Swamp Cancer-The Imaging of Pythiosis

Total Page:16

File Type:pdf, Size:1020Kb

Swamp Cancer-The Imaging of Pythiosis IVRA Pythiosis Mylene Auger, DVM, DACVR Animages, Longueuil, QC, Canada Pythiosis (Pythium insidiosumIVRA) ▪ Aquatic pathogen in class Oomycetes ▪ Fungal -like microbes but differ from true fungi – Produce motile, flagellate zoospores – Have cell walls that contain cellulose and β -glucan but not chitin – Resemble algae more than fungi ▪ Infective stage thought to be aquatic zoospores – Released into warm water environments – Possess strong tropism for plant tissue and mammalian open skin – Encysts in damaged skin or GI mucosa – No evidence of transmission between hosts Pythiosis (Pythium insidiosumIVRA) ▪ Mostly reported in Gulf Coast states – Increasingly recognized in many other states ▪ Most common in young, large-breed, male dogs – History of exposure to warm, freshwater habitats – Typically immunocompetent and otherwise healthy animals ▪ Has also been reported in numerous other species – Including cats, horses, sheep, humans, a California bird, and zoo-captive animals including camels, big cats, and bears Pythiosis (Pythium insidiosumIVRA) ▪ Clinical Findings – Cutaneous or GI lesions ▪ Rarely both in same patient ▪ Systemic dissemination is rare ▪ In dogs, GI more frequent – Cutaneous pythiosis ▪ Nonhealing wounds or invasive masses ▪ Lymphadenomegaly often extension of infection (rather than reactive lymphadenopathy) Pythiosis (Pythium insidiosumIVRA) ▪ Clinical Findings – GI pythiosis ▪ Severe segmental transmural thickening of stomach, small intestine, colon or rectum – Inflammation often centered on submucosa ▪ Mucosal ulceration possible ▪ Can extend through serosa and infiltrate mesentery ▪ Esophagus/pharyngeal region (rare) ▪ Mesenteric lymphadenopathy common ▪ May extend from GI tract to adjacent tissues ▪ Clinical signs: – Weight loss, vomiting, diarrhea, hematochezia Pythiosis (Pythium insidiosumIVRA) ▪ Reported ultrasound findings (9 dogs) (Graham 2000) – Stomach, duodenum, descending colon most common – Majority had circumferential lesions – Variable degree of wall thickening (5 mm – 20 mm) ▪ In all dogs, regions of loss of normal wall layering Case Example - Lola Radiographs IVRA There is an approximately 10.0 cm (L) ×6.0 cm (W) soft tissue opaque, homogenous mass within the right caudal ventral abdomen. The adjacent serosal margin detail is mildly mottled. Differential diagnoses include a non-organ associated mass such as an abscess or gossypyboma with associated focal peritonitis, or a small intestinal mass of benign or malignant etiology. Case Example - Lola Ultrasound IVRA 2.4 cm Jejunal mass transverse Ultrasound confirms a circumferential hypoechoic jejunal mass with complete loss of wall layering Case Example - Lola Ultrasound IVRA The mesenteric, colic and medial iliac lymph nodes are enlarged, rounded, some with irregular margination, and heterogeneous. Case Example - Duke Radiographs IVRA The distal aspect of the descending colon at the pelvic inlet is mildly narrowed and changes appearance between views. There is the impression of a soft tissue opaque mass within the caudal abdomen, within the plane of the descending colon. There is moderate smooth periosteal proliferation along the ventral aspect of the sacrum and mildly at the ventral first caudal vertebra. The appearance of the colon is consistent with the reported colitis. The colonic narrowing at the pelvic inlet is suggestive of intramural infiltrative disease. Impression of a soft tissue mass within the caudal abdomen may represent lymphadenopathy, a colonic mass and/or concurrent summation of soft tissues. Smooth periosteal proliferation at the sacrum and first caudal vertebra could represent