Determination of Beta Activity in Water

Total Page:16

File Type:pdf, Size:1020Kb

Determination of Beta Activity in Water Determination of Beta Activity in Water 3 Q 3 GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1696-A Determination of Beta Activity in Water By F. B. BARKER and B. P. ROBINSON RADIOCHEMICAL ANALYSIS OF WATER GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1696-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Fag* Abstract__--__-______---____________________-_--____--_--____-_ Al Introduction. ______ _______________________________ ___ 1 Sources of radioactivity in water______________________________ 2 Collecting and preserving the sample_________________________ 5 Measurement of radioactivity______________________ 7 Techniques and instruments._____________________________ 8 Statistical considerations___________________________________ 9 Calibration of instruments____________-__-__-_-____-______-_ 13 Control of instrument operation-_-__--_-__-__---_------_-__--_-_ 16 Optimum operation of G-M counters_______________________ 17 Optimum operation of scintillation and proportional counters. __ 18 Background control chart_________________________________ 19 Standard control chart__-______-_____-__________--______-__ 21 Determination of gross beta activity in water.________________________ 22 Principle of determination___________-________.-._______ 23 Apparatus____________________________________________________ 24 Reagents-________-____-_--__-___________________--___-__-_. 24 Procedure-_----__--_-------_--_-___________________________ 25 Calculation of results__________________________________________ 26 Calibration of beta counters. __ ________________ ________________ 27 Preparation of the standard_______________________________ 28 Correction of the standard for radioactive decay__________ 28 Procedure for calibration-___________________-__-__--___ 29 Errors and precision___________________________________________ 30 Literature cited.__________________________________________________ 32 ILLUSTRATIONS Page 1. The uranium series______________________________________ A2 2. The actinium series______________________________________ 3 3. The thorium series_____________________________________ 4 4. Best estimate of "true" counts____________________________ 14 5. Ratio of mean "true" counts to observed counts___________ 15 6. Form for background control chart data_________________ 20 TABLES Page* TABLE 1. Naturally occurring radionuclides. ._____._____________--_._ A4 2. Beta-emitting radionuelides commonly found in nature.-_-_--_ 23t in RADIOCHEMICAL ANALYSIS OF WATER DETERMINATION OF BETA ACTIVITY IN WATER By F. B. BARKER and B. P. ROBINSON ABSTRACT Many elements have one or more naturally radioactive isotopes, and several hundred other radionuclides have been produced artifieally. Radioactive sub­ stances may be present in natural water as a result of geochemical processes or the release of radioactive waste and other nuclear debris to the environment. The Geological Survey has developed methods for measuring certain of these radioactive substances in water. Radioactive substances often are present in water samples in microgram quantities or less. Therefore, precautions must be taken to prevent loss of material and to assure that the sample truly represents its source at the time of collection. Addition of acids, complexing agents, or stable isotopes often aids in preventing loss of radioactivity on container walls, on sediment, or on other solid materials in contact with the sample. The disintegration of radioactive atoms is a random process subject to estab­ lished methods of statistical analysis. Because many water samples contain small amounts of radioactivity, low-level counting techniques must be used. The usual assumption that counting data follow a Gaussian distribution is invalid under these conditions, and statistical analyses must be based on the Poisson distribution. The gross beta activity in water samples is determined from the residue left after evaporation of the sample to dry ness. Evaporation is accomplished first in a teflon dish, then the residue is transferred with distilled water to a count­ ing planchet and again is reduced to dryness. The radioactivity on the planchet is measured with an anticoincidence-shielded, low-background, beta counter and is compared with measurements of a strontium-90-yttrium-90 standard prepared and measured in the same manner. Control charts are used to assure consistent