive decay in which an alpha ( α) particle (two protons and two neutrons) is emitted from the nucleus of an atom. ALPHA (ααα) PARTICLE. Alpha particles consist of two protons and two neutrons bound together into a particle identical to a helium nucleus. They are a highly ionizing form of particle radiation, and have low penetration. Alpha particles are emitted by radioactive nuclei such as uranium or radium in a process known as alpha decay. Owing to their charge and large mass, alpha particles are easily absorbed by materials and can travel only a few centimetres in air. They can be absorbed by tissue paper or the outer layers of human skin (about 40 µm, equivalent to a few cells deep) and so are not generally dangerous to life unless the source is ingested or inhaled. Because of this high mass and strong absorption, however, if alpha radiation does enter the body through inhalation or ingestion, it is the most destructive form of ionizing radiation, and with large enough dosage, can cause all of the symptoms of radiation poisoning. It is estimated that chromosome damage from α particles is 100 times greater than that caused by an equivalent amount of other radiation. ANNUAL LIMIT ON The intake in to the body by inhalation, ingestion or through the skin of a INTAKE (ALI) given radionuclide in a year that would result in a committed dose equal to the relevant dose limit . -
The Measurement and Interpretation of Superallowed 0+ to 0+ Nuclear
REVIEW ARTICLE The measurement and interpretation of superallowed 0+→ 0+ nuclear β decay J C Hardy and I S Towner Cyclotron Institute, Texas A&M University, College Station, TX 77843-3366, U.S.A. E-mail: [email protected], [email protected] Abstract. Measurements of the decay strength of superallowed 0+→ 0+ nuclear β transitions shed light on the fundamental properties of weak interactions. Because of their impact, such measurements were first reported 60 years ago in the early 1950s and have continued unabated ever since, always taking advantage of improvements in experimental techniques to achieve ever higher precision. The results helped first to shape the Electroweak Standard Model but more recently have evolved into sensitively testing that model’s predictions. Today they provide the most demanding test of vector-current conservation and of the unitarity of the Cabibbo-Kobayashi-Maskawa matrix. Here, we review the experimental and theoretical methods that have been, and are being, used to characterize superallowed 0+→ 0+ β transitions and to extract fundamentally important parameters from their analysis. 1. Introduction In 1953, Sherr and Gerhart published a paper [1] on “Experimental evidence for the Fermi interaction in the β decay of 14O and 10C.” It was less than five years since Sherr had first discovered these two nuclei [2], yet already the two authors were using the decays to probe for the first time the fundamental nature of β decay. They were arXiv:1312.3587v1 [nucl-ex] 12 Dec 2013 able to identify superallowed transitions in both decays – they called them “allowed favoured transitions” – and recognized that the Fermi theory of β decay predicted that the comparative half-lives, or ft values, for the two transitions should be the same, a prediction they could test. -
SCALE 5.1 Predictions of PWR Spent Nuclear Fuel Isotopic Compositions
ORNL/TM-2010/44 SCALE 5.1 Predictions of PWR Spent Nuclear Fuel Isotopic Compositions March 2010 Prepared by G. Radulescu I. C. Gauld G. Ilas DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: [email protected] Web site: http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source: Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone: 865-576-8401 Fax: 865-576-5728 E-mail: [email protected] Web site: http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. -
PROGRESS in RESEARCH April 1, 2002 – March 31, 2003
PROGRESS IN RESEARCH April 1, 2002 – March 31, 2003 Cyclotron Institute Texas A&M University College Station, Texas TABLE OF CONTENTS Introduction ............................................................................................................................................... ix R.E. Tribble, Director SECTION I: NUCLEAR STRUCTURE, FUNDAMENTAL INTERACTIONS AND ASTROPHYSICS Isoscalar giant dipole resonance for several nuclei with A ≥ 90.......................................................... I-1 Y. –W. Lui, X. Chen, H. L. Clark, B. John, Y. Tokimoto, D. H. Youngblood Giant resonances in 46, 48Ti ................................................................................................................... I-4 Y. Tokimoto, B. John*, X. Chen, H. L. Clark, Y. –W. Lui and D. H. Youngblood Determination of the direct capture contribution for 13N(p,γ)14O from the 14O →13N + p asymptotic normalization coefficient ..................................................................................................... I-6 X. Tang, A. Azhari, C. Fu, C. A. Gagliardi, A. M. Mukhamedzhanov, F. Pirlepesov, L. Trache, R. E. Tribble, V. Burjan, V. Kroha and F. Carstoiu Breakup of loosely bound nuclei at intermediate energies as indirect method in nuclear 8 astrophysics: B and the S17 astrophysical factor.................................................................................. I-8 F. Carstoiu, L. Trache, C. A. Gagliardi, and R. E. Tribble Elastic scattering of 8B on 12C and 14N ................................................................................................ -
System Studies of Fission-Fusion Hybrid Molten Salt Reactors
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2013 SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS Robert D. Woolley University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Nuclear Engineering Commons Recommended Citation Woolley, Robert D., "SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS. " PhD diss., University of Tennessee, 2013. https://trace.tennessee.edu/utk_graddiss/2628 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Robert D. Woolley entitled "SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Nuclear Engineering. Laurence F. Miller, Major Professor We have read this dissertation and recommend its acceptance: Ronald E. Pevey, Arthur E. Ruggles, Robert M. Counce Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Robert D.