metastatic disease or reactive periostitis (spondylitis). Duke Ultrasound 11/20/2017 IVRA Mesenteric LN Left MILN Descending colon longitudinal There is progressive thickening of the wall of the descending colon from orad to aborad which becomes progressively markedly thickened caudally, measuring up to approximately 1 cm in thickness. This thickening is associated with loss of the normal pattern of wall layering with ill-defined hypoechoic extensions into the adjacent mesentery. Multiple abdominal lymph nodes are enlarged and hypoechoic. Pythiosis (Pythium insidiosumIVRA) ▪ Atypical presentations ▪ Prostatic pythiosis without primary GI lesions (Kepler 2019) ▪ Bronchocentric pythiosis with marked tracheobronchial lymphadenopathy (Jaeger 2002) – No cutaneous or GI disease – Previously reported in one horse, a captive jaguar and an outbreak in sheep Pythiosis (Pythium insidiosumIVRA) ▪ Diagnosis – Cytology ▪ Can establish presumptive diagnosis ▪ Often pyogranulomatous, suppurative or eosinophilic inflammation (or combination) ▪ May see wide, poorly septate, branching hyphal elements Duke 283176 Pythiosis (Pythium insidiosumIVRA) ▪ Diagnosis – Culture – Serologic testing ▪ ELISA: high sensitivity/specificity for antibody detection – Useful for monitoring response to therapy – Marked decrease in antibody levels 2-3 months following successful resection of affected tissues – Remain high if recurrence or incomplete excision ▪ Western blot: high sensitivity/specificity for antigen detection ▪ Molecular assays – PCR: high specificity Pythiosis (Pythium insidiosumIVRA) ▪ Treatment – Aggressive surgical excision – Mesenteric lymphadenomegaly almost always present ▪ P. insidiosum hyphae often absent in enlarged mesenteric nodes ▪ Intraoperative biopsy for prognostic information – Combination therapy Terbinafine/Itraconazole ▪ At least 2-3 months post-op – Pythium vaccine ▪ Successful treatment of cutaneous granulomas in horses and vasculitis in people ▪ Efficacy of vaccine in dogs appears to be poor Pythiosis (Pythium insidiosumIVRA) ▪ Prognosis (GI pythiosis) – Poor to grave prognosis – Few (<10) reported cases of survival in the literature ▪ Some with medical management alone ▪ Some with combination marginal or radical surgery and medical management References IVRA • Berryessa NA, Marks SL, Pesavento PA, et al. Gastrointestinal pythiosis in 10 dogs from California. Journal of veterinary internal medicine 2008;22:1065-1069. • Dycus DL, Fisher C, Butler R. Surgical and Medical Treatment of Pyloric and Duodenal Pythiosis in a Dog. JAAHA. 2015;51:385-391. • Fujimori, Mahyumi, et al. Pythium insidiosum colitis in a dog: treatment and clinical outcome. Ciencia Rural, vol. 46, no. 3, 2016, p. 526 • Graham JP, Newell SM, Roberts GD, et al. Ultrasonographic features of canine gastrointestinal pythiosis. Vet Radiol Ultrasound 2000;41:273-277. • Greene, C. Infectious diseases of the dog and cat (4th ed.). 2012, St. Louis, Mo.: Elsevier/Saunders. • Helman RG, Oliver J, 3rd. Pythiosis of the digestive tract in dogs from Oklahoma. JAAHA. 1999;35:111-114. • Jaeger GH, Rotstein DS, Law JM. Prostatic pythiosis in a dog. Journal of veterinary internal medicine 2002;16:598- 602. • Kepler D, Cole R, Lee-Fowler T, et al. Pulmonary pythiosis in a canine patient. Vet Radiol Ultrasound 2019;60:E20- 23. • Mendoza et al., Journal of Clinical Microbiology, Vol. 31, No. 11, Nov. 1993, p. 2967-2973 • Mendoza, Leonel, and Raquel Vilela. “The Mammalian Pathogenic Oomycetes.” Current Fungal Infection Reports, vol. 7, no. 3, 2013, pp. 198–208 • Pereira DI, Botton SA, Azevedo MI, et al. Canine gastrointestinal pythiosis treatment by combined antifungal and immunotherapy and review of published studies. Mycopathologia 2013;176:309-315..
