Non-Thermal Emission from Galaxy Clusters

Total Page:16

File Type:pdf, Size:1020Kb

Non-Thermal Emission from Galaxy Clusters University of Amsterdam MSc Physics Gravitation AstroParticle Physics Amsterdam Master Thesis Non-Thermal Emission from Galaxy Clusters Predictions for X-Ray Satellites by Richard Tony Bartels 10508333 June 2014 60 ECTS August 2013 - June 2014 Supervisor: Daily Supervisor: Examiner: Dr Shin'ichiro Ando Dr Fabio Zandanel Dr Jacco Vink GRAPPA and IoP Abstract Clusters of galaxies are the largest gravitationally bound structures in the Universe and the latest ones to form. Large-scale diffuse synchrotron emission is observed in many clusters proving the presence of relativistic electrons and magnetic fields in the intra-cluster medium. The same population of electrons can inverse-Compton scatter off the photons of the cosmic microwave background. This can generate non-thermal hard X-ray emission, on top of the thermal X-ray bremsstrahlung observed in all clusters. However, so far, non-thermal hard X-ray detections have been claimed in just a few clusters and are not confirmed. A definitive detection of the inverse-Compton emission from galaxy clusters would allow us to disentangle the magnetic fields and relativistic electron distributions. Upper limits on this emission can be used to place lower limits on the magnetic field. In this Master's thesis, we estimate upper limits for the volume averaged magnetic field that still allow for a detectable non-thermal hard X-ray signal by next-generation X-ray telescopes, in particular ASTRO-H and the already launched NuSTAR, for all known radio halos and relics. Acknowledgements There are various people that I would like to thank for different reasons. First of all, I would like to thank Tera for another year of support and especially for cheering me up when frustration gets the better of me. Also the kittens you offered a temporary home at our place, without me being aware of that, where a nice form of distraction in the final weeks of this project. Finally, there are certain people I have to thank at the university. Thanks to Jacco Vink for being willing to be my second reader and for useful suggestions. Thanks to everyone in Shin'ichiro's 'thursday' group for listening to my presentation. Especially to Irene, who has been very helpful. Also thanks to the other Master's students, with whom I had a lot of fun this year. Thanks to the faculty at GRAPPA, Christoph and Shin'ichiro in particular, for having faith in my future research career. Finally, thanks to my supervisors for all their help. To Shin'ichiro for being willing to guide my project, even though he already had 4 students under his wings. And Fabio, to whom I am most thankful, for being the best supervisor I could have wished for. ii Contents Abstract i Acknowledgements ii Contents iii List of Figuresv List of Tables vi Abbreviations vii Physical Constants ix Symbols x 1 Introduction1 2 Theoretical Background: Radiative Processes6 2.1 Synchrotron Radiation.............................6 2.1.1 Motion of a Particle in a Magnetic Field...............6 2.1.2 Spectrum of a Single Electron.....................7 2.1.3 Spectrum for a Distribution of Electrons...............8 2.1.4 Magnetic Field Orientation......................9 2.1.5 Photon Spectrum............................ 10 Photon spectral index..................... 10 2.2 Inverse Compton Radiation.......................... 11 2.2.1 IC scattering in the Thomson limit.................. 11 2.2.1.1 Klein-Nishina limit..................... 13 2.2.2 Inverse Compton Spectrum...................... 13 Photon spectral index..................... 14 2.3 The Electron Spectrum............................ 14 2.3.1 Loss Functions............................. 