Analysis of Partial Migration Strategies of Central European Raptors Based on Ring Re-Encounter Data

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Partial Migration Strategies of Central European Raptors Based on Ring Re-Encounter Data Analysis of partial migration strategies of Central European raptors based on ring re-encounter data I n a u g u r a l d i s s e r t a t i o n zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Daniel Holte geboren am 06.10.1981 in Neuss Greifswald, den 14.06.201828.03.2018 Dekan: Prof. Dr. Werner Weitschies 1. Gutachter : PD Dr. Martin Haase 2. Gutachter: Dr. Sven Renner Tag der Promotion: 14.06.2018 Table of Contents A. Synopsis 7 1. General introduction 7 1.1 Marking animals 7 1.1.1 Bird ringing 8 1.2 Bird migration 10 1.2.1 Partial migration 11 1.3 Target species 11 1.3.1 Common kestrel 12 1.3.2 Common buzzard 12 1.3.3 Eurasian sparrowhawk 13 1.4 Study aims and hypotheses 13 2. Methods 15 2.1 Partial migration 15 2.2 Predicting ring re-encounters considering spatial observer heterogeneity 16 3. Results and Discussion 18 3.1 Partial migration 18 3.2 Predicting ring re-encounters considering spatial observer heterogeneity 21 4. Cited literature 25 B. Manuscripts 29 Paper I 29 Paper II 47 Paper III 65 Contributions to manuscripts 95 C. Eigenständigkeitserklärung 97 D. Curriculum Vitae 99 E. Scientific contributions 101 F. Danksagung 103 A. Synopsis 1. General introduction The history of ornithology goes far back in human history and its beginning is probably not clearly definable. Already in the fourth century B.C., Aristotle described about 140 bird species and he declared the study of birds to be a worthy activity for philosophers, which made ornithology become a science (Stresemann 1951). Currently, birds – more precisely their characteristics and capabilities as well as their ecology – are in these times of rapid environmental changes highly relevant objects for scientific research. The technological progress we have experienced during the last decades has also reached the ornithological research. It revealed for instance phylogenomic relationships among and between families, species and populations using DNA analyses (e.g. Fregin et al. 2012; Prum et al. 2015; Barani- Beiranvand et al. 2017), physiological traits, such as ultraviolet colours in plumage and beak colouration (e.g. Armenta et al. 2008; Schull et al. 2016), or aspects of ecology and behaviour, such as migratory flyways and wintering grounds, using satellite telemetry or isotope analyses (e.g. Strandberg et al. 2009; Seifert et al. 2016). Among many others, these findings help us to understand “the world of birds”, from an individual’s life cycle to complex interrelations within and between populations, which is a fundamental requirement to consult birds as indicators for ecology and to develop protection strategies. 1.1 Marking animals Animals get marked all over the globe for different purposes. For instance, pets like cats and dogs are marked with collars, ear tattoos and microchips in order to identify them if they get lost and found again. Livestock get ear marks to differentiate individuals to e.g. control for their productivity. Female sheep get marked with different colours depending on the male with which they mated. However, the approach of marking animals is not only used for domestic, but also for wild animals. In scientific research, animals get marked for several reasons including tracking their movements (e.g. Strandberg et al. 2009), observing their mate choices (e.g. Shave & Waterman 2017), or defining home ranges (e.g. Šegvić-Bubić et al. 2018). Depending on the study aims, the technical progress and the monetary budget, animal marking is carried out using e.g. spray colours and dye, leg and wing tags, light-level geolocators or radio 7 transmitters including GPS tracking devices. Colour marking is applied mainly in studies in which behaviour of different individuals is observed (e.g. Shave & Waterman 2017). Leg and wing tags, geolocators as well as radio and GPS transmitters, however, can be used to study the spatio-temporal allocation and the movements of individuals, such as dispersal (e.g. Schmidt et al. 2017) and migration, including the determination of breeding and wintering sites (e.g. Omori & Fisher 2017), up to exact migration routes and fuelling sites (e.g. Strandberg et al. 2009; Lislevand & Hahn 2015; Hiemer et al. 2018). In order to avoid or at least to limit impairments that may influence the behaviour of a marked animal, the weight of the tag which is supposed to be applied must not exceed 5% of the animal’s body mass (at least in terrestrial vertebrates, see Murray & Fuller 2000). This requirement has led to a miniaturization of devices allowing even to mark insects in order to follow their flyways (e.g. Kissling et al. 2014). A less sophisticated but therefore cheap, hence widely used method of marking animals is the approach of bird ringing. 