Recommended publications
  • Successful Management of 3 Dogs with Colonic Pythiosis Using Itraconzaole, Terbinafine, and Prednisone
    UC Davis UC Davis Previously Published Works Title Successful management of 3 dogs with colonic pythiosis using itraconzaole, terbinafine, and prednisone. Permalink https://escholarship.org/uc/item/2119g65v Journal Journal of veterinary internal medicine, 33(3) ISSN 0891-6640 Authors Reagan, Krystle L Marks, Stanley L Pesavento, Patricia A et al. Publication Date 2019-05-01 DOI 10.1111/jvim.15506 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Received: 19 January 2019 Accepted: 8 April 2019 DOI: 10.1111/jvim.15506 CASE REPORT Successful management of 3 dogs with colonic pythiosis using itraconzaole, terbinafine, and prednisone Krystle L. Reagan1 | Stanley L. Marks2 | Patricia A. Pesavento3 | Ann Della Maggiore1 | Bing Y. Zhu1 | Amy M. Grooters4 1Veterinary Medical Teaching Hospital, University of California Davis, Davis, California Abstract 2Department of Medicine and Epidemiology, Gastrointestinal (GI) pythiosis is a severe and often fatal disease in dogs that School of Veterinary Medicine, University of traditionally has been poorly responsive to medical treatment. Although aggressive sur- California, Davis, California 3Department of Pathology, Microbiology, and gical resection with wide margins is the most consistently effective treatment, lesion Immunology, School of Veterinary Medicine, location and extent often preclude complete resection. Recently, it has been suggested University of California, Davis, California that the addition of anti-inflammatory doses of corticosteroids may improve outcome 4Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State in dogs with nonresectable GI pythiosis. This report describes 3 dogs with colonic University, Baton Rouge, Louisiana pythiosis in which complete resolution of clinical signs, regression of colonic masses, Correspondence and progressive decreases in serological titers were observed after treatment with Krystle L.
    [Show full text]
  • Sublingual Pythiosis in a Cat Jessica Sonia Fortin1, Michael John Calcutt2 and Dae Young Kim1*
    Fortin et al. Acta Vet Scand (2017) 59:63 DOI 10.1186/s13028-017-0330-z Acta Veterinaria Scandinavica CASE REPORT Open Access Sublingual pythiosis in a cat Jessica Sonia Fortin1, Michael John Calcutt2 and Dae Young Kim1* Abstract Background: Pythiosis is a potentially fatal but non-contagious disease afecting humans and animals living in tropi- cal and subtropical climates, but is also reasonably widespread in temperate climates, throughout the world. The most commonly reported afected animal species with pythiosis are equine and canine, with fewer cases in bovine and feline. Extracutaneous infections caused by Pythium insidiosum have been rarely described in the cat. Case presentation: Sublingual pythiosis was diagnosed in a 2-year-old, male, Domestic Shorthair cat. The cat had a multilobulated, sublingual mass present for 3 months. Histopathological examination revealed severe multifocal coalescing eosinophilic granulomatous infammation. Centers of the infammation contained hyphae that were 3–7 μm-wide, non-parallel, uncommonly septate and rarely branching. The fungal-like organism was identifed as P. insid- iosum by polymerase chain reaction and subsequent amplicon sequencing. Conclusions: Only a few feline pythiosis cases have been reported and, when encountered, it usually causes granu- lomatous diseases of the skin or gastrointestinal tract. This case presents an unusual manifestation of feline pythiosis, representing the frst involving the oral cavity in cats or dogs. Keywords: Eosinophilic granulomatous infammation, Feline, Hyphae, Pythium insidiosum, Sublingual mass Background trauma in Afghanistan [5]. Animals afected by the dis- Pythiosis is a potentially fatal but non-contagious disease ease are often younger and exposed to warm, freshwa- afecting humans and animals living in tropical and sub- ter habitats [1].
