Appendix 3N FIA Tree Species Codes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Production, Pomological and Nutraceutical Properties of Apricot
1 Production, pomological and nutraceutical properties of apricot Khaled Moustafa1* and Joanna Cross2 1Editor of ArabiXiv (arabixiv.org), Paris, France 2Nigde Omer Halisdemir University, Nigde, Turkey Correspondence: [email protected] Abstract Apricot (Prunus sp.) is an important fruit crop worldwide. Despite recent advances in apricot research, much is still to be done to improve its productivity and environmental adaptability. The availability of wild apricot germplasms with economically interesting traits is a strong incentive to increase research panels toward improving its economic, environmental and nutritional characteristics. New technologies and genomic studies have generated a large amount of raw data that the mining and exploitation can help decrypt the biology of apricot and enhance its agronomic values. Here, we outline recent findings in relation to apricot production, pomological and nutraceutical properties. In particular, we retrace its origin from central Asia and the path it took to attain Europe and other production areas around the Mediterranean basin while locating it in the rosaceae family and referring to its genetic diversities and new attempts of classification. The production, nutritional, and nutraceutical importance of apricot are recapped in an easy readable and comparable way. We also highlight and discuss the effects of late frost damages on apricot production over different growth stages, from swollen buds to green fruits formation. Issues related to the length of production season and biotic and abiotic environmental challenges are also discussed with future perspective on how to lengthen the production season without compromising the fruit quality and productivity. Keywords Apricot kernel oil, plum pox virus, prunus armeniaca, spring frost, stone fruit, sharka. -
Nursery Price List
Lincoln-Oakes Nurseries 3310 University Drive • Bismarck, ND 58504 Nursery Seed Price List 701-223-8575 • [email protected] The following seed is in stock or will be collected and available for 2010 or spring 2011 PENDING CROP, all climatic zone 3/4 collections from established plants in North Dakota except where noted. Acer ginnala - 18.00/lb d.w Cornus racemosa - 19.00/lb Amur Maple Gray dogwood Acer tataricum - 15.00/lb d.w Cornus alternifolia - 21.00/lb Tatarian Maple Pagoda dogwood Aesculus glabra (ND, NE) - 3.95/lb Cornus stolonifera (sericea) - 30.00/lb Ohio Buckeye – collected from large well performing Redosier dogwood Trees in upper midwest Amorpha canescens - 90.00/lb Leadplant 7.50/oz Amorpha fruiticosa - 10.50/lb False Indigo – native wetland restoration shrub Aronia melanocarpa ‘McKenzie” - 52.00/lb Black chokeberry - taller form reaching 6-8 ft in height, glossy foliage, heavy fruit production, Corylus cornuta (partial husks) - 16.00/lb NRCS release Beaked hazelnut/Native hazelnut (Inquire) Caragana arborescens - 16.00/lb Cotoneaster integerrimus ‘Centennial’ - 32.00/lb Siberian peashrub European cotoneaster – NRCS release, 6-10’ in height, bright red fruit Celastrus scandens (true) (Inquire) - 58.00/lb American bittersweet, no other contaminating species in area Crataegus crus-galli - 22.00/lb Cockspur hawthorn, seed from inermis Crataegus mollis ‘Homestead’ arnoldiana-24.00/lb Arnold hawthorn – NRCS release Crataegus mollis - 19.50/lb Downy hawthorn Elaeagnus angustifolia - 9.00/lb Russian olive Elaeagnus commutata -
Wood Identification and Chemistry' Covers the Physicalproperties and Structural Features of Hardwoods and Softwoods