1.1.1 Bird ringing The scientific bird ringing method was implemented more than 100 years ago by the Danish teacher Hans Christian Mortensen (Baillie et al. 2007). Birds are caught or taken from the nests and get marked with a metal and/or a plastic ring which carries an individual inscription consisting of a mixture of figures and letters (= ring number). This inscription functions like an ID card, which in case of being re-encountered by re-sighting or re-catching the ringed bird or by finding its carcass can be assigned to the respective bird unambiguously. In Europe, about 5 million birds get ringed each year (Baillie et al. 2007), providing the potential to create big databases with a huge amount of information. The quantity and quality of information that goes into these databases strongly depend on the kind of data that has been collected during ringing as well as reported as a re-encounter. While ringing is performed by expert and trained scientists and volunteers, a re-encounter can also be made by laymen. In this occasion, ring re- encounters mainly result from findings of dead birds. This can be a problem regarding the accuracy of information about the details of re-encounter and the circumstances that led to a bird’s death. In some cases even the time of dying is unknown or the re-encounter site is given only vaguely. The latter occurs mainly in reports that have been made before GPS and cell phone positioning became broadly available. In addition, uncertainties about age and sex of 8 ringed individuals may reduce the explanatory power of ring re-encounters. These uncertainties can result from trapping adult birds in which the age is not clearly determinable or from the absence of sexual dimorphisms at least at the ringing time. Finally, the probability to re- encounter a ringed bird is not equally distributed in space and time (e.g. Korner-Nievergelt et al. 2010a). It depends on the species – in terms of body size, habitat, ecology etc. – as well as on the potential observers. Observers may differ in knowledge and education, interest and social status as well as in the political situation and population density of the region where they live. Moreover, a re-encounter only goes into the databases if the observer contacts the corresponding ringing scheme and reports the ring. The willingness to report a re-encountered ring differs between observers as well, again depending on knowledge and interest, but also on the facilities to make a report. For example, web-based reporting applications have advanced ring reporting rates in the last two decades (see e.g. Boomer et al. 2013), whereas restrictions in hunting may reduce the reporting willingness, because illegal hunting activities that would be revealed by a report could be punished. There have been some approaches implemented to correct for observer heterogeneity (e.g. Kania 2009; Korner-Nievergelt et al. 2010a, 2010b, 2012; Cohen et al. 2014; Thorup et al. 2014) but they all have one thing in common: additional information which supplements the ringing data is required. One of the most promising procedures combines ring re-encounters with data derived from tracking methods, such as satellite telemetry and geolocators (Korner-Nievergelt et al. 2010a; Thorup et al. 2014), which, however, cannot be applied retrospectively. Other approaches are based on socio-demographic factors, where observer distribution and re- encounter probabilities are estimated by human population densities or political borders (Korner-Nievergelt et al. 2010a). All this additional information is usually not available when starting an analysis of ring re-encounter data. It must be collected, if possible, as part of the study or obtained from other sources with much additional effort. Hence, these methods are only conditionally applicable. Due to the lack of adequate methods, the results of ‘classical’ ring re-encounter analyses which do not correct for observer heterogeneity should be interpreted carefully. Despite all those limitations and uncertainties, ring re-encounters have filled our databases with more than 2 million records until 2007 only in Europe (Baillie et al. 2007). In contrast, studies 9 that use new technologies (e.g. GPS tracking) are often limited in sample size because budgets for scientific research are usually small and, thus, confine the number of devices that can be applied. The huge numbers in ring data bases result from the facts that bird ringing is conducted mainly by many well trained volunteers (~ 10,000 ringers in Europe organized by the national ringing schemes; Baillie et al. 2007) and material costs are relatively low. Accordingly, about four million birds are ringed in Europe each year (Baillie et al. 2007). Many of the resulting datasets have been analysed and large voluminous ring recovery atlases have emerged (e.g.