operation of the counting instrument. INTRODUCTION The Geological Survey has adopted analytical methods for certain radioactive species in water. These methods will be described in detail, with complete laboratory instructions, in the present and in succeeding chapters of this Water-Supply Paper. These methods, or modifications of them, are useful in studies of the purity of domestic and industrial water supplies, water pollution, radioactive-waste disposal, and hydrogeochemistry. Al RADIOCHEMICAL ANALYSIS OF WATER Messrs. H. P. Cantelow, of the Lawrence Radiation Laboratory, 'and W. L. Albrecht, of the Tennessee Valley Authority, reviewed the manuscript of this report. SOURCES OP RADIOACTIVITY IN WATER Many radionuclides (atomic species that undergo radioactive decay) occur in nature. All isotopes of elements of atomic number 83 and higher are radioactive, and several of the elements of lower atomic weight have one or more natural radioisotopes. Most of the radio­ nuclides are members of the three naturally radioactive series: the uranium series, the actinouranium series, and the thorium series. In these series, the parent atoms change successively from element to element by the emission of alpha, beta, and gamma radiation. The major features of these series are illustrated schematically in figures 1, 2, and 3. The other naturally occurring radionuclides, together with u 238 U 234 URANIUM 4.49 xlO 9 2.48 xlO5 years years , Pa»4 ", (99.85 percent) 1.8 minutes PROTACTINIUM '/ Pa 234 I.T.(0.15 / 6.7 hours A percent) Th 234 Th230 THORIUM 24.1 days 8.0 xlO4 years ACTINIUM Ra 226 RADIUM 1,622 years FRANCIUM - Rn 222 RADON 3.825 days At 218 ASTATINE 2 seconds 211 ' d(0-02 Po 2' 4 D/t 218 Po2!0 /° percent) 1.6xlO~ 4 POLONIUM 3.05 minutes 138.4 days seconds f ' 1 a Bi m ' (99.96 percent) Bi 210 BISMUTH (99.98 percei t) M 5.0 days minutes * j 5 Pb 206 Pb 214 0 Pb 210 LEAD ' (5x10 stable 26.8 m nutes (0.04 percer t) 22 years percent) > isotope fi 3 T| zio T! 206 THALLIUM 1 32 m nutes 4.19 minutes FJQUEE 1. The uranium series. DETERMINATION OP BETA ACTIVITY IN WATER A3 u 235 URANIUM 7.13x10" years Pa 231 PROTACTINIUM - 3.43 x 10 4 years Th 231 Th 227 THORIUM a 25.6 hours 18.6 days ft Ac 227 (98.8 percent; a ACTINIUM 22.0 years a Ra 223 RADIUM (1.2 percent) 11.1 days Fr 223 ft a FRANCIUM 21 minutes a (4xl!T 3 Rn 219 RADON 3.92 seconds percent) 9 At 219 (3 At 215 ASTATINE a 0.9 minute percent) 10 4 second * Po 215 (5xlO~4 a 1.8xlO~ 3 Po" 1 POLONIUM (97 percent) percent) a second 0.52 second P ft Bi 215 Bi 211 <° 32 percent) BISMUTH a 8 minutes 2.16 minutes a ft Pb207 Pb" 1 a LEAD stable (99.68 percent) 36.1 minutes isotope X 3 T|207 THALLIUM 4.79 minutes FIGUEE 2. The actinium series. their half-lives and mode of decay, are listed in table 1. Some addi­ tional radionuclides are produced from the interaction of cosmic rays with stable atoms and from the spontaneous fission of uranium atoms; however, only two of these nuclides are of much importance: hydrogen-3 (tritium) and carbon-14. A4 RADIOCHEMICAL ANALYSIS OP WATEB Th 232 Th 228 THORIUM 1.39 xKT 10 1.90 years years / 0 Ac 228 ACTINIUM a a 6.13 hours X / & Ra 228 Ra 224 RADIUM 6.7 years 3 64 days FRANCIUM a 220 RADON Rn 54.5 seconds At 216 1 3x10 " 4 ASTATINE a second 0 Po 216 Po 212 (0.013 percent) POLONIUM 3.0xW" 7 0.158 second (?) a second 0 a Bi [66.3 percent) BISMUTH (*100 60.5 minutes a percent) 4 (3 Pb 212 Pb 208 a LEAD stable 10.6 hours (33.7 percent) isotope * ^ (3 Tl 208 THALLIUM 3.1 minutes FIGURE 3. The thorium series. TABLE 1. Naturally occurring radionuclides, other than members of the natural radioactive series [From Friedlander and Kennedy, 1955] Relative isotopic Mode of Radionuclide abundance decay i Half-life (years) (percent) 0.012 ft K 1.2X10" Rubidium-87.-.,- _ __ .___ __ _ __ __ _ 27.8 0 6.2X101° Inditim-115_ _______ _________ __ __ _ 95.8 0 6X10" Lanthanum-138- __ __ _______ __ __ __ .089 K, j8 »2X10" Neodymium-144___ _____ _____________ 23.9 a «5X1015 Samarium-147 __ _____________________ 15. 1 a 1.3X10" Lutecium-176_ _ _ __ ___ ___ _ _ _ __ _ 2.60 fi 4.6 X1010 Rhenium-187__ _ _ _ _ _ _ ___ _ __ __ 62.9 0 «5X1010 Platinum-190 _ ___ _ _ _ _ __ _____ __ . 