    [Show full text]
  • Comparative Genomics Reveals Insight Into Virulence Strategies of Plant Pathogenic Oomycetes
    Comparative Genomics Reveals Insight into Virulence Strategies of Plant Pathogenic Oomycetes Bishwo N. Adhikari1, John P. Hamilton1, Marcelo M. Zerillo2, Ned Tisserat2, C. Andre´ Le´vesque3,C. Robin Buell1* 1 Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America, 2 Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado, United States of America, 3 Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada and Department of Biology, Carleton University, Ottawa, Ontario, Canada Abstract The kingdom Stramenopile includes diatoms, brown algae, and oomycetes. Plant pathogenic oomycetes, including Phytophthora, Pythium and downy mildew species, cause devastating diseases on a wide range of host species and have a significant impact on agriculture. Here, we report comparative analyses on the genomes of thirteen straminipilous species, including eleven plant pathogenic oomycetes, to explore common features linked to their pathogenic lifestyle. We report the sequencing, assembly, and annotation of six Pythium genomes and comparison with other stramenopiles including photosynthetic diatoms, and other plant pathogenic oomycetes such as Phytophthora species, Hyaloperonospora arabidopsidis, and Pythium ultimum var. ultimum. Novel features of the oomycete genomes include an expansion of genes encoding secreted effectors and plant cell wall degrading enzymes in Phytophthora species and an over- representation of genes involved in proteolytic degradation and signal transduction in Pythium species. A complete lack of classical RxLR effectors was observed in the seven surveyed Pythium genomes along with an overall reduction of pathogenesis-related gene families in H. arabidopsidis. Comparative analyses revealed fewer genes encoding enzymes involved in carbohydrate metabolism in Pythium species and H.
    [Show full text]
  • The Taxonomy and Biology of Phytophthora and Pythium
    Journal of Bacteriology & Mycology: Open Access Review Article Open Access The taxonomy and biology of Phytophthora and Pythium Abstract Volume 6 Issue 1 - 2018 The genera Phytophthora and Pythium include many economically important species Hon H Ho which have been placed in Kingdom Chromista or Kingdom Straminipila, distinct from Department of Biology, State University of New York, USA Kingdom Fungi. Their taxonomic problems, basic biology and economic importance have been reviewed. Morphologically, both genera are very similar in having coenocytic, hyaline Correspondence: Hon H Ho, Professor of Biology, State and freely branching mycelia, oogonia with usually single oospores but the definitive University of New York, New Paltz, NY 12561, USA, differentiation between them lies in the mode of zoospore differentiation and discharge. Email [email protected] In Phytophthora, the zoospores are differentiated within the sporangium proper and when mature, released in an evanescent vesicle at the sporangial apex, whereas in Pythium, the Received: January 23, 2018 | Published: February 12, 2018 protoplast of a sporangium is transferred usually through an exit tube to a thin vesicle outside the sporangium where zoospores are differentiated and released upon the rupture of the vesicle. Many species of Phytophthora are destructive pathogens of especially dicotyledonous woody trees, shrubs and herbaceous plants whereas Pythium species attacked primarily monocotyledonous herbaceous plants, whereas some cause diseases in fishes, red algae and mammals including humans. However, several mycoparasitic and entomopathogenic species of Pythium have been utilized respectively, to successfully control other plant pathogenic fungi and harmful insects including mosquitoes while the others utilized to produce valuable chemicals for pharmacy and food industry.
    [Show full text]
  • Human Pythiosis, Brazil
    septate or nonseptate hyphae, often identified as fungal ele- Human Pythiosis, ments of the zygomycetes (6). Conventional diagnosis is based mainly on immunofluorecence and immunoperoxi- Brazil dase procedures, which have proved specific in tissues of persons, cats and dogs with pythiosis. Serologic tests, such Sandra de Moraes Gimenes Bosco,* as enzyme-linked immunosorbent assay (ELISA) and Eduardo Bagagli,* João Pessoa Araújo Jr.,* immunodiffusion, have been also used to diagnose pythio- João Manuel Grisi Candeias,* sis (7). Molecular diagnostic assays, such as nested poly- Marcello Fabiano de Franco,† merase chain reaction and a species-specific DNA probe Mariangela Esther Alencar Marques,* from the ribosomal DNA complex, have been useful to Leonel Mendoza,‡ identify P. insidiosum in the absence of culture (8,9). This Rosangela Pires de Camargo,* article reports the first case of human pythiosis in continen- and Silvio Alencar Marques* tal Latin America in a patient from Brazil, and diagnosis Pythiosis, caused by Pythium insidiosum, occurs in was confirmed by molecular taxonomy. humans and animals and is acquired from aquatic environ- ments that harbor the emerging pathogen. Diagnosis is dif- The Study ficult because clinical and histopathologic features are not A 49-year-old policeman was admitted on May 2002 to pathognomonic. We report the first human case of pythio- the dermatology division of the university hospital for the sis from Brazil, diagnosed by using culture and rDNA treatment of a skin lesion on his leg, initially diagnosed as sequencing. cutaneous zygomycosis. The patient stated that a small pustule developed on his left leg 3 months earlier, 1 week ythiosis is a cutaneous-subcutaneous disease of human after he fished in a lake with standing water.