Recommended publications
  • Review of the Conflict Between Migratory Birds and Electricity Power Grids in the African-Eurasian Region
    CMS CONVENTION ON Distribution: General MIGRATORY UNEP/CMS/Inf.10.38/ Rev.1 SPECIES 11 November 2011 Original: English TENTH MEETING OF THE CONFERENCE OF THE PARTIES Bergen, 20-25 November 2011 Agenda Item 19 REVIEW OF THE CONFLICT BETWEEN MIGRATORY BIRDS AND ELECTRICITY POWER GRIDS IN THE AFRICAN-EURASIAN REGION (Prepared by Bureau Waardenburg for AEWA and CMS) Pursuant to the recommendation of the 37 th Meeting of the Standing Committee, the AEWA and CMS Secretariats commissioned Bureau Waardenburg to undertake a review of the conflict between migratory birds and electricity power grids in the African-Eurasian region, as well as of available mitigation measures and their effectiveness. Their report is presented in this information document and an executive summary is also provided as document UNEP/CMS/Conf.10.29. A Resolution on power lines and migratory birds is also tabled for COP as UNEP/CMS/Resolution10.11. For reasons of economy, documents are printed in a limited number, and will not be distributed at the meeting. Delegates are kindly requested to bring their copy to the meeting and not to request additional copies. The Agreement on the Conservation of African-Eurasian Migratory Waterbirds (AEWA) and the Convention on the Conservation of Migratory Species of Wild Animals (CMS) REVIEW OF THE CONFLICT BETWEEN MIGRATORY BIRDS AND ELECTRICITY POWER GRIDS IN THE AFRICAN-EURASIAN REGION Funded by AEWA’s cooperation-partner, RWE RR NSG, which has developed the method for fitting bird protection markings to overhead lines by helicopter. Produced by Bureau Waardenburg Boere Conservation Consultancy STRIX Ambiente e Inovação Endangered Wildlife Trust – Wildlife & Energy Program Compiled by: Hein Prinsen 1, Gerard Boere 2, Nadine Píres 3 & Jon Smallie 4.
    [Show full text]
  • Rock Kestrel
    264 Falconidae: falcons and kestrels brooding young. Therefore the small increase in reporting rates in six of the eight Zones during winter is probably related to seasonal changes in conspicuousness, rather than to any large- scale influx of migrants from outside the region. Reporting rates for the Tarkastad district, for example, increased during winter, while direct observation showed that over half of the population actually left the area (Van Zyl 1994b). Although the models do not suggest movements within southern Africa, a more detailed analysis of Rock Kestrel movements in South Africa, largely based on a more refined examination of atlas reporting rates, suggested a northerly and easterly movement away from south- western breeding areas during winter (Van Zyl et al. 1994). Breeding: Breeding was recorded in all Zones, mainly September–January, peaking October–December. There are no obvious seasonal differences between the Zones, although in the eastern Cape Province (Zone 8) it bred slightly later than in the rest of the region. Interspecific relationships: It overlaps widely with Greater and Lesser Kestrels in southern Africa. It moves into the eastern grassland habitats most exploited by the Lesser Kestrel during the winter when that species is absent (Van Zyl et al. 1994). Historical distribution and conservation: Boshoff et al. (1983) found no difference in distribution in the Cape Prov- ince, comparing the periods 1700–1969 and 1970–79. The distrib- ution map similarly shows no change in distribution, the species being largely absent from the central Kalahari regions and the far northeast during all three time periods, although the map shows Rock Kestrel many more records from the western Karoo, presumably due to Rooivalk better coverage.