17 2.3.1.1 γmin .............................. 18 2.3.1.2 γmax .............................. 20 2.4 Analytical Magnetic Field Estimates..................... 20 Correction for Isotropically Distributed Magnetic Fields.. 21 iii Contents iv 3 Methods 24 3.1 Cluster Selection and Data.......................... 24 Radio Data........................... 25 3.1.1 Non-Thermal X-Ray Data....................... 25 3.2 Background Modelling............................. 26 3.2.1 APEC model.............................. 26 3.2.1.1 Thermal Gas Density.................... 27 Clusters without a gas density model............. 28 Thermal emission in the halo region.............. 28 Thermal emission in the relic region.............. 29 3.2.1.2 PyXspec........................... 31 3.3 ASTRO-H Sensitivity............................. 33 3.4 Analysis of the Spectrum........................... 36 4 Results and Discussion 38 4.1 Promising Targets............................... 43 4.1.1 Comments on Good Targets...................... 45 4.2 Spectra with a Spectral Break......................... 60 4.3 Discussion.................................... 64 4.3.1 Low Energy Cutoff: Potential in EUV/SXR and Low Frequency Radio Emission............................. 64 4.3.2 NuSTAR and Background Modelling................. 65 4.3.3 Primary Targets in a Broader Science Perspective......... 67 5 Conclusion 69 A Some (Astro-)Physics 71 A.1 Cosmology................................... 71 A.1.1 Distance scales............................. 72 A.2 Equipartition Magnetic Field......................... 73 A.3 Parameter Dependence on Cosmology.................... 75 B Radio Data 77 C Comments on Less Good Targets 86 D Cluster Spectra 93 Bibliography 103 List of Figures 1.1 Abell 1689....................................2 1.2 Radio emission in clusters...........................2 1.3 Non-thermal emisson..............................4 2.1 Cooling processes................................ 15 2.2 Loss timescales................................. 19 3.1 APEC metallicity dependence......................... 27 3.2 Normalisation for radio halos......................... 29 3.3 APEC normalisation for relics......................... 30 3.4 ASTRO-H sensitivity curves.......................... 34 3.5 ASTRO-H sensitivity curve scaling...................... 35 3.6 Spectrum Analysis............................... 36 4.1 1E0657-56.................................... 46 4.2 A0085...................................... 47 4.3 AS753...................................... 48 4.4 A1367...................................... 49 4.5 Coma...................................... 51 4.6 A1914...................................... 52 4.7 A2255...................................... 53 4.8 A2319...................................... 54 4.9 A2744...................................... 56 4.10 A3667...................................... 57 4.11 A4038...................................... 58 4.12 MACSJ0717.5+3745.............................. 59 4.13 ZwCl0008.8-5215................................ 61 4.14 Broken Power Law Spectra.......................... 63 4.15 NuSTAR vs. ASTRO-H............................ 66 A.1 Equipartition condition............................ 73 v List of Tables 2.1 γ for maximum loss timescale......................... 18 3.1 Thermal data.................................. 33 3.2 ASTRO-H Properties............................. 33 4.1 Cluster Sample................................. 39 4.2 Results for halos................................ 41 4.3 Results for relics................................ 42 4.4 Equipartition magnetic field estimates.................... 44 4.5 Results Broken Power Law.......................... 62 4.6 NuSTAR Properties.............................. 