Meta-Analysis of Diagnostic Test Accuracy Studies Guideline Final Nov 2014

Total Page:16

File Type:pdf, Size:1020Kb

Meta-Analysis of Diagnostic Test Accuracy Studies Guideline Final Nov 2014 EUnetHTA JA2 Guideline ”Meta-analysis of diagnostic test accuracy studies” WP 7 GUIDELINE Meta-analysis of Diagnostic Test Accuracy Studies November 2014 Copyright © EUnetHTA 2013. All Rights Reserved. No part of this document may be reproduced without an explicit acknowledgement of the source and EUnetHTA’s expressed consent. EUnetHTA JA2 Guideline ”Meta-analysis of diagnostic test accuracy studies” WP 7 The primary objective of EUnetHTA JA2 WP 7 methodology guidelines is to focus on methodological challenges that are encountered by HTA assessors while performing relative effectiveness assessments of pharmaceuticals or non- pharmaceutical health technologies. As such the guideline represents a consolidated view of non-binding recommendations of EUnetHTA network members and in no case an official opinion of the participating institutions or individuals. Disclaimer: EUnetHTA Joint Action 2 is supported by a grant from the European Commission. The sole responsibility for the content of this document lies with the authors and neither the European Commission nor EUnetHTA are responsible for any use that may be made of the information contained therein. NOV 2014 © EUnetHTA, 2015. Reproduction is authorised provided EUnetHTA is explicitly acknowledged 2 EUnetHTA JA2 Guideline ”Meta-analysis of diagnostic test accuracy studies” WP 7 This guideline on “Meta-analysis of Diagnostic Test Accuracy Studies” has been developed by HIQA – IRELAND, with assistance from draft group members from IQWiG – GERMANY. The guideline was also reviewed and validated by a group of dedicated reviewers from GYEMSZI – HUNGARY, HAS – FRANCE and SBU - SWEDEN. NOV 2014 © EUnetHTA, 2015. Reproduction is authorised provided EUnetHTA is explicitly acknowledged 3 EUnetHTA JA2 Guideline ”Meta-analysis of diagnostic test accuracy studies” WP 7 Table of contents Acronyms - Abbreviations ........................................................................................... 6 Summary and table with main recommendations ....................................................... 7 1. Introduction ......................................................................................................... 10 1.1. Central terms and concepts .............................................................................. 10 1.1.1. Diagnostic test, gold- and reference standards .............................................. 10 1.1.2. Sensitivity and specificity ................................................................................ 10 1.1.3. Likelihood ratios ............................................................................................. 12 1.1.4. Diagnostic odds ratio ...................................................................................... 13 1.1.5. Receiver Operating Characteristic (ROC) curves ........................................... 13 1.1.6. Predictive values ............................................................................................ 15 1.1.7. Diagnostic accuracy ....................................................................................... 15 1.2. Problem statement ........................................................................................... 15 1.3. Objective(s) and scope of the guideline ........................................................... 17 1.4. Related EUnetHTA documents ........................................................................ 17 2. Analysis and discussion of the methodological issue ......................................... 19 2.1. Methods for meta-analysis of diagnostic accuracy studies ............................... 19 2.1.1. Separate random-effects meta-analyses of sensitivity and specificity ............ 19 2.1.2. Separate meta-analyses of positive and negative likelihood ratios ................ 19 2.1.3. Moses-Littenberg summary receiver operating characteristic (SROC) curve . 19 2.1.4. Hierarchical summary ROC (HSROC) model ................................................. 20 2.1.5. Bivariate random-effects meta-analysis for sensitivity and specificity ............ 21 2.1.6. Comparison of methods ................................................................................. 21 2.2. Presentation of results from a meta-analysis of a single diagnostic test .......... 25 2.2.1. Tables ............................................................................................................ 25 2.2.2. Forest plots for sensitivity and specificity ....................................................... 25 2.2.3. Confidence and prediction regions for the summary estimate of sensitivity and specificity ........................................................................................................ 26 2.2.4. Summary ROC curve ..................................................................................... 26 2.2.5. Sensitivity analysis ......................................................................................... 27 NOV 2014 © EUnetHTA, 2015. Reproduction is authorised provided EUnetHTA is explicitly acknowledged 4 EUnetHTA JA2 Guideline ”Meta-analysis of diagnostic test accuracy studies” WP 7 2.3. Comparison of two diagnostic tests with respect to diagnostic accuracy (incorporate non-comparative studies in discussion of heterogeneity) ............. 28 2.4. Sources of bias ................................................................................................. 28 2.4.1. Data gathering and publication bias ............................................................... 