    [Show full text]
  • 1 Systematics and Evolution of Kestrels
    Cambridge University Press 978-1-108-47062-9 — The Kestrel David Costantini , Giacomo Dell'Omo Excerpt More Information 1 Systematics and Evolution of Kestrels 1.1 Chapter Summary The family Falconidae constitutes a group of small to medium-sized diurnal raptors whose monophyly is strongly supported. Kestrels are included in the subfamily Falconinae. There are at least 13 species that belong to the kestrel group, but recent genetic studies suggest that the number of kestrel species might be larger, possibly 16. The paleontological and molecular evidence is congruent in suggesting an evolutionary radiation of kestrels from the Late Miocene (4.0–9.8 million years ago) through the Early Pleistocene. However, the geographic area where kestrels originated and dispersed from is unclear. 1.2 Diversification of Falcons The Falconidae is a monophyletic family of diurnal birds of prey that occupy a wide variety of ecological niches and geographic regions (White et al., 1994). Three subfamilies are currently recognised and their validity is supported by both molecular and morphological data (Griffiths, 1999; Griffiths et al., 2004; Fuchs et al., 2012, 2015): (i) Falconinae (falcons, falconets and kestrels), (ii) Herpetotherinae (forest falcons Micrastur sp. and laughing falcon Herpetotheres cachinnans) and (iii) Polyborinae (caracaras) (Figure 1.1). Dickinson (2003) has recognised 11 genera and 64 species of Falconidae, but figures can vary slightly across authors. Both the Herpetotherinae and the Polyborinae occur only in the New World, while the Falconinae (the subfamily to which kestrels belong) are widespread across both the New and Old World with 46 species, 40 of which belong to the genus Falco (Fuchs et al., 2015).
    [Show full text]
  • (2007): Birds of the Aleutian Islands, Alaska Please
    Bold* = Breeding Sp Su Fa Wi Bold* = Breeding Sp Su Fa Wi OSPREYS FINCHES Osprey Ca Ca Ac Brambling I Ca Ca EAGLES and HAWKS Hawfinch I Ca Northern Harrier I I I Common Rosefinch Ca Eurasian Sparrowhawk Ac (Ac) Pine Grosbeak Ca Bald Eagle* C C C C Asian Rosy-Finch Ac Rough-legged Hawk Ac Ca Ca Gray-crowned Rosy-Finch* C C C C OWLS (griseonucha) Snowy Owl I Ca I I Gray-crowned Rosy-Finch (littoralis) Ac Short-eared Owl* R R R U Oriental Greenfinch Ca FALCONS Common Redpoll I Ca I I Eurasian Kestrel Ac Ac Hoary Redpoll Ca Ac Ca Ca Merlin Ca I Red Crossbill Ac Gyrfalcon* R R R R White-winged Crossbill Ac Peregrine Falcon* (pealei) U U C U Pine Siskin I Ac I SHRIKES LONGSPURS and SNOW BUNTINGS Northern Shrike Ca Ca Ca Lapland Longspur* Ac-C C C-Ac Ac CROWS and JAYS Snow Bunting* C C C C Common Raven* C C C C McKay's Bunting Ca Ac LARKS EMBERIZIDS Sky Lark Ca Ac Rustic Bunting Ca Ca SWALLOWS American Tree Sparrow Ac Tree Swallow Ca Ca Ac Savannah Sparrow Ca Ca Ca Bank Swallow Ac Ca Ca Song Sparrow* C C C C Cliff Swallow Ca Golden-crowned Sparrow Ac Ac Barn Swallow Ca Dark-eyed Junco Ac WRENS BLACKBIRDS Pacific Wren* C C C U Rusty Blackbird Ac LEAF WARBLERS WOOD-WARBLERS Bold* = Breeding Sp Su Fa Wi Wood Warbler Ac Yellow Warbler Ac Dusky Warbler Ac Blackpoll Warbler Ac DUCKS, GEESE and SWANS Kamchatka Leaf Warbler Ac Yellow-rumped Warbler Ac Emperor Goose C-I Ca I-C C OLD WORLD FLYCATCHERS "HYPOTHETICAL" species needing more documentation Snow Goose Ac Ac Gray-streaked Flycatcher Ca American Golden-plover (Ac) Greater White-fronted Goose I
    [Show full text]
  • Evidence That Population Increase and Range Expansion by Eurasian
    bioRxiv preprint doi: https://doi.org/10.1101/491522; this version posted July 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Evidence that population increase and range expansion by 2 Eurasian Sparrowhawks has impacted avian prey populations 3 4 Christopher Paul Bell bioRxiv preprint doi: https://doi.org/10.1101/491522; this version posted July 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 2 5 Abstract 6 The role of increased predator numbers in the general decline of bird populations in the late 7 20th century remains controversial, particularly in the case of the Eurasian Sparrowhawk, for 8 which there are contradictory results concerning its effect on the abundance of potential 9 prey species. Previous studies of breeding season census data for Sparrowhawks and prey 10 species in Britain have measured predator abundance either as raw presence-absence data 11 or as an estimate derived from spatially explicit modelling, and have found little evidence of 12 association between predator and prey populations. Here, a predator index derived from 13 site-level binary logistic modelling was used in a regression analysis of breeding census data 14 on 42 prey species, with significant effects emerging in 27 species (16 positive, 11 negative).