65 B.1 Radio Data: Halos............................... 77 B.2 Radio Data: Relics............................... 80 vi Abbreviations AGN Active Galactic Nucleus ATCA Australia Telescope Compact Aarray cgs centimetre gram second CMB Cosmic Microwave Background CR Cosmic Ray CRe Cosmic Ray electron CRp Cosmic Ray proton DM Dark Matter d.o.f. Degree of Freedom EoM Equation of Motion EUV Extreme UltraViolet FoV Field of View FWHM Full Width at Half Maximum HPD Half-Power Diameter HXI Hard X-ray Imager HXR Hard X-Rays IC Inverse Compton ICM Intra-Cluster Medium KN Klein-Nishina LOFAR Low-Frequency Array for Radio Astronomy NFW Navarro-Frenk-White NuSTAR Nuclear Spectroscopic Telescope Aarray NVSS NRAO VLA Sky Survey RM Rotation Measure REXCESS Representative XMM-Newton Cluster Structure Survey vii Abbreviations viii SKA Square Kilometre Array SXI SoftX-ray Imager SXR Soft X-Rays SXS SoftX-ray Spectrometer VLA Very Large Array VSSRS Very Steep Spectrum Radio Source WENSS Westerbork Northern Sky Survey WSRT Westerbork Synthesis Radio Telescope Physical Constants speed of light c = 2:997 924 58 1010 cm s−1 × elementary charge e = 4:803 205 10−10 esu × gravitational constant G = 6:673 10−8 cm3 g−1 s−1 × Planck constant h = 6:626 068 85 10−27 erg s × − Planck constant, reduced ~ = 1:054 571 73 10 27 erg s × −16 Boltzmann constant kb = 1:380 649 10 erg K × −28 electron mass me = 9:109 382 15 10 g × classical electron radius r = 2:817 940 29 10−12 cm 0 × Thomson cross-section σT = 0:665 245 856 barn present day CMB temperature T0 = 2:726 K −13 4 −3 Average CMB energy density UCMB = 4:19 10 (1 + z) erg cm × ix Symbols a acceleration cm s−2 B Magnetic field esu cm−2 γ Lorentz factor νc Critical frequency Hz νg Gyration frequency Hz P Power erg s−1 q Charge esu r200 Virial radius kpc rc Core radius kpc −3 UB Magnetic energy density erg cm x Chapter 1 Introduction Clusters of galaxies are the largest virialized structures in the universe and as such the latest ones to form according to current paradigm of ΛCDM and hierarchical structure 15 formation. Their mass is typically of the order of 10 M , most of which consists of ∼ dark matter, about 70 80%. The remaining
Recommended publications
  • Arxiv:1903.02002V1 [Astro-Ph.GA] 5 Mar 2019
    Draft version March 7, 2019 Typeset using LATEX twocolumn style in AASTeX62 RELICS: Reionization Lensing Cluster Survey Dan Coe,1 Brett Salmon,1 Maruˇsa Bradacˇ,2 Larry D. Bradley,1 Keren Sharon,3 Adi Zitrin,4 Ana Acebron,4 Catherine Cerny,5 Nathalia´ Cibirka,4 Victoria Strait,2 Rachel Paterno-Mahler,3 Guillaume Mahler,3 Roberto J. Avila,1 Sara Ogaz,1 Kuang-Han Huang,2 Debora Pelliccia,2, 6 Daniel P. Stark,7 Ramesh Mainali,7 Pascal A. Oesch,8 Michele Trenti,9, 10 Daniela Carrasco,9 William A. Dawson,11 Steven A. Rodney,12 Louis-Gregory Strolger,1 Adam G. Riess,1 Christine Jones,13 Brenda L. Frye,7 Nicole G. Czakon,14 Keiichi Umetsu,14 Benedetta Vulcani,15 Or Graur,13, 16, 17 Saurabh W. Jha,18 Melissa L. Graham,19 Alberto Molino,20, 21 Mario Nonino,22 Jens Hjorth,23 Jonatan Selsing,24, 25 Lise Christensen,23 Shotaro Kikuchihara,26, 27 Masami Ouchi,26, 28 Masamune Oguri,29, 30, 28 Brian Welch,31 Brian C. Lemaux,2 Felipe Andrade-Santos,13 Austin T. Hoag,2 Traci L. Johnson,32 Avery Peterson,32 Matthew Past,32 Carter Fox,3 Irene Agulli,4 Rachael Livermore,9, 10 Russell E. Ryan,1 Daniel Lam,33 Irene Sendra-Server,34 Sune Toft,24, 25 Lorenzo Lovisari,13 and Yuanyuan Su13 1Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 2Department of Physics, University of California, Davis, CA 95616, USA 3Department of Astronomy, University of Michigan, 1085 South University Ave, Ann Arbor, MI 48109, USA 4Physics Department, Ben-Gurion University of the Negev, P.O.