28 2.4.2. Heterogeneity in meta-analyses of sensitivity and specificity ......................... 29 2.4.3. Spectrum bias ................................................................................................ 30 2.4.4. Verification/work-up bias and variable gold standard ..................................... 30 2.4.5. Bias resulting from choice of cut-off points ..................................................... 30 2.4.6. Disease prevalence ........................................................................................ 30 2.4.7. Potential for dependence in combined tests ................................................... 31 2.4.8. Missing data/non-evaluable results ................................................................ 31 2.4.9. Individual patient data analysis ...................................................................... 31 2.5. Meta-analysis of the prognostic utility of a diagnostic test ................................ 31 2.6. Assessing the quality of studies and meta-analysis ......................................... 32 2.6.1. STARD ........................................................................................................... 32 2.6.2. QUADAS ........................................................................................................ 32 2.6.3. PRISMA ......................................................................................................... 33 2.6.4. GRADE .......................................................................................................... 33 2.7. Software ........................................................................................................... 33 3. Conclusion and main recommendations ............................................................. 35 Annexe 1. Bibliography ........................................................................................... 37 Annexe 2. Documentation of literature search ........................................................ 41 Annexe 3. Other sources of information .................................................................. 45 NOV 2014 © EUnetHTA, 2015. Reproduction is authorised provided EUnetHTA is explicitly acknowledged 5 EUnetHTA JA2 Guideline ”Meta-analysis of diagnostic test accuracy studies” WP 7 Acronyms - Abbreviations AUC area under the curve DOR diagnostic odds ratio FN false negative FP false positive FPR false positive rate GRADE Grading of Recommendations Applicability, Development and Evaluation HSROC hierarchical summary receiver operator characteristic IPD individual patient data LR- negative likelihood ratio LR+ positive likelihood ratio MESH medical subject headings NPV negative predictive value PPV positive predictive value PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses QUADAS Quality Assessment of Diagnostic Accuracy Studies RCT randomized controlled trial ROC receiver operator characteristic Sn sensitivity Sp specificity SROC summary receiver operator characteristic STARD Standards for Reporting of Diagnostic Accuracy TN true negative TP true positive TPR true positive rate NOV 2014 © EUnetHTA, 2015. Reproduction is authorised provided EUnetHTA is explicitly acknowledged 6 EUnetHTA JA2 Guideline ”Meta-analysis of diagnostic test accuracy studies” WP 7 Summary and table with main recommendations Introduction Diagnostic tests are used for a variety of purposes including to: determine whether or not an individual has a particular target condition; provide information on a physiological or pathological state, congenital abnormality, or on a predisposition to a medical condition or disease; predict treatment response or reactions; define or monitor therapeutic measures. Ideally an evaluation should be undertaken to assess the clinical utility of a test. Such an assessment is generally not supported by appropriately designed studies or by long term outcome data. In the absence of clinical utility data, diagnostic tests are evaluated on the basis of
Recommended publications
  • Descriptive Statistics (Part 2): Interpreting Study Results
    Statistical Notes II Descriptive statistics (Part 2): Interpreting study results A Cook and A Sheikh he previous paper in this series looked at ‘baseline’. Investigations of treatment effects can be descriptive statistics, showing how to use and made in similar fashion by comparisons of disease T interpret fundamental measures such as the probability in treated and untreated patients. mean and standard deviation. Here we continue with descriptive statistics, looking at measures more The relative risk (RR), also sometimes known as specific to medical research. We start by defining the risk ratio, compares the risk of exposed and risk and odds, the two basic measures of disease unexposed subjects, while the odds ratio (OR) probability. Then we show how the effect of a disease compares odds. A relative risk or odds ratio greater risk factor, or a treatment, can be measured using the than one indicates an exposure to be harmful, while relative risk or the odds ratio. Finally we discuss the a value less than one indicates a protective effect. ‘number needed to treat’, a measure derived from the RR = 1.2 means exposed people are 20% more likely relative risk, which has gained popularity because of to be diseased, RR = 1.4 means 40% more likely. its clinical usefulness. Examples from the literature OR = 1.2 means that the odds of disease is 20% higher are used to illustrate important concepts. in exposed people. RISK AND ODDS Among workers at factory two (‘exposed’ workers) The probability of an individual becoming diseased the risk is 13 / 116 = 0.11, compared to an ‘unexposed’ is the risk.