    [Show full text]
  • Kestrel, Also Known As the European Or Eurasian Kestrel, Are One of the Smaller Members of the Falcon Family
    The common kestrel, also known as the European or Eurasian kestrel, are one of the smaller members of the falcon family. They measure just over 30cm in length, and may weigh as little as 150g (5 ½ ounces). They are a native species to Britain, and can be identified by the way they ‘hover’ in place mid-air. Currently in the UK, a population of just under 50,000 breeding pairs are estimated. However, this number is falling rapidly. In some areas, numbers have declined by up to 70% in the last 25 years. This shows how important ⮝ Tinker, Huxley’s male kestrel, conservation efforts need to be to who you can fly with us protect kestrels and other species. during our displays! SCIENTIFIC NAME Falco tinnunculus DISTRIBUTION UK, Europe, Asia WILD POPULATION 50,000 UK pairs estimated, declining WINGSPAN Approx. 70 to 80cm SIZE & WEIGHT Approx. 30 to 36 long, 150g to 250g MAXIMUM LIFESPAN Up to 15 years in the wild, longer in captivity MAIN DIET Small mammals: voles and mice Apart from the UK, common kestrels are found across most of Europe, parts of Asia and, during migration, as far as southern Africa! As a juvenile, their plumage is mostly brown with black streaks on the feathers. As the male matures, this develops into a stunning bronze, and the head and tail turn almost silver in colouration. Females remain more reddish- brown in comparison to the male. Colour in this kestrel! Is it a male or a female? Use this code to decipher some kestrel facts! A = A B = B C = C D = D E = E F = F G = G H = H I = I J = J K = K L = L M = M N = N O = O P = P Q = Q R = R S = S T = T ⮝ Turbo, Huxley’s female kestrel, U = U V = V W = W X = X who you can also meet in our displays! Y = Y Z = Z HUNT LARGE INSECTS ON FOOT They may ____ _____ _______ __ ____ .
    [Show full text]
  • Food Niche Overlap of Avian Predators (Falconiformes, Strigiformes) in a Field and Forest Mosaic in Central Poland
    animals Article Food Niche Overlap of Avian Predators (Falconiformes, Strigiformes) in a Field and Forest Mosaic in Central Poland Jakub Gryz 1,* and Dagny Krauze-Gryz 2 1 Department of Forest Ecology, Forest Research Institute, S˛ekocin Stary, Braci Le´snej3, 05-090 Raszyn, Poland 2 Department of Forest Zoology and Wildlife Management, Institute of Forest Sciences, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warszawa, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-22-7150-419 Simple Summary: Predators may present various feeding strategies, i.e., being either food specialists or opportunists. At the same time, their diets change to reflect the prey availability and to avoid competition for food resources. We performed this research in a highly transformed field and forest mosaic and in an area with a high abundance of avian predators (owls and birds of prey, ~133 breeding pairs in total). We calculated the food niche overlap statistics to show the competition for food resources between coexisting species. We assessed the diet composition on the basis of pellet analyses and the identification of prey remains collected from under nests during the breeding season. The food niches overlapped moderately with only one exception, i.e., the highest niche overlap was recorded for the common buzzard and common kestrel, two species preying in open spaces on field rodents but switching to soricomorphs when the former were scarce. On the contrary, the most separate food niche was that of the white-tailed eagle, which was the only species regularly preying on fish. Our results showed that the food niches of species coexisting in the same area were considerably separate, which is due to the fact that they prey on various prey species or search for them in different habitats.
