PHYSICAL SIMULATION of FRICTION STIR PROCESSED TI-5Al-1Sn-1Zr-1V-0.8Mo
Total Page:16
File Type:pdf, Size:1020Kb
PHYSICAL SIMULATION OF FRICTION STIR PROCESSED TI-5Al-1Sn-1Zr-1V-0.8Mo A Thesis Presented in Partial Fulfillment of the Requirements for The Degree of Master of Science in the Graduate School of The Ohio State University By Melissa Joanne Rubal, B.S. ******** The Ohio State University 2009 Dissertation Committee: Approved by Professor John Lippold, Advisor _____________________________ Doctor Mary Juhas, Advisor Advisor Professor Jim Williams Welding Engineering Graduate Program i i ABSTRACT Friction stir processing (FSP) can be employed to modify the grain size and microstructure of a material. In titanium alloys, the refined microstructure achieved during processing can improve the mechanical properties, such as yield stress and fatigue crack initiation resistance. Documenting the microstructural evolution of Ti-5111 (5Al- 1Sn-1Zr-1V-0.8Mo) during FSP, as well as simulating the observed microstructure in a Gleeble® 3800 thermo-mechanical simulator can determine the link between strain, strain rate and temperature during processing. In this study, FSP of Ti-5111 was performed above and below the beta transus temperature allowing for investigation of the microstructural evolution in both conditions. Each processed panel was instrumented with thermocouples to record the thermal histories in the stir zone and adjacent heat-affected zone. Single sensor differential thermal analysis (SS-DTA) was used to determine the - transformation during processing. Transverse sections of the processed panels were analyzed using optical and scanning electron microscopy, electron backscatter diffraction (EBSD) and hardness mapping. FSP produced extreme grain refinement in both processing conditions – reducing the 200-500 m prior- base material grains to 1-20 m. The stir zone in the panel processed above the transus exhibited a strong transformation microtexture, governed by the Burgers orientation relationship, while the sub-transus panel displayed a shear deformation texture. Vicker’s hardness mapping revealed two distinct hardness regions: the base material and a more uniform and slightly harder stir zone. The microstructures observed in the FSP panels were simulated using hot torsion testing on a Gleeble® 3800. Ideally, the strain and strain rate data may be used to verify ii FSP modeling programs of titanium to reduce the parameter selection phases of future friction stir projects. However, strain localization observed during hot torsion testing necessitates a different sample design for titanium alloys to take into consideration the ease of adiabatic shear band formation and the low thermal conductivity. A continuous cooling transformation (CCT) diagram was constructed for Ti-5111 to separate the effects of deformation and non-equilibrium temperature profiles on the depression of the - transformation observed during processing. Similar transformation temperatures were observed during testing, indicating the significant reduction in transformation temperature is independent of the extreme deformation. iii DEDICATION Dedicated to those who love me no matter what: my parents, my sisters, Ken and Otis iv ACKNOWLEDGEMENTS I would like to thank my co-advisors, Professor John Lippold and Dr. Mary Juhas for their guidance and support throughout this project. I could not have asked for more encouraging and caring mentors. Thanks are also extended to Dr. Boian Alexandrov for assistance with thermocouples, thermal data acquisition and phase transformation analysis. His expertise was greatly appreciated. Seth Shira and Brian Thompson of the Edison Welding Institute are acknowledged for performing the friction stir processing. The funding for this project was provided by the Office of Naval Research through Julie Christodoulou and the cognizant program officers Johnnie Deloach and Richard Fonda. I am sincerely grateful for the support and direction offered by ONR. I would also like to thank Professor Jim Williams and Adam Pilchak of the Material Science and Engineering Department at Ohio State University for assistance with titanium metallurgy and electron backscatter diffraction analysis. Finally, I would like to extend my appreciation to the members of the Welding and Joining Metallurgy Group, both past and present. I value the friendships that were formed while you helped to shape me into a true researcher. v VITA December 19, 1985 ……………………..Born - Mayfield Heights, OH. United States. June, 2008 ………………………………B.S.W.E. The Ohio State University Columbus Ohio 2007 – Present …………………………..Graduate Research Associate The Ohio State University FIELD OF STUDY Major Field: Welding Engineering vi TABLE OF CONTENTS Abstract ............................................................................................................................... ii Dedication .......................................................................................................................... iv Acknowledgements ............................................................................................................. v Vita ..................................................................................................................................... vi List of Figures ..................................................................................................................... x List of Tables ................................................................................................................... xiv List of Abbreviations ........................................................................................................ xv Chapters: 1. Introduction ..................................................................................................................... 1 2. Background ..................................................................................................................... 3 2.1. Titanium Metallurgy ........................................................................................... 3 2.1.1. Equilibrium Phases ..................................................................................... 3 2.1.2. Alloying Additions...................................................................................... 4 2.1.3. Titanium Alloy Classifications ................................................................... 5 2.1.3.1. Alloys .............................................................................................. 6 2.1.3.2. + Alloys .......................................................................................... 6 2.1.3.3. Alloys ............................................................................................... 7 2.2. Ti-5111 ................................................................................................................ 7 2.3. High Temperature Deformation of Titanium Alloys .......................................... 8 2.4. Friction Stir Welding ........................................................................................ 10 2.4.1. Background ............................................................................................... 10 2.4.2. Friction Stir Processing ............................................................................. 12 2.4.3. Friction Stir Welding of Titanium Alloys ................................................. 13 2.4.3.1. Tooling .............................................................................................. 13 2.4.3.2. Weld Regions .................................................................................... 14 2.4.3.3. FSW/FSP Studies .............................................................................. 15 2.4.4. FSW and FSP Thermal History Acquisition ............................................. 17 2.4.4.1. Single Sensor Differential Thermal Analysis (SS-DTA) .................. 17 2.5. Gleeble ® Simulations ...................................................................................... 18 2.5.1. Background ............................................................................................... 18 2.5.2. Hot Torsion Tests ...................................................................................... 18 2.5.2.1. Hot Torsion Test Samples ................................................................. 19 2.5.3. Hot Compression Tests ............................................................................. 19 3. Objectives ..................................................................................................................... 20 vii 4. Material, Equipment and Experimental Procedures ..................................................... 21 4.1 Material – Ti-5111 ............................................................................................ 21 4.2 Equipment ......................................................................................................... 22 4.2.1. Optical Microscope ................................................................................... 22 4.2.2. Scanning Electron Microscopes ................................................................ 22 4.2.3. Friction Stir Machine ................................................................................ 23 4.2.4. Gleeble 3800 System ................................................................................ 24 4.3 Experimental Procedures .................................................................................. 24 4.3.1. Friction Stir Processing ............................................................................. 24 4.3.1.1.