012 «10'2 i The mode of decay is indicated by the type of particle emitted (a, 0). If decay also occurs by electron capture, this is indicated by K; the predominant mode is indicated first. DETERMINATION OF BETA ACTIVITY IN WATER A5 Within recent years, several hundred artificial radionuclides have been produced. The most important of these are the fission products those nuclides produced in the course of the fission of uranium-235, plutonium-239, or uranium-233 atoms. Other radionuclides have been produced by various nuclear-bombardment reactions. A com­ plete list of nuclides, with their half-lives and modes of decay, is given by Friedlander and Kennedy (1955, p. 413). All natural water contains some radioactivity, if only that due to the ubiquitous element potassium. Before the development of atomic energy and nuclear devices, the radioactivity in water came primarily from radionuclide-bearing rocks and minerals with which the water came in contact, with lesser contributions from the cosmic- ray-produced radionuclides picked-up mainly by meteoric water. Since the advent of the atomic age, however, measurable amounts of other radioactive substances have found their way into the Nation's water resources as a result of fallout from nuclear explosions and dis­ charge of radioactive waste from nuclear reactors, uranium mills, research laboratories, and other producers and users of radioactive materials.
Recommended publications
  • SCALE 5.1 Predictions of PWR Spent Nuclear Fuel Isotopic Compositions
    ORNL/TM-2010/44 SCALE 5.1 Predictions of PWR Spent Nuclear Fuel Isotopic Compositions March 2010 Prepared by G. Radulescu I. C. Gauld G. Ilas DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: [email protected] Web site: http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source: Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone: 865-576-8401 Fax: 865-576-5728 E-mail: [email protected] Web site: http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.
    [Show full text]
  • System Studies of Fission-Fusion Hybrid Molten Salt Reactors
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2013 SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS Robert D. Woolley University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Nuclear Engineering Commons Recommended Citation Woolley, Robert D., "SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS. " PhD diss., University of Tennessee, 2013. https://trace.tennessee.edu/utk_graddiss/2628 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Robert D. Woolley entitled "SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Nuclear Engineering. Laurence F. Miller, Major Professor We have read this dissertation and recommend its acceptance: Ronald E. Pevey, Arthur E. Ruggles, Robert M. Counce Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Robert D.
    [Show full text]
  • Controlled Artificial Nucleosyntheses and Electron Nuclear Reactor
    International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869 (O) 2454-4698 (P) Volume-8, Issue-12, December 2018 Controlled Artificial Nucleosyntheses and Electron Nuclear Reactor Alexander Bolonkin Abstract— By now, about 3000 nuclides are known, which Radionuclides are produced in stellar nucleosynthesis and decay and pass into each other. Many of them can be obtained in supernova explosions along with stable nuclides. Secondary nuclear reactors. The author offers a method for searching for radionuclides are radiogenic isotopes derived from the decay the desired nuclides and a simple controlled method for of primordial radionuclides. Cosmogenic isotopes, such as obtaining artificial nuclides, such that in the chain of subsequent carbon-14, are present because they are continually being decays they contain an alpha decay. With alpha decay, a large amount of nuclear energy is generated that can easily be formed in the atmosphere due to cosmic rays. converted into electricity and reactive traction. This method is Radionuclides are produced as an unavoidable result of simple and safe, does not require large, expensive laser, nuclear fission and thermonuclear explosions. The process of magnetic installations, million temperatures, it can be used in nuclear fission creates a wide range of fission products, most small and medium engines for cars, airplanes, rockets, space of which are radionuclides. Further radionuclides can be vehicles and for unlimited energy on Earth created from irradiation of the nuclear fuel (creating a range of actinides) and of the surrounding structures, yielding Index Terms— controlled nucleosyntheses, artificial activation products. This complex mixture of radionuclides nucleosyntheses, electron nuclear reactor. with different chemistries and radioactivity makes handling nuclear waste and dealing with nuclear fallout particularly problematic.