    [Show full text]
  • Habitat Use of Common Kestrel
    Journal of Entomology and Zoology Studies 2014; 2 (5): 134-137 ISSN 2320-7078 Habitat use of common kestrel (Falconiformes: JEZS 2014; 2 (5): 134-137 © 2014 JEZS Falconidae) during winter season, from Eastern Received: 23-08-2014 Accepted: 06-09-2014 Romania Emanuel Ştefan. Baltag Department of Zoology, Faculty of Emanuel Ştefan. Baltag, Viorel Pocora, Lucian Eugen Bolboacă and Biology, “Alexandru Ioan Cuza” University of Iași, B-dul Carol I, Lucian Sfîcă no. 20A, 700505, Romania. Abstract Viorel Pocora The habitat use and weather influence for Common Kestrel (Falco tinnunculus) wintering population of Department of Zoology, Faculty of Eastern Romania was studied. During cold period common kestrel use pasture and herbaceous vegetation Biology, “Alexandru Ioan Cuza” (wi = 2.48) and strongly avoid closed habitats, as fruit tree plantations, vineyards and natural and University of Iași, B-dul Carol I, artificial forests. Common kestrel tends to maintain the same hunting area for the entire cold season. no. 20A, 700505, Romania. They use the same place and also, their number and sex composition was relatively constant during winter months. Regarding GLM analysis, it has shown that the number of common kestrels is Lucian Eugen Bolboacă independent of weather-related variables, altitude and distance to the nearest settlement. This “Vasile Goldiș” Western independence can be explained by their preference to the same hunting area. Common kestrels do not University of Arad, Bulevardul depend on agricultural management during cold season but, they are influenced by pasture and Revoluției 94-96, Romania herbaceous association areas, as they use the same hunting sites during whole season.
    [Show full text]
  • University of Cape Town
    Exploring the breeding diet of the Black Sparrowhawk (Accipiter Melanoleucus) on the Cape Peninsula Honours research project by Bruce Baigrie Biological Sciences Department: University of Cape Town Supervised by Dr. Arjun Amar Town Cape of University Page 1 of 33 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Abstract This study investigates the diet of breeding Black Sparrowhawks (Accipiter melanoleucus) on the Cape Peninsula of South Africa. Macro-remains of prey were collected from below and around the vicinity of nests throughout the breeding seasons of 2012 and 2013. These prey items were then identified down to species where possible through the use of a museum reference collection. In both years 85.9% of the individual remains were those of Columbidae, which corresponds with the only other diet study on Black Sparrowhawks. Red- eyed Doves were the most common prey species, accounting for around 35% of the diet’s biomass and 45% of the prey items. Helmeted Guineafowl were also an important component of the diet for certain nests, making up on average 26.4% biomass of the diet. I found very little difference in diet between the different stages of breeding (pre-lay, incubation and nestling), despite the fact that females only contribute significantly during the nestling state and are considerably larger than the males.
    [Show full text]
  • Trip Report June 21 – July 2, 2017 | Written by Guide Gerard Gorman
    Austria & Hungary: Trip Report June 21 – July 2, 2017 | Written by guide Gerard Gorman With Guide Gerard Gorman and Participants: Jane, Susan, and Cynthia and David This was the first Naturalist Journeys tour to combine Austria and Hungary, and it was a great success. We visited and birded some wonderfully diverse habitats and landscapes in 12 days — the forested foothills of the Alps in Lower Austria, the higher Alpine peak of Hochkar, the reed beds around Lake Neusiedler, the grasslands and wetlands of the Seewinkel in Austria and the Hanság in Hungary, the lowland steppes and farmlands of the Kiskunság east of the Danube, and finally the pleasant rolling limestone hills of the Bükk in north-east Hungary. In this way, we encountered diverse and distinct habitats and therefore birds, other wildlife, and flora, everywhere we went. We also stayed in a variety of different family-run guesthouses and lodges and sampled only local cuisine. As we went, we also found time to take in some of the rich history and culture of these two countries. Wed., June 21, 2017 We met up at Vienna International Airport at noon and were quickly on our way eastwards into Lower Austria. It was a pleasant sunny day and the traffic around the city was a little heavy, but we were soon away from the ring-road and in rural Austria. Roadside birds included both Carrion and Hooded Crows, several Eurasian Kestrels, and Barn Swallows zoomed overhead. Near Hainfeld we drove up a farm road, stopped for a picnic, and did our first real birding.