    [Show full text]
  • Pythium Insidiosum
    SOUTHEAST ASIAN J TROP MED PUBLIC HEALTH IN VITRO ANTIMICROBIAL ACTIVITY OF VOLATILE ORGANIC COMPOUNDS FROM MUSCODOR CRISPANS AGAINST THE PATHOGENIC OOMYCETE PYTHIUM INSIDIOSUM Theerapong Krajaejun1, Tassanee Lowhnoo2, Wanta Yingyong2, Thidarat Rujirawat2, Suthat Fucharoen3 and Gary A Strobel4 1Department of Pathology, 2Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok; 3Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; 4Department of Plant Sciences, Montana State University, Bozeman, MT, USA Abstract. Pythium insidiosum is an oomycete capable of causing a life-threatening disease in humans, called pythiosis. Conventional antifungal drugs are ineffec- tive against P. insidiosum infection. A synthetic mixture of the volatile organic compounds (VOCs) from the endophytic fungus Muscodor crispans strain B23 demonstrates antimicrobial effects against a broad range of human and plant pathogens, including fungi, bacteria, and oomycetes. We studied the in vitro ef- fects of B23 VOCs against 25 human, 1 animal, and 4 environmental isolates of P. insidiosum, compared with a no-drug control. The B23 synthetic mixture, at amounts as low as 2.5 µl, significantly reduced growth of allP. insidiosum isolates by at least 80%. The inhibitory effect of the B23 VOCs was dose-dependent. The growth of all isolates was completely inhibited by a dose of 10.0 µl of B23 VOCs, and all isolates were killed by a dose of 20.0 µl. Synthetic B23 VOCs of M. crispans had inhibitory and lethal effects against all P. insidiosum isolates tested. Further studies are needed to evaluate this mixture for treatment of pythiosis. Keywords: pythiosis, Pythium insidiosum, oomycete, in vitro susceptibility, Mus- codor crispans, endophytic fungus INTRODUCTION oomycete Pythium insidiosum (Mendoza et al, 1996).
    [Show full text]
  • Appendix a Bacteria
    Appendix A Complete list of 594 pathogens identified in canines categorized by the following taxonomical groups: bacteria, ectoparasites, fungi, helminths, protozoa, rickettsia and viruses. Pathogens categorized as zoonotic/sapronotic/anthroponotic have been bolded; sapronoses are specifically denoted by a ❖. If the dog is involved in transmission, maintenance or detection of the pathogen it has been further underlined. Of these, if the pathogen is reported in dogs in Canada (Tier 1) it has been denoted by an *. If the pathogen is reported in Canada but canine-specific reports are lacking (Tier 2) it is marked with a C (see also Appendix C). Finally, if the pathogen has the potential to occur in Canada (Tier 3) it is marked by a D (see also Appendix D). Bacteria Brachyspira canis Enterococcus casseliflavus Acholeplasma laidlawii Brachyspira intermedia Enterococcus faecalis C Acinetobacter baumannii Brachyspira pilosicoli C Enterococcus faecium* Actinobacillus Brachyspira pulli Enterococcus gallinarum C C Brevibacterium spp. Enterococcus hirae actinomycetemcomitans D Actinobacillus lignieresii Brucella abortus Enterococcus malodoratus Actinomyces bovis Brucella canis* Enterococcus spp.* Actinomyces bowdenii Brucella suis Erysipelothrix rhusiopathiae C Actinomyces canis Burkholderia mallei Erysipelothrix tonsillarum Actinomyces catuli Burkholderia pseudomallei❖ serovar 7 Actinomyces coleocanis Campylobacter coli* Escherichia coli (EHEC, EPEC, Actinomyces hordeovulneris Campylobacter gracilis AIEC, UPEC, NTEC, Actinomyces hyovaginalis Campylobacter
    [Show full text]
  • 2005 EHSP Research Report
    Louisiana State University School of Veterinary Medicine Equine Health Studies Program 2005 Research Report Dedicated to the Health, Well-Being and Performance of Horses through Veterinary Research, Education and Service Director’s Message Welcome to the 2005 Equine Health Studies (EHSP) Research Report. The purpose of this publication is to document scientific investigations involving equine diseases and injuries. All studies represented in this report were conducted by scientists at the Louisiana State University School of Veterinary Medicine (LSU-SVM) between 2001 and 2003. This report demonstrates the extensive and diverse equine biomedical research conducted at the LSU-SVM. The works contained herein are the collective efforts of our multidisciplinary faculty, advanced studies students, veterinary students, undergraduate students, and technical staff