    [Show full text]
  • Radio Observations of the Merging Galaxy Cluster Abell 520 D
    A&A 622, A20 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833900 & c ESO 2019 Astrophysics LOFAR Surveys: a new window on the Universe Special issue Radio observations of the merging galaxy cluster Abell 520 D. N. Hoang1, T. W. Shimwell2,1, R. J. van Weeren1, G. Brunetti3, H. J. A. Röttgering1, F. Andrade-Santos4, A. Botteon3,5, M. Brüggen6, R. Cassano3, A. Drabent7, F. de Gasperin6, M. Hoeft7, H. T. Intema1, D. A. Rafferty6, A. Shweta8, and A. Stroe9 1 Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, The Netherlands e-mail: [email protected] 2 Netherlands Institute for Radio Astronomy (ASTRON), PO Box 2, 7990 AA Dwingeloo, The Netherlands 3 INAF-Istituto di Radioastronomia, via P. Gobetti 101, 40129 Bologna, Italy 4 Harvard-Smithsonian for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 5 Dipartimento di Fisica e Astronomia, Università di Bologna, via P. Gobetti 93/2, 40129 Bologna, Italy 6 Hamburger Sternwarte, University of Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany 7 Thüringer Landessternwarte, Sternwarte 5, 07778 Tautenburg, Germany 8 Indian Institute of Science Education and Research (IISER), Pune, India 9 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany Received 18 July 2018 / Accepted 10 September 2018 ABSTRACT Context. Extended synchrotron radio sources are often observed in merging galaxy clusters. Studies of the extended emission help us to understand the mechanisms in which the radio emitting particles gain their relativistic energies. Aims. We examine the possible acceleration mechanisms of the relativistic particles that are responsible for the extended radio emis- sion in the merging galaxy cluster Abell 520.
    [Show full text]
  • INVESTIGATING ACTIVE GALACTIC NUCLEI with LOW FREQUENCY RADIO OBSERVATIONS By
    INVESTIGATING ACTIVE GALACTIC NUCLEI WITH LOW FREQUENCY RADIO OBSERVATIONS by MATTHEW LAZELL A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Physics & Astronomy College of Engineering and Physical Sciences The University of Birmingham March 2015 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Low frequency radio astronomy allows us to look at some of the fainter and older synchrotron emission from the relativistic plasma associated with active galactic nuclei in galaxies and clusters. In this thesis, we use the Giant Metrewave Radio Telescope to explore the impact that active galactic nuclei have on their surroundings. We present deep, high quality, 150–610 MHz radio observations for a sample of fifteen predominantly cool-core galaxy clusters. We in- vestigate a selection of these in detail, uncovering interesting radio features and using our multi-frequency data to derive various radio properties. For well-known clusters such as MS0735, our low noise images enable us to see in improved detail the radio lobes working against the intracluster medium, whilst deriving the energies and timescales of this event.
    [Show full text]
  • Provisional Scientific Programme
    Galaxy Clusters as Giant Cosmic Laboratories – Programme Monday, 21 May 2012 09:00 Registration 09:50 Schartel: Opening Remarks Session I Dynamical and Thermal Structure of Galaxy Clusters and their ICM Chair: Birzan 10:00 Sanders: The thermal and dynamical state of cluster cores 10:30 Ohashi: X-ray study of clusters at the outer edge and beyond 10:45 Eckert: The gas distribution in galaxy cluster outer regions 11:00 Molendi: Extending measures of the ICM to the outskirts: facts, myths and puzzles 11:15 Sato: Temperature, entropy, and mass profiles to the virial radius of galaxy clusters with Suzaku 11:30- Coffee Break & Poster Viewing 12:00 Session II Dynamical and Thermal Structure of Galaxy Clusters and their ICM Chair: Altieri Cluster Mass Determination 12:00 Ettori: Cluster mass profiles from X-ray observations: present constraints and limitations 12:30 Russell: Shock fronts, electron-ion equilibration and ICM transport processes in the merging cluster Abell 2146 12:45 ZuHone: Probing the Microphysics of the Intracluster Medium with Cold Fronts in the ICM 13:00 Rossetti: Challenging the merging/sloshing cold front paradigm with a new XMM observation of A2142 13:15 Nevalainen: Bulk motion measurements in clusters of galaxies using XMM-Newton and ATHENA 13:30- Lunch 15:00 Session III Dynamical and Thermal Structure of Galaxy Clusters and their ICM Chair: de Grandi Cluster Mass Determination 15:00 Mahdavi: Multiwavelength Constraints on Scaling Relations and Substructure in a Sample of 50 Clusters of Galaxies 15:30 Pratt: Galaxy cluster