11 DOCUMENT RESUME ED 031 555 VT 007 853 Woodworking Technology. San Diego State Coll., Calif. Dept. of Industrial Arts. Spons Agency-Office of Education (DHEA Washington, D.C. Pub Date Aug 68 Note-252p.; Materials developed at NDEA Inst. for Advanced Studyin Industrial Arts (San Diego, June 24 -Au9ust 2, 1968). EDRS Price MF -$1.00 He -$13.20 Descriptors-Curriculum Development, *Industrial Arts, Instructional Materials, Learning Activities, Lesson Plans, Lumber Industry, Resource Materials, *Resource Units, Summer Institutes, Teaching Codes, *Units of Study (Sublect Fields), *Woodworking Identifiers-*National Defense Education Act TitleXIInstitute, NDEA TitleXIInstitute, Woodworking Technology SIX teaching units which were developed by the 24 institute participantsare given. "Wood Identification and Chemistry' covers the physicalproperties and structural features of hardwoods and softwoods. "Seasoning" explainsair drying, kiln drying, and seven special lumber seasoning processes. "Researchon Laminates" describes the bending of solid wood and wood laminates, beam lamination, lamination adhesives,. andplasticlaminates."Particleboard:ATeachingUnitexplains particleboard manufacturing and the several classes of particleboard and theiruses. "Lumber Merchandising" outhnes lumber grades andsome wood byproducts. "A Teaching Unitin Physical Testing of Joints, Finishes, Adhesives, and Fasterners" describes tests of four common edge pints, finishes, wood adhesives, and wood screws Each of these units includes a bibhography, glossary, and student exercises (EM) M 55, ...k.",z<ONR; z _: , , . "'zr ss\ ss s:Ts s , s' !, , , , zs "" z' s: - 55 Ts 5. , -5, 5,5 . 5, :5,5, s s``s ss ' ,,, 4 ;.< ,s ssA 11111.116; \ ss s, : , \s, s's \ , , 's's \ sz z, ;.:4 1;y: SS lza'itVs."4,z ...':',\\Z'z.,'I,,\ "t"-...,,, `,. -
Prunus X Yedoensis Yoshino Cherry1 Edward F
Fact Sheet ST-523 October 1994 Prunus x yedoensis Yoshino Cherry1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION Yoshino Cherry grows quickly to 20 feet, has beautiful bark marked with prominent lenticels but is a relatively short-lived tree (Fig. 1). It has upright to horizontal branching, making it ideal for planting along walks and over patios. The white to pink flowers which occur in early spring before the leaves develop are sometimes damaged by late frosts or very windy conditions. This is the tree along with ‘Kwanzan’ Cherry in Washington, DC, which makes such a show each spring. Figure 1. Mature Yoshino Cherry. GENERAL INFORMATION DESCRIPTION Scientific name: Prunus x yedoensis Pronunciation: PROO-nus x yed-oh-EN-sis Height: 35 to 45 feet Common name(s): Yoshino Cherry Spread: 30 to 40 feet Family: Rosaceae Crown uniformity: symmetrical canopy with a USDA hardiness zones: 5B through 8A (Fig. 2) regular (or smooth) outline, and individuals have more Origin: not native to North America or less identical crown forms Uses: Bonsai; wide tree lawns (>6 feet wide); Crown shape: round; vase shape medium-sized tree lawns (4-6 feet wide); Crown density: moderate recommended for buffer strips around parking lots or Growth rate: medium for median strip plantings in the highway; near a deck Texture: medium or patio; shade tree; narrow tree lawns (3-4 feet wide); specimen; sidewalk cutout (tree pit); no proven urban Foliage tolerance Availability: generally available in many areas within Leaf arrangement: alternate (Fig. 3) its hardiness range Leaf type: simple Leaf margin: double serrate; serrate Leaf shape: elliptic (oval); oblong; ovate Leaf venation: banchidodrome; pinnate Leaf type and persistence: deciduous Leaf blade length: 2 to 4 inches 1. -
Prunus Dulcis (Almond) Size/Shape
Prunus dulcis (Almond) "The coming of spring in Lebanon is announced by white and pink Almond tree blossoms appearing everywhere in early March through April from the coast up to an altitude of 1800 meters. The Almond is cultivated in orchards, but trees can also be found growing in the wild, in forests and woodlands, in abandoned orchards, in open shrub lands, between rocks, and on dry limestone slopes. The trees that grow in the wild produce bitter or semi-sweet almond seeds. Their bitterness comes from a compound that turns into the poison cyanide when it comes into contact with water.This economically important tree has a spreading crown and can grow up to eight meters high. Its leaves are elongated, toothed, and egg-shaped, and they grow in clusters from short stubs on the branches." * * Trees of Lebanon, 2014, Salma Nashabe Talhouk, Mariana M. Yazbek, Khaled Sleem, Arbi J. Sarkissian, Mohammad S. Al-Zein, and Sakra Abo Eid Landscape Information ﺷﺠﺮﺓ ﺍﻟﻠﻮﺯ :Arabic Name Pronounciation: PROO-nus DUL-sis Plant Type: Tree Origin: Mediterranean Heat Zones: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Hardiness Zones: 7, 8, 9, 10 Uses: Specimen, Edible, Cut Flowers / Arrangements, Native to Lebanon Size/Shape Growth Rate: Moderate Tree Shape: Vase Canopy Symmetry: Symmetrical Canopy Density: Open Canopy Texture: Fine Height at Maturity: 5 to 8 m Spread at Maturity: 5 to 8 meters Time to Ultimate Height: 10 to 20 Years Plant Image Prunus dulcis (Almond) Botanical Description Foliage Leaf Arrangement: Alternate Leaf Venation: Pinnate Leaf Persistance: -