    [Show full text]
  • Limitations of the Odds Ratio in Gauging the Performance of a Diagnostic, Prognostic, Or Screening Marker
    American Journal of Epidemiology Vol. 159, No. 9 Copyright © 2004 by the Johns Hopkins Bloomberg School of Public Health Printed in U.S.A. All rights reserved DOI: 10.1093/aje/kwh101 Limitations of the Odds Ratio in Gauging the Performance of a Diagnostic, Prognostic, or Screening Marker Margaret Sullivan Pepe1,2, Holly Janes2, Gary Longton1, Wendy Leisenring1,2,3, and Polly Newcomb1 1 Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA. 2 Department of Biostatistics, University of Washington, Seattle, WA. 3 Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA. Downloaded from Received for publication June 24, 2003; accepted for publication October 28, 2003. A marker strongly associated with outcome (or disease) is often assumed to be effective for classifying persons http://aje.oxfordjournals.org/ according to their current or future outcome. However, for this assumption to be true, the associated odds ratio must be of a magnitude rarely seen in epidemiologic studies. In this paper, an illustration of the relation between odds ratios and receiver operating characteristic curves shows, for example, that a marker with an odds ratio of as high as 3 is in fact a very poor classification tool. If a marker identifies 10% of controls as positive (false positives) and has an odds ratio of 3, then it will correctly identify only 25% of cases as positive (true positives). The authors illustrate that a single measure of association such as an odds ratio does not meaningfully describe a marker’s ability to classify subjects. Appropriate statistical methods for assessing and reporting the classification power of a marker are described.
    [Show full text]
  • Guidance for Industry E2E Pharmacovigilance Planning
    Guidance for Industry E2E Pharmacovigilance Planning U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) April 2005 ICH Guidance for Industry E2E Pharmacovigilance Planning Additional copies are available from: Office of Training and Communication Division of Drug Information, HFD-240 Center for Drug Evaluation and Research Food and Drug Administration 5600 Fishers Lane Rockville, MD 20857 (Tel) 301-827-4573 http://www.fda.gov/cder/guidance/index.htm Office of Communication, Training and Manufacturers Assistance, HFM-40 Center for Biologics Evaluation and Research Food and Drug Administration 1401 Rockville Pike, Rockville, MD 20852-1448 http://www.fda.gov/cber/guidelines.htm. (Tel) Voice Information System at 800-835-4709 or 301-827-1800 U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) April 2005 ICH Contains Nonbinding Recommendations TABLE OF CONTENTS I. INTRODUCTION (1, 1.1) ................................................................................................... 1 A. Background (1.2) ..................................................................................................................2 B. Scope of the Guidance (1.3)...................................................................................................2 II. SAFETY SPECIFICATION (2) .....................................................................................
    [Show full text]
  • Sensitivity Analysis
    Chapter 11. Sensitivity Analysis Joseph A.C. Delaney, Ph.D. University of Washington, Seattle, WA John D. Seeger, Pharm.D., Dr.P.H. Harvard Medical School and Brigham and Women’s Hospital, Boston, MA Abstract This chapter provides an overview of study design and analytic assumptions made in observational comparative effectiveness research (CER), discusses assumptions that can be varied in a sensitivity analysis, and describes ways to implement a sensitivity analysis. All statistical models (and study results) are based on assumptions, and the validity of the inferences that can be drawn will often depend on the extent to which these assumptions are met. The recognized assumptions on which a study or model rests can be modified in order to assess the sensitivity, or consistency in terms of direction and magnitude, of an observed result to particular assumptions. In observational research, including much of comparative effectiveness research, the assumption that there are no unmeasured confounders is routinely made, and violation of this assumption may have the potential to invalidate an observed result. The analyst can also verify that study results are not particularly affected by reasonable variations in the definitions of the outcome/exposure. Even studies that are not sensitive to unmeasured confounding (such as randomized trials) may be sensitive to the proper specification of the statistical model. Analyses are available that 145 can be used to estimate a study result in the presence of an hypothesized unmeasured confounder, which then can be compared to the original analysis to provide quantitative assessment of the robustness (i.e., “how much does the estimate change if we posit the existence of a confounder?”) of the original analysis to violations of the assumption of no unmeasured confounders.