    [Show full text]
  • Observables of Interest for the Characterisation of Spent Nuclear Fuel
    Observables of interest for the characterisation of Spent Nuclear Fuel Gašper Žerovnik Peter Schillebeeckx Kevin Govers Alessandro Borella Dušan Ćalić Luca Fiorito Bor Kos Alexey Stankovskiy Gert Van den Eynde Marc Verwerft 2018 EUR 29301 EN This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. Contact information Name: Peter Schillebeeckx Address: Joint Research Center, Retieseweg 111, 2440 Geel, Belgium Email: [email protected] Tel.: +32 (0)14 571 475 JRC Science Hub https://ec.europa.eu/jrc JRC112361 EUR 29301 EN PDF ISBN 978-92-79-90347-2 ISSN 1831-9424 doi:10.2760/418524 Luxembourg: Publications Office of the European Union, 2018 © European Atomic Energy Community, 2018 Reuse is authorised provided the source is acknowledged. The reuse policy of European Commission documents is regulated by Decision 2011/833/EU (OJ L 330, 14.12.2011, p. 39). For any use or reproduction of photos or other material that is not under the EU copyright, permission must be sought directly from the copyright holders. How to cite this report: G. Žerovnik et al., Observables of interest for the characterization of Spent Nuclear Fuel , EUR 29301 EN, Publications Office of the European Union, Luxembourg, 2018, ISBN 978-92-79-90347-2, doi 10.2760/418524, PUBSY No JRC112361.
    [Show full text]
  • Current Status of Spallation Product Data. Nuclear Engineering View-Point
    JP0450476 JAERI-Conf 2004-005 2.4 Current Status of Spallation Product Data: Nuclear Engineering View-Point VArtisyuk, M.Saito, T.Sawada Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology 2-12-1 0-okayama, Meguro-ku, Tokyo 152-8550, Japan TEL: 81-3-5734-3074 FAX: 81-3-5734-2959 e-inail: artisy11k(iDnr.titech.acJV Abstract Proton induced isotopic transformation in spallation targets of accelerator-driven systems (ADS) is becoming a key factor in selecting the reference target material&design options. The present paper gives an outlook of the current status of data on spallation products from the view- point of nuclear egineering stressing the isotopes whose accumulation would significantly effect the target performance. 1. INTRODUCTION The maturing of the accelerator technology toward practical implementation in the form of accelerator-driven systems gave rise to the specific concern about isotope transformation in neutron producing targets. Associated terminology sometimes looks confusing. The term "spallation" that in nuclear physics is generally reserved for identification of specific nuclear reaction with emission of secondary nucleons, by engineering community is taken in a complex like "spallation neutron source" or "spallation target" to identify the vital design element responsible for neutron generation induced by accelerated ions. Strictly speaking, in this element pure spallation reaction might be accompanied by reactions like, for example, high energy fission and multi-fragmentation having a different mechanism from classical spallation In addition to that, if the target is large enough, the secondary nucleons emitted through spallation will be moderated and trigger the nuclear reactions trough mechanism of compound nucleus, like capture reaction.
    [Show full text]
  • JAERI-Data/Code 99-008 DEVELOPMENT of the DCHAIN
    JAERI-Data/Code JP9950120 99-008 DEVELOPMENT OF THE DCHAIN-SP CODE FOR ANALYZING DECAY AND BUILD-UP CHARACTERISTICS OF SPALLATION PRODUCTS March 1999 Hiroshi TAKADA and Kazuaki KOSAKO* B * if. =§• 13 w n p/f Japan Atomic Energy Research Institute "i*- Mi, 9- (T319-H95 This report is issued irregularly. Inquiries about availability of the reports should be addressed to Research Information Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken, 319-1195, Japan. ©Japan Atomic Energy Research Institute, 1999 JAERI-Data/Code 99-008 Development of the DCHAIN-SP Code for Analyzing Decay and Build-up Characteristics of Spallation Products Hiroshi TAKADA and Kazuaki KOSAKO* Center for Neutron Science Tokai Research Establishment Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken (Received February 2, 1999) For analyzing the decay and build-up characteristics of spallation products, the DCHAIN-SP code has been developed on the basis of the DCHAIN-2 code by revising the decay data and implementing the neutron cross section data. The decay data are newly processed from the data libraries of EAF 3.1, FENDL/D-1 and ENSDF. The neutron cross section data taken from FENDL/A-2 data library are also prepared to take account of the transmutation of nuclides by the neutron field at the produced position. The DCHAIN-SP code solves the time evolution of decay and build-up of nuclides in every decay chain by the Beteman method. The code can estimate the following physical quantities of produced nuclides : inventory, activity, decay heat by the emission of a , j3 and y -rays, and y -ray energy spectrum, where the nuclide production rate estimated by the nucleon-meson transport code such as NMTC/JAERI97 is used as an input data.