The Influence of American Chestnut
ARTICLE IN PRESS Pedobiologia 50 (2007) 553—562 www.elsevier.de/pedobi The influence of American Chestnut (Castanea dentata) on nitrogen availability, organic matter and chemistry of silty and sandy loam soils Charles C. Rhoadesà US Forest Service, Rocky Mountain Research Station, 240 W. Prospect, Fort Collins, CO 80526, USA Received 28 September 2006; accepted 1 October 2006 KEYWORDS Summary Tree species effects; American chestnut trees once dominated vast areas of deciduous forest in eastern Soil nitrogen cycling; North America, but the exotic chestnut blight almost eliminated the species from Net mineralization; the region. Introduction of blight-resistant American chestnut hybrids will probably Soil texture; start in the next decade after many years of tree breeding. What were the historic Parent material; effects of chestnut on forest soils, and what changes may follow reintroduction of Forest restoration hybrid chestnuts? A site in southern Wisconsin provided an opportunity to examine the effect of chestnut trees on soil properties. At this site, 600 km northwest of chestnut’s historic distribution, naturalized chestnuts have spread throughout an intact mixed-species forest from nine planted trees. The site contains soil developed on a silty loess-mantled ridge that abuts sandier hillslopes, allowing the effects of individual chestnuts to be examined on two soil types. I sampled and analyzed forest floor and mineral soils beneath canopies of individual American chestnuts and the surrounding mixed-species deciduous forest on fine-silt and sandy-loam soil types. On sandy loam soils, total soil carbon (C) and nitrogen (N), inorganic N and net mineralization and nitrification rates were 10–17% higher beneath chestnut canopies compared to soils beneath mixed-species deciduous forest. -
Species List For: Engelmann Woods NA 174 Species
Species List for: Engelmann Woods NA 174 Species Franklin County Date Participants Location NA List NA Nomination List List made by Maupin and Kurz, 9/9/80, and 4/21/93 WGNSS Lists Webster Groves Nature Study Society Fieldtrip Participants WGNSS Vascular Plant List maintained by Steve Turner Species Name (Synonym) Common Name Family COFC COFW Acalypha virginica Virginia copperleaf Euphorbiaceae 2 3 Acer negundo var. undetermined box elder Sapindaceae 1 0 Acer saccharum var. undetermined sugar maple Sapindaceae 5 3 Achillea millefolium yarrow Asteraceae/Anthemideae 1 3 Actaea pachypoda white baneberry Ranunculaceae 8 5 Adiantum pedatum var. pedatum northern maidenhair fern Pteridaceae Fern/Ally 6 1 Agastache nepetoides yellow giant hyssop Lamiaceae 4 3 Ageratina altissima var. altissima (Eupatorium rugosum) white snakeroot Asteraceae/Eupatorieae 2 3 Agrimonia rostellata woodland agrimony Rosaceae 4 3 Ambrosia artemisiifolia common ragweed Asteraceae/Heliantheae 0 3 Ambrosia trifida giant ragweed Asteraceae/Heliantheae 0 -1 Amelanchier arborea var. arborea downy serviceberry Rosaceae 6 3 Antennaria parlinii var. undetermined (A. plantaginifolia) plainleaf pussytoes Asteraceae/Gnaphalieae 5 5 Aplectrum hyemale putty root Orchidaceae 8 1 Aquilegia canadensis columbine Ranunculaceae 6 1 Arisaema triphyllum ssp. triphyllum (A. atrorubens) Jack-in-the-pulpit Araceae 6 -2 Aristolochia serpentaria Virginia snakeroot Aristolochiaceae 6 5 Arnoglossum atriplicifolium (Cacalia atriplicifolia) pale Indian plantain Asteraceae/Senecioneae 4 5 Arnoglossum reniforme (Cacalia muhlenbergii) great Indian plantain Asteraceae/Senecioneae 8 5 Asarum canadense wild ginger Aristolochiaceae 6 5 Asclepias quadrifolia whorled milkweed Asclepiadaceae 6 5 Asimina triloba pawpaw Annonaceae 5 0 Asplenium rhizophyllum (Camptosorus) walking fern Aspleniaceae Fern/Ally 7 5 Asplenium trichomanes ssp. trichomanes maidenhair spleenwort Aspleniaceae Fern/Ally 9 5 Srank: SU Grank: G? * Barbarea vulgaris yellow rocket Brassicaceae 0 0 Blephilia hirsuta var. -