    [Show full text]
  • Spectral Index Maps of the Radio Halos in Abell 665 and Abell 2163
    A&A 423, 111–119 (2004) Astronomy DOI: 10.1051/0004-6361:20040316 & c ESO 2004 Astrophysics Spectral index maps of the radio halos in Abell 665 and Abell 2163 L. Feretti1,E.Orr`u1,G.Brunetti1, G. Giovannini1,2, N. Kassim3, and G. Setti1,2 1 Istituto di Radioastronomia – CNR, via P. Gobetti 101, 40129 Bologna, Italy e-mail: [email protected] 2 Dipartimento di Astronomia, Univ. Bologna, via Ranzani 1, 40127 Bologna, Italy 3 Naval Research Laboratory, Code 7213, Washington DC 20375, USA Received 23 February 2004 / Accepted 14 April 2004 Abstract. New radio data at 330 MHz are presented for the rich clusters Abell 665 and Abell 2163, whose radio emission is characterized by the presence of a radio halo. These images allowed us to derive the spectral properties of the two clusters α1.4 = . under study. The integrated spectra of these halos between 0.3 GHz and 1.4 GHz are moderately steep: 0.3 1 04 and α1.4 = . 0.3 1 18, for A665 and A2163, respectively. The spectral index maps, produced with an angular resolution of the order of ∼1, show features of the spectral index (flattening and patches), which are indication of a complex shape of the radiating electron spectrum, and are therefore in support of electron reacceleration models. Regions of flatter spectrum are found to be related to the recent merger activity in these clusters. This is the first strong confirmation that the cluster merger supplies energy to the radio halo. In the undisturbed cluster regions, the spectrum steepens with the distance from the cluster center.
    [Show full text]
  • Dark Matter and Background Light
    Dark Matter and Background Light J.M. Overduin Gravity Probe B, Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, U.S.A. 94305-4085 and P.S. Wesson Department of Physics, University of Waterloo, Ontario, Canada N2L 3G1 Abstract Progress in observational cosmology over the past five years has established that the Universe is dominated dynamically by dark matter and dark energy. Both these new and apparently independent forms of matter-energy have properties that are inconsistent with anything in the existing standard model of particle physics, and it appears that the latter must be extended. We review what is known about dark matter and energy from their impact on the light of the night sky. Most of the candidates that have been proposed so far are not perfectly black, but decay into or otherwise interact with photons in characteristic ways that can be accurately modelled and compared with observational data. We show how experimental limits on the intensity of cosmic background radiation in the microwave, infrared, optical, arXiv:astro-ph/0407207v1 10 Jul 2004 ultraviolet, x-ray and γ-ray bands put strong limits on decaying vacuum energy, light axions, neutrinos, unstable weakly-interacting massive particles (WIMPs) and objects like black holes. Our conclusion is that the dark matter is most likely to be WIMPs if conventional cosmology holds; or higher-dimensional sources if spacetime needs to be extended. Key words: Cosmology, Background radiation, Dark matter, Black holes, Higher-dimensional field theory PACS: 98.80.-k, 98.70.Vc, 95.35.+d, 04.70.Dy, 04.50.+h Email addresses: [email protected] (J.M.
    [Show full text]
  • 16Th HEAD Meeting Session Table of Contents
    16th HEAD Meeting Sun Valley, Idaho – August, 2017 Meeting Abstracts Session Table of Contents 99 – Public Talk - Revealing the Hidden, High Energy Sun, 204 – Mid-Career Prize Talk - X-ray Winds from Black Rachel Osten Holes, Jon Miller 100 – Solar/Stellar Compact I 205 – ISM & Galaxies 101 