    [Show full text]
  • Beta-Decay Studies for Applied and Basic Nuclear Physics
    EPJ manuscript No. (will be inserted by the editor) Beta-decay studies for applied and basic nuclear physics A. Algora1;2, J. L. Tain1, B. Rubio1, M. Fallot3, and W. Gelletly4 1 IFIC (CSIC-Univ. Valencia), Paterna, Spain 2 Institute of Nuclear Research (ATOMKI), Debrecen, Hungary 3 Subatech (CNRS/in2p3 - Univ. Nantes - IMTA), Nantes, France 4 University of Surrey, Surrey, UK Received: date / Revised version: date Abstract. In this review we will present the results of recent beta-decay studies using the total absorption technique that cover topics of interest for applications, nuclear structure and astrophysics. The decays studied were selected primarily because they have a large impact on the prediction of a) the decay heat in reactors, important for the safety of present and future reactors and b) the reactor electron anti- neutrino spectrum, of interest for particle/nuclear physics and reactor monitoring. For these studies the total absorption technique was chosen, since it is the only method that allows one to obtain beta decay probabilities free from a systematic error called the Pandemonium effect. The total absorption technique is based on the detection of the gamma cascades that follow the initial beta decay. For this reason the technique requires the use of calorimeters with very high gamma detection efficiency. The measurements presented and discussed here were performed mainly at the IGISOL facility of the University of Jyv¨askyl¨a (Finland) using isotopically pure beams provided by the JYFLTRAP Penning trap. Examples are presented to show that the results of our measurements on selected nuclei have had a large impact on predictions of both the decay heat and the anti-neutrino spectrum from reactors.
    [Show full text]
  • SRS HLW Tank Farm Closure Radionuclide Screening Process
    CBU-PIT-2005-00228 Revision 0 November 7, 2006 KEYWORDS Waste Characterization Fate and Transport Modeling RETENTION: PERMANENT CLASSIFICATION: NA Does not contain UCNI Savannah River Site High-Level Waste Tank Farm Closure Radionuclide Screening Process (First-Level) Development and Application B. A. Hamm Westinghouse Savannah River Company Closure Business Unit Planning Integration & Technology Department Aiken, SC 29808 ________________________________________________________________________ Prepared for U.S. Department of Energy Under Contract No. DE-AC09-96S Summary of Changes Date Rev Description/Affected Sections Reason 11/07/06 0 Initial creation of document NA TABLE OF CONTENTS INTRODUCTION AND SUMMARY................................................................................6 PART 1. FIRST-LEVEL RADIONUCLIDE SCREENING PROCESS DEVELOPMENT AND DESCRIPTION ...............................................................7 PART 2. BACKGROUND AND REFERENCE INFORMATION NEEDED FOR SCREENING PROCESS APPLICATION...................................................12 Background........................................................................................................ 12 Radioisotope Properties, Creation Mechanisms, and Decay Modes ................. 12 Radioactive Decay Characterized by Isotope Half-life ..................................... 14 Significant Daughters of Radioisotopes............................................................. 14 NCRP Screening Model....................................................................................
    [Show full text]
  • Technical Note on Producing Energy Dependent Fission Product Yield Files
    Nexia Solutions 7977 (Issue 2) UKNSF(2006)P210 JEF/DOC-1157 Page 1 of 7 Technical note on producing energy dependent fission product yield files. Nexia Solutions Ltd Dr. Robert W. Mills, 18th January 2007 EXECUTIVE SUMMARY This paper has been prepared to describe a study into implementing energy-dependent fission- product yield files in ENDF/B formatted files. The study consists of three parts; a review of possible ways to store energy dependent fission product yields, the production of neutron, proton, deuteron and alpha particle induced yields for 21 fissioning systems requested by the JEFF project and testing of the files using the standard ENDF checking code CHECKR. The energy dependent fission yields have been requested within the JEFF project for fusion reactor activation and possible accelerator driven systems for transmutation. The scope of this work is for all 21 fissioning systems in JEF-2.2 and JEFF-3.1 (232Th, 233U, 234U, 235U, 236U, 238U, 237Np, 238Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 242mAm, 243Am, 242Cm,243Cm, 244Cm, 245Cm and 252Cf). The range of particle energies is between 1x10-5 eV to 150 MeV. The required sets of files were produced using the CYFP code. These have been identified by the name UKFY4.0 (Issue 1). These files have been released to the JEFF project for testing. The limitations of these files are discussed. Nexia Solutions 7977 (Issue 2) UKNSF(2006)P210 JEF/DOC-1157 Page 2 of 7 CONTENTS 1 Introduction ............................................................................................3 2 Background .............................................................................................3 2.1 Traditional inventory calculation in reactor fuel.................................. 3 2.2 Requirements for fission product yield data for novel applications ....