comprising the EHSP. The quality and quantity of these studies is particularly impressive considering the limited intramural funds available during this time. Our ability to acquire extramural support for our program during this period is particularly noteworthy given the highly competitive nature of these funds and the relatively small Dr. Rustin M. Moore, Director number and amount of grants available for equine research. These works Equine Health Studies Program demonstrate the Program’s commitment to promoting the health, well-being and School of Veterinary Medicine performance of horses. Louisiana State University The state-of-the-art facilities and equipment highlighted in this issue represent major advances made in our program since 2003. This progress was facilitated in part by the combination of the receipt of a Governor’s Biotechnology Initiative Grant awarded by the Louisiana Board of Regents, a Board of Regents Enhancement Grant, and recurrent funding through the State Legislature resulting from Louisiana racetrack slot machine revenue.
    [Show full text]
  • An Annotated List of Genus Pythium from India
    Plant Pathology & Quarantine 10(1): 120–132 (2020) ISSN 2229-2217 www.ppqjournal.org Article Doi 10.5943/ppq/10/1/14 An annotated list of genus Pythium from India Dubey MK1,2*, Yadav M1 and Upadhyay RS1 1Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi - 221005, Uttar Pradesh, India 2Department of Life Sciences, School of Basic & Applied Sciences, Galgotias University, Greater Noida- 203201, Uttar Pradesh, India Dubey MK, Yadav M, Upadhyay RS 2020 – An annotated list of genus Pythium from India. Plant Pathology & Quarantine 10(1), 120–132, Doi 10.5943/PPQ/10/1/14 Abstract Up-to-date information is presented based on an intensive search of literature records on the identity, occurrence, nomenclature, substratum, host ranges, geographical distribution and literature references of the genus Pythium from India. All Pythium species published until 2020 are included in this list. The survey result of all forms of analyses revealed that India has 55 species of Pythium belonging to the phylum Oomycota indicating the presence of rich mycoflora. Distribution of these Pythium species reported so far from freshwater and terrestrial habitats of various Indian states are listed alphabetically. The most frequently collected species are Pythium aphanidermatum, P. spinosum, and P. ultimum. The majority of these species were found as a parasite on a wide range of plants in both freshwater and terrestrial environment. Overall, this systematic checklist provides the total count of Pythium species, currently known to occur in India and it is also a valued addition for comparing Pythium diversity in India as well as the world.
    [Show full text]
  • Animal Biosecurity in the Mekong: Future Directions for Research and Development
    Animal biosecurity in the Mekong: future directions for research and development ACIAR PROCEEDINGS 137 Animal biosecurity in the Mekong: future directions for research and development Proceedings of an international workshop held in Siem Reap, Cambodia, 10–13 August 2010 Editors: L.B. Adams, G.D. Gray and G. Murray 2012 The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. ACIAR operates as part of Australia’s international development cooperation program, with a mission to achieve more productive and sustainable agricultural systems, for the benefit of developing countries and Australia. It commissions collaborative research between Australian and developing-country researchers in areas where Australia has special research competence. It also administers Australia’s contribution to the International Agricultural Research Centres. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR PROCEEDINGS SERIES This series of publications includes the full proceedings of research workshops or symposia organised or supported by ACIAR. Numbers in this series are distributed internationally to selected individuals and scientific institutions, and are also available from ACIAR’s website at <aciar.gov.au>. The papers in ACIAR Proceedings are peer reviewed. © Australian Centre for International Agricultural Research (ACIAR) 2012 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from ACIAR, GPO Box 1571, Canberra ACT 2601, Australia, [email protected] Adams L.B., Gray G.D and Murray G. (eds) 2012.