    [Show full text]
  • Design of Experiments for Sensitivity Analysis of a Hydrogen Supply Chain Design Model
    OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/27431 Official URL: https://doi.org/10.1007/s41660-017-0025-y To cite this version: Ochoa Robles, Jesus and De León Almaraz, Sofia and Azzaro-Pantel, Catherine Design of Experiments for Sensitivity Analysis of a Hydrogen Supply Chain Design Model. (2018) Process Integration and Optimization for Sustainability, 2 (2). 95-116. ISSN 2509-4238 Any correspondence concerning this service should be sent to the repository administrator: [email protected] https://doi.org/10.1007/s41660-017-0025-y Design of Experiments for Sensitivity Analysis of a Hydrogen Supply Chain Design Model 1 1 1 J. Ochoa Robles • S. De-Le6n Almaraz • C. Azzaro-Pantel 8 Abstract Hydrogen is one of the most promising energy carriersin theq uest fora more sustainableenergy mix. In this paper, a model ofthe hydrogen supply chain (HSC) based on energy sources, production, storage, transportation, and market has been developed through a MILP formulation (Mixed Integer LinearP rograrnming). Previous studies have shown that the start-up of the HSC deployment may be strongly penaliz.ed froman economicpoint of view. The objective of this work is to perform a sensitivity analysis to identifythe major parameters (factors) and their interactionaff ectinga n economic criterion, i.e., the total daily cost (fDC) (response), encompassing capital and operational expenditures. An adapted methodology for this SA is the design of experiments through the Factorial Design and Response Surface methods.
    [Show full text]
  • 1 Global Sensitivity and Uncertainty Analysis Of
    GLOBAL SENSITIVITY AND UNCERTAINTY ANALYSIS OF SPATIALLY DISTRIBUTED WATERSHED MODELS By ZUZANNA B. ZAJAC A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2010 1 © 2010 Zuzanna Zajac 2 To Król Korzu KKMS! 3 ACKNOWLEDGMENTS I would like to thank my advisor Rafael Muñoz-Carpena for his constant support and encouragement over the past five years. I could not have achieved this goal without his patience, guidance, and persistent motivation. For providing innumerable helpful comments and helping to guide this research, I also thank my graduate committee co-chair Wendy Graham and all the members of the graduate committee: Michael Binford, Greg Kiker, Jayantha Obeysekera, and Karl Vanderlinden. I would also like to thank Naiming Wang from the South Florida Water Management District (SFWMD) for his help understanding the Regional Simulation Model (RSM), the great University of Florida (UF) High Performance Computing (HPC) Center team for help with installing RSM, South Florida Water Management District and University of Florida Water Resources Research Center (WRRC) for sponsoring this project. Special thanks to Lukasz Ziemba for his help writing scripts and for his great, invaluable support during this PhD journey. To all my friends in the Agricultural and Biological Engineering Department at UF: thank you for making this department the greatest work environment ever. Last, but not least, I would like to thank my father for his courage and the power of his mind, my mother for the power of her heart, and my brother for always being there for me.
    [Show full text]
  • Relative Risks, Odds Ratios and Cluster Randomised Trials . (1)
    1 Relative Risks, Odds Ratios and Cluster Randomised Trials Michael J Campbell, Suzanne Mason, Jon Nicholl Abstract It is well known in cluster randomised trials with a binary outcome and a logistic link that the population average model and cluster specific model estimate different population parameters for the odds ratio. However, it is less well appreciated that for a log link, the population parameters are the same and a log link leads to a relative risk. This suggests that for a prospective cluster randomised trial the relative risk is easier to interpret. Commonly the odds ratio and the relative risk have similar values and are interpreted similarly. However, when the incidence of events is high they can differ quite markedly, and it is unclear which is the better parameter . We explore these issues in a cluster randomised trial, the Paramedic Practitioner Older People’s Support Trial3 . Key words: Cluster randomized trials, odds ratio, relative risk, population average models, random effects models 1 Introduction Given two groups, with probabilities of binary outcomes of π0 and π1 , the Odds Ratio (OR) of outcome in group 1 relative to group 0 is related to Relative Risk (RR) by: . If there are covariates in the model , one has to estimate π0 at some covariate combination. One can see from this relationship that if the relative risk is small, or the probability of outcome π0 is small then the odds ratio and the relative risk will be close. One can also show, using the delta method, that approximately (1). ________________________________________________________________________________ Michael J Campbell, Medical Statistics Group, ScHARR, Regent Court, 30 Regent St, Sheffield S1 4DA [email protected] 2 Note that this result is derived for non-clustered data.