    [Show full text]
  • Diet Composition of Common Kestrels Falco Tinnunculus and Long-Eared Owls Asio Otus Coexisting in an Urban Environment
    Ornis Fennica 86:123130. 2009 Diet composition of Common Kestrels Falco tinnunculus and Long-eared Owls Asio otus coexisting in an urban environment Jan Riegert*, Matìj Lövy & Drahomíra Fainová J. Riegert, M. Lövy & D. Fainová, Department of Zoology, Faculty of Science, University of SouthBohemia, Braniovská 31, CZ-370 05 Èeské Budìjovice, CzechRepublic; *cor - respondent authors e-mail [email protected] Received 14 April 2009, accepted 21 September 2009 We studied the dietary composition of urban populations of Common Kestrels (Falco tinnunculus) and Long-eared Owls (Asio otus) under fluctuating vole abundance in Èeské Budìjovice during 20022005. Common Voles were the dominant prey. In poor vole years, the dietary proportion of alternative prey increased in both species. Long-eared Owls fed more on mice and related rodents, whereas the Common Kestrels diet shifted to insects. The different alternative diets may be due to species-specific daily activity, hunt- ing techniques and/or hunting habitats. Furthermore, we examined the possible relation- ship between the distance from a nest to the city centre and the proportion of voles in the diet. The Kestrel diet was not markedly influenced by distance, but for Long-eared Owls an increasing distance was associated with an increasing dietary proportion of voles. 1. Introduction In farmland habitats both species primarily feed on small rodents, especially Microtinae voles The Common Kestrel (Falco tinnunculus)and (Village 1981, Village 1990, Korpimäki 1992). Long-eared Owl (Asio otus) are two raptor species However, the urban environment differs from that have successfully moved into urban habitats. farmland, for example, in being free of large pred- The Common Kestrel is the most frequent diurnal ators such as the Eagle Owl Bubo bubo,byin- bird of prey in the cities of Central Europe (Riegert creased threat from humans and by increased (or 2005).
    [Show full text]
  • Nature Quiz British Birds Birds of Prey
    Nature Quiz British Birds ­ Birds of Prey Birds of prey are birds that hunt for food primarily on the wing, using their keen senses, especially vision. Because of their predatory lifestyle, often at the top of the food chain, they face distinct conservation concerns. See how much you know in the following Natural History quiz on the subject. __________________________________________________________________________________ 1. What is the name of this bird? [ ] Golden Eagle [ ] Montagu's Harrier [ ] Common Buzzard [ ] White­tailed Eagle • Group: Buzzards, Kites and allies • Binomial: Circus pygargus • Order: Falconiformes • Family: Accipitridae • Status: Breeding Summer Visitor And Passage Migrant • It is an extremely rare breeding bird in the UK, and its status is precarious. • Each pair needs special protection. • It is a summer visitor, and migrates to Africa to spend the winter. A Resource From educationquizzes.com – The Number 1 Revision Site 2. What is the name of this bird? [ ] Common Buzzard [ ] Northern Goshawk [ ] European Honey­buzzard [ ] White­tailed Eagle • Group: Buzzards, Kites and allies • Binomial: Haliaeetus albicilla • Order: Falconiformes • Family: Accipitridae • Status: Resident Breeder And Widespread Introductions • It is the largest UK bird of prey. • It went extinct in the UK during the early 19th century, due to illegal killing, and the present population has been reintroduced. 3. What is the name of this bird? [ ] Common Buzzard [ ] Golden Eagle [ ] Northern Goshawk [ ] European Honey­buzzard • Group: Buzzards, Kites and allies • Binomial: Buteo buteo • Order: Falconiformes • Family: Accipitridae • Status: Resident Breeder And Passage Migrant • Pairs mate for life. • The male performs a ritual aerial display before the beginning of spring. • This spectacular display is known as 'the roller coaster'.
    [Show full text]