    [Show full text]
  • Identification and Biotyping of Pythium Insidiosum Isolated From
    Journal of Fungi Article Identification and Biotyping of Pythium insidiosum Isolated from Urban and Rural Areas of Thailand by Multiplex PCR, DNA Barcode, and Proteomic Analyses Zin Mar Htun 1,2,3 , Aree Laikul 4, Watcharapol Pathomsakulwong 5, Chompoonek Yurayart 6 , Tassanee Lohnoo 7, Wanta Yingyong 7, Yothin Kumsang 7, Penpan Payattikul 7, Pattarana Sae-Chew 7 , Thidarat Rujirawat 7, Paisan Jittorntam 7, Chalisa Jaturapaktrarak 7, Piriyaporn Chongtrakool 2 and Theerapong Krajaejun 1,* 1 Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; [email protected] 2 Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; [email protected] 3 Department of Microbiology, University of Medicine, Mandalay 05024, Myanmar 4 Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom 73140, Thailand; [email protected] 5 Equine Clinic, Kasetsart University Veterinary Teaching Hospital, Nakhon Pathom 73140, Thailand; [email protected] 6 Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; [email protected] 7 Citation: Mar Htun, Z.; Laikul, A.; Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Pathomsakulwong, W.; Yurayart, C.; [email protected] (T.L.); [email protected] (W.Y.); [email protected] (Y.K.); [email protected] (P.P.); [email protected] (P.S.-C.); [email protected] (T.R.); Lohnoo, T.; Yingyong, W.; Kumsang, [email protected] (P.J.); [email protected] (C.J.) Y.; Payattikul, P.; Sae-Chew, P.; * Correspondence: [email protected] Rujirawat, T.; et al.
    [Show full text]
  • 2017 Proceedings Book
    2017 30TH PROCEEDINGS OF NAVDF April 26-29, 2017 ORLANDO, FLORIDA 2 (orfenicol, terbinane, mometasone furoate) Otic Solution Antibacterial, antifungal, and anti-inammatory For Otic Use in Dogs Only The following information is a summary of the complete product information and is not comprehensive. Please refer to the approved product label for complete product information prior to use. CAUTION: Federal (U.S.A.) law restricts this drug to use by or on the order of a licensed veterinarian. PRODUCT DESCRIPTION: CLARO® contains 16.6 mg/mL orfenicol, 14.8 mg/mL terbinane (equivalent to 16.6 mg/mL terbinane hydrochloride) and 2.2 mg/mL mometasone furoate. Inactive ingredients include puried water, propylene carbonate, propylene glycol, ethyl alcohol, and polyethylene glycol. INDICATIONS: CLARO® is indicated for the treatment of otitis externa in dogs associated with susceptible strains of yeast (Malassezia pachydermatis) and bacteria (Staphylococcus pseudintermedius). DOSAGE AND ADMINISTRATION: CLARO® should be administered by veterinary personnel. Administration is one dose (1 dropperette) per aected ear. The duration of eect should last 30 days. Clean and dry the external ear canal before administering the product. Verify the tympanic membrane is intact prior to administration. Cleaning the ear after dosing may aect product eectiveness. Refer to product label for complete directions for use. CONTRAINDICATIONS: Do not use in dogs with known tympanic membrane perforation (see PRECAUTIONS). CLARO® is contraindicated in dogs with known or suspected hypersensitivity to orfenicol, terbinane hydrochloride, or mometasone furoate, the inactive ingredients listed above, or similar drugs, or any ingredient in these medicines. WARNINGS: Human Warnings: Not for use in humans.
    [Show full text]