    [Show full text]
  • Understanding Relative Risk, Odds Ratio, and Related Terms: As Simple As It Can Get Chittaranjan Andrade, MD
    Understanding Relative Risk, Odds Ratio, and Related Terms: As Simple as It Can Get Chittaranjan Andrade, MD Each month in his online Introduction column, Dr Andrade Many research papers present findings as odds ratios (ORs) and considers theoretical and relative risks (RRs) as measures of effect size for categorical outcomes. practical ideas in clinical Whereas these and related terms have been well explained in many psychopharmacology articles,1–5 this article presents a version, with examples, that is meant with a view to update the knowledge and skills to be both simple and practical. Readers may note that the explanations of medical practitioners and examples provided apply mostly to randomized controlled trials who treat patients with (RCTs), cohort studies, and case-control studies. Nevertheless, similar psychiatric conditions. principles operate when these concepts are applied in epidemiologic Department of Psychopharmacology, National Institute research. Whereas the terms may be applied slightly differently in of Mental Health and Neurosciences, Bangalore, India different explanatory texts, the general principles are the same. ([email protected]). ABSTRACT Clinical Situation Risk, and related measures of effect size (for Consider a hypothetical RCT in which 76 depressed patients were categorical outcomes) such as relative risks and randomly assigned to receive either venlafaxine (n = 40) or placebo odds ratios, are frequently presented in research (n = 36) for 8 weeks. During the trial, new-onset sexual dysfunction articles. Not all readers know how these statistics was identified in 8 patients treated with venlafaxine and in 3 patients are derived and interpreted, nor are all readers treated with placebo. These results are presented in Table 1.
    [Show full text]
  • Outcome Reporting Bias in COVID-19 Mrna Vaccine Clinical Trials
    medicina Perspective Outcome Reporting Bias in COVID-19 mRNA Vaccine Clinical Trials Ronald B. Brown School of Public Health and Health Systems, University of Waterloo, Waterloo, ON N2L3G1, Canada; [email protected] Abstract: Relative risk reduction and absolute risk reduction measures in the evaluation of clinical trial data are poorly understood by health professionals and the public. The absence of reported absolute risk reduction in COVID-19 vaccine clinical trials can lead to outcome reporting bias that affects the interpretation of vaccine efficacy. The present article uses clinical epidemiologic tools to critically appraise reports of efficacy in Pfzier/BioNTech and Moderna COVID-19 mRNA vaccine clinical trials. Based on data reported by the manufacturer for Pfzier/BioNTech vaccine BNT162b2, this critical appraisal shows: relative risk reduction, 95.1%; 95% CI, 90.0% to 97.6%; p = 0.016; absolute risk reduction, 0.7%; 95% CI, 0.59% to 0.83%; p < 0.000. For the Moderna vaccine mRNA-1273, the appraisal shows: relative risk reduction, 94.1%; 95% CI, 89.1% to 96.8%; p = 0.004; absolute risk reduction, 1.1%; 95% CI, 0.97% to 1.32%; p < 0.000. Unreported absolute risk reduction measures of 0.7% and 1.1% for the Pfzier/BioNTech and Moderna vaccines, respectively, are very much lower than the reported relative risk reduction measures. Reporting absolute risk reduction measures is essential to prevent outcome reporting bias in evaluation of COVID-19 vaccine efficacy. Keywords: mRNA vaccine; COVID-19 vaccine; vaccine efficacy; relative risk reduction; absolute risk reduction; number needed to vaccinate; outcome reporting bias; clinical epidemiology; critical appraisal; evidence-based medicine Citation: Brown, R.B.