Naturalization of Almond Trees (Prunus Dulcis) in Semi-Arid Regions
*Manuscript Click here to view linked References 1 2 3 4 5 6 7 8 9 Naturalization of almond trees (Prunus dulcis) in semi-arid 10 11 regions of the Western Mediterranean. 12 13 14 15 16 17 18 1 2 1,3 19 Pablo Homet-Gutierrez , Eugene W. Schupp , José M. Gómez * 20 1Departamento de Ecología, Facultad de Ciencias. Universidad de Granada, España. 21 2 22 Department of Wildland Resources and the Ecology Center. Utah State University. USA. 23 3Dpt de Ecología Evolutiva y Funcional, Estación Experimental de Zonas Aridas (EEZA-CSIC), 24 25 Almería, España. 26 27 28 *Corresponding author 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 1 63 64 65 Abstract 1 Agricultural land abandonment is rampant in present day Europe. A major consequence of this 2 3 phenomenon is the re-colonization of these areas by the original vegetation. However, some 4 agricultural, exotic species are able to naturalize and colonize these abandoned lands. In this 5 6 study we explore the ability of almonds (Prunus dulcis D.A. Webb.) to establish in abandoned 7 croplands in semi-arid areas of SE Iberian Peninsula. Domesticated during the early Holocene 8 9 in SW Asia and the Eastern Mediterranean, the almond has spread as a crop all over the world. 10 We established three plots adjacent to almond orchards on land that was abandoned and 11 12 reforested with Aleppo pine (Pinus halepensis Mill.) and Holm oak (Quercus ilex L.) about 20 13 years ago. -
The Tree How to Identify a Linden (Tilia Spp.) the Pesticides the Pest
The Tree Tilia cordata, the Littleleaf Linden tree is native to Europe. It has been at the center of several bumble bee kills in Oregon. T. cordata often produces more flowers than other linden trees. It also produces mannose in its nectar that may be slightly toxic. Many native bees and wasps do not have the enzyme to break down mannose. European honey bees, Apis mellifera, do not appear to be as affected by mannose; at least one theory is that because they are from Europe, they share a developmental history with T. cordata. In general, linden trees have few pest problems; aphids are listed as one of the only insect pests of Tilia trees. Tilia leaf comparison How to Identify a Linden (Tilia spp.) DURING THE WINTER/DORMANT SEASON: 1. Bark is gray-brown and on mature trees is ridged or plated. 2. Twigs are light brown to gray, or may be red-tinged. 3. Buds are prominent, single, plump and often bulge on one side, and are red-brown to dark red in color. 4. Floral bracts and fruit may remain on the tree through winter. DURING THE GROWING SEASON: 1. Leaves are singular, alternate, heart-shaped, finely toothed, and the undersides of leaves often are fuzzy. Leaves at the stem end are asymmetrically attached to the stem. 2. Flowers are attached by floral bract that is 2-to-4 inches long. White to yellow flowers with five petals in hanging clusters of five-to-seven bloom in mid-June or early July. Flowers are fragrant and highly attractive to pollinators. -
Nanking Cherry
Nanking Cherry slide 7a slide 7b 360% 360% slide 7d slide 7c 360% 360% III-11 Nanking Cherry Environmental Requirements (Prunus tomentosa) Soils Soil Texture - Prefers loamy soils. Soil pH - 5.0 to 7.5. General Description Windbreak Suitability Group - 1, 3, 4, 4C, 5. A winter hardy, moderately fast-growing, short-lived shrub native to China, Japan, and the Himalayas. A broad Cold Hardiness spreading, densely twiggy shrub, becoming more open USDA Zone 2. and picturesque with age. Also called Manchu cherry. Water Edible fruits are dark red and excellent for pies and jellies. Tolerates considerable wind and dryness. Leaves and Buds Light Bud Arrangement - Alternate. Full sun only. Bud Color - Brown. Bud Size -1/8 inch. Uses Leaf Type and Shape - Simple, elliptical. Leaf Margins - Unequally serrate. Conservation/Windbreaks Medium shrub for farmstead windbreaks. Leaf Surface - Rough-veined, pubescent. Leaf Length - 2 to 3 inches. Wildlife Leaf Width - 1 to 1½ inches. Fruit is relished by many songbirds. Nesting cover for a Leaf Color - Medium to dark green above; white hairs few species of songbirds. Browsed by rabbits, mice, and below; yellow fall color. deer, which could cause serious injury if control measures are not taken. Flowers and Fruits Agroforestry Products Flower Type - Small but numerous. Food - Fruits processed into wine, syrup, jellies and pies. Flower Color - Pink in bud, becoming near white. Medicinal - Some Prunus species have been used as an Fruit Type - Cherry-shaped drupe. astringent, for coughs, bronchial problems; an antibiotic, Fruit Color - Dark red. in cancer research, and for gout. Form Urban/Recreational Growth Habit - Upright, semi-spreading, and densely Used for screen, hedge, border and specimen plantings. -
The Ornamental Trees of South Dakota N.E
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange South Dakota State University Agricultural Bulletins Experiment Station 4-1-1931 The Ornamental Trees of South Dakota N.E. Hansen Follow this and additional works at: http://openprairie.sdstate.edu/agexperimentsta_bulletins Recommended Citation Hansen, N.E., "The Ornamental Trees of South Dakota" (1931). Bulletins. Paper 260. http://openprairie.sdstate.edu/agexperimentsta_bulletins/260 This Bulletin is brought to you for free and open access by the South Dakota State University Agricultural Experiment Station at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Bulletins by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. Bulletin 260 April, 1931 The Ornamental Trees of South Dakota Figure I-The May Day Tree. Horticulture Department Agricultural Experiment Station South Dakota State College of Agriculture and Mechanic Arts Brookings, S. Dak. The Ornamental Trees of South Dakota N. E. Hansen This bulletin describes the deciduous trees. By deciduous trees is meant those that shed their leaves in winter. The evergreens of South Dakota are described in bulletin 254, October 1930. A bulletin on "The Ornamental Shrubs of South Dakota" is ready for early publication. The following list should be studied in connection with the trees described in South Dakota bulletin 246, "'The Shade, Windbreak and Timber Trees of South Dakota," 48 pages, March 1930. All the trees in both bulletins have ornamental value in greater or less degree. -
Silver Linden Tilia Tomentosa
Smart tree selections for communities and landowners Silver Linden Tilia tomentosa Height: 50’ - 70’ Spread: 30’ - 50’ Site characteristics: Moist, deep, fertile, well-drained soils; full sun to partial shade; very site adaptable Zone: 4 - 7 Wet/dry: Tolerates drought Native range: Southeastern Europe and Southwestern Asia pH: 5.0 - 8.5 Shape: Pyramidal with dense, coarse foliage Foliage: Glossy green with silvery-white color on the underside of the leaf Other: Tolerates heat and drought better than T. cordata; tolerates urban sites, heat, drought and pollution; able to prune into a hedge Cultivars: Green Mountain (‘PNI 6051’) – fast growing, symmetrical, dense canopy. Satin Shadow (‘Sashazam’) – possibly more cold hardy, symmetrical, reportedly resistant to Japanese beetles. Sterling Silver (also listed as ‘Sterling’) – dense canopy, resistant to Japanese beetles and gypsy moths. Pests: Reportedly less susceptible to Japanese beetles than other lindens due to the soft, downy hairs on the underside of the leaves. No serious pests or disease problems. Jesse Saylor, MSU Jesse Saylor, MSU Jesse Saylor, MSU Jesse Saylor, Content development: Dana Ellison, Tree form illustrations: Marlene Cameron. Smart tree selections for communities and landowners Bert Cregg and Robert Schutzki, Michigan State University, Departments of Horticulture and Forestry A smart urban or community landscape has a diverse combination of trees. The devastation caused by exotic pests such as Dutch elm disease, chestnut blight and emerald ash borer has taught us the importance of species diversity in our landscapes. Exotic invasive pests can devastate existing trees because many of these species may not have evolved resistance mechanisms in their native environments.