    [Show full text]
  • U.S. Commercial Spent Nuclear Fuel Assembly Characteristics
    NUREG/CR-7227 ORNL/TM-2015/619 US Commercial Spent Nuclear Fuel Assembly Characteristics: 1968-2013 Office of Nuclear Regulatory Research NUREG/CR-7227 ORNL/TM-2015/619 US Commercial Spent Nuclear Fuel Assembly Characteristics: 1968-2013 Manuscript Completed: June 2016 Date Published: September 2016 Prepared by: Jianwei Hu, Ian C. Gauld, Joshua L. Peterson, and Stephen M. Bowman Oak Ridge National Laboratory Managed by UT-Battelle, LLC Oak Ridge, TN 37831-6170 Mourad Aissa, NRC Project Manager NRC Job Code Number V6449 Office of Nuclear Regulatory Research ABSTRACT Activities related to management of spent nuclear fuel (SNF) are increasing in the US and many other countries. Over 240,000 SNF assemblies have been discharged from US commercial reactors since the late 1960s. The enrichment and burnup of SNF have changed significantly over the past 40 years, and fuel assembly designs have also evolved. Understanding the general characteristics of SNF helps regulators and other stakeholders form overall strategies towards the final disposal of US SNF. This report documents a survey of all US commercial SNF assemblies in the GC-859 database and provides reference SNF source terms (e.g., nuclide inventories, decay heat, and neutron/photon emission) at various cooling times up to 200 years after fuel discharge. This study reviews the distribution and evolution of fuel parameters of all SNF assemblies discharged over the past 40 years. Assemblies were categorized into three groups based on discharge year, and the median burnups and enrichments of each group were used to establish representative cases. An extended burnup case was created for boiling water reactor (BWR) fuels, and another was created for the pressurized water reactor (PWR) fuels.
    [Show full text]
  • Nuclear Decay Data Files of the Dosimetry Research Group
    unIIIII----IIII1l IIII1_illll_,IIII1_iUll_ ; ORNL/TM-12350 b OAK RIDGE NATIONAL LABORATORY Nuclear Decay Data Files of the MA R'FIN MARIETTA Dosimetry Research Group K. F. Eckerman R. J. Westfall J. C. Ryman • M. Cristy MANAGEDBY MARTINMARIETTAENERGYSYSTEMS,INC. E;_STr_.,___.0_(._,_ __-;i_ZLJO,,:;.._-_._l W__,',:;_t_.__',_!i ;,: FORTHEUNITEDSTATES DEPARTMENTOFENERGY This report has been reproduced directlyfrom the best available copy. Availableto DOE and DOE contractorsfrom the Office of Scientificand Techni- cal Information,P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401, FTS 626-8401. Available to the public from the National Technical Information Service, U.S. Department of Commerce,5285 Port Royal Rd., Springfield,VA 22161. This report was prepared as an account of work sponsored by an agency of the United States Government.Neither the United States Governmentnor any agency thereof, nor any of their employees, makes any warranty, express or implied,or assumes any legal liabilityor responsibilityfor the accuracy, com- pleteness, or usefulnessof any information,apparatus, product,or process dis- N closed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercialproduct, process, or service by trade name, trademark, manufacturer,or otherwise, does not necessarilyconsti- tute or imply its endorsement,recommendation,or favoringby the United States Government or any agency thereof. The views and opinions of authors expressed hereindo not necessarilystate or reflect those of the United States Governmentor any agency thereof. • ORNL/TM-12350 Dist. Category UC-407 q Health Sciences Research Division NUCLEAR DECAY DATA FILES OF THE DOSIMETRY RESEARCH GROUP K.
    [Show full text]
  • INDC International Nuclear Data Committee
    BNL-114827-2017-IR INDC International Nuclear Data Committee A. L. Nichols, E. A. McCutchan Submitted to the International Atomic Energy Agency INDC International Nuclear Data Committee May 22-26, 2017 December 11, 2017 National Nuclear Data Center Brookhaven National Laboratory U.S. Department of Energy USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26) Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
    [Show full text]