    [Show full text]
  • A Selection Bias Approach to Sensitivity Analysis for Causal Effects*
    A Selection Bias Approach to Sensitivity Analysis for Causal Effects* Matthew Blackwell† April 17, 2013 Abstract e estimation of causal effects has a revered place in all elds of empirical political sci- ence, but a large volume of methodological and applied work ignores a fundamental fact: most people are skeptical of estimated causal effects. In particular, researchers are oen worried about the assumption of no omitted variables or no unmeasured confounders. is paper combines two approaches to sensitivity analysis to provide researchers with a tool to investigate how specic violations of no omitted variables alter their estimates. is approach can help researchers determine which narratives imply weaker results and which actually strengthen their claims. is gives researchers and critics a reasoned and quantitative approach to assessing the plausibility of causal effects. To demonstrate the ap- proach, I present applications to three causal inference estimation strategies: regression, matching, and weighting. *e methods used in this article are available as an open-source R package, causalsens, on the Com- prehensive R Archive Network (CRAN) and the author’s website. e replication archive for this article is available at the Political Analysis Dataverse as Blackwell (b). Many thanks to Steve Ansolabehere, Adam Glynn, Gary King, Jamie Robins, Maya Sen, and two anonymous reviewers for helpful comments and discussions. All remaining errors are my own. †Department of Political Science, University of Rochester. web: http://www.mattblackwell.org email: [email protected] Introduction Scientic progress marches to the drumbeat of criticism and skepticism. While the so- cial sciences marshal empirical evidence for interpretations and hypotheses about the world, an academic’s rst (healthy!) instinct is usually to counterattack with an alter- native account.
    [Show full text]
  • Statistical Evaluation of Diagnostic Tests – Part 2 [Pre-Test and Post-Test Probability and Odds, Likelihood Ratios, Receiver
    86 Journal of The Association of Physicians of India ■ Vol. 65 ■ July 2017 STATISTICS FOR RESEARCHERS Statistical Evaluation of Diagnostic Tests – Part 2 [Pre-test and post-test probability and odds, Likelihood ratios, Receiver Operating Characteristic Curve, Youden’s Index and Diagnostic test biases] NJ Gogtay, UM Thatte Introduction Understanding Probability From the example, it follows that and Odds and the Odds = p/1-p, where p is the n the previous article on probability of the event occurring. the statistical evaluation Relationship between the I Probability, on the other hand, of diagnostic tests –Part 1, we Two is given by the formula understood the measures of sensitivity, specificity, positive Let us understand probability p = Odds/1+Odds and negative predictive values. and odds with the example of The use of these metrices stems a drug producing bleeding in Bayesian Statistics, Pre- from the fact that no diagnostic 10/100 patients treated with it. Test Probability and Pre- test is ever perfect and every time The probability of bleeding will Test Odds we carry out a test, it will yield be 10/100 [10%], while the odds of one of four possible outcomes– bleeding will be 10/90 [11%]. This A clinician often suspects that true positive, false positive, true is because odds is defined as the a patient has the disease even negative or false negative. The 2 x probability of the event occurring before he orders a test [screening 2 table [Table 1] gives each of these divided by the probability of or diagnostic] on the patient. For four possibilities along with their the event not occurring.2 Thus, example, when a patient who is mathematical calculations when a every odds can be expressed as a chronic smoker and presents new test is compared with a gold probability and every probability with cough and weight loss of a standard test.1 as odds as these are two ways of six-month duration, the suspicion In this article, the second in explaining the same concept.
    [Show full text]
  • Making Comparisons
    Making comparisons • Previous sessions looked at how to describe a single group of subjects • However, we are often interested in comparing two groups Data can be interpreted using the following fundamental questions: • Is there a difference? Examine the effect size • How big is it? • What are the implications of conducting the study on a sample of people (confidence interval) • Is the effect real? Could the observed effect size be a chance finding in this particular study? (p-values or statistical significance) • Are the results clinically important? 1 Effect size • A single quantitative summary measure used to interpret research data, and communicate the results more easily • It is obtained by comparing an outcome measure between two or more groups of people (or other object) • Types of effect sizes, and how they are analysed, depend on the type of outcome measure used: – Counting people (i.e. categorical data) – Taking measurements on people (i.e. continuous data) – Time-to-event data Example Aim: • Is Ventolin effective in treating asthma? Design: • Randomised clinical trial • 100 micrograms vs placebo, both delivered by an inhaler Outcome measures: • Whether patients had a severe exacerbation or not • Number of episode-free days per patient (defined as days with no symptoms and no use of rescue medication during one year) 2 Main results proportion of patients Mean No. of episode- No. of Treatment group with severe free days during the patients exacerbation year GROUP A 210 0.30 (63/210) 187 Ventolin GROUP B placebo 213 0.40 (85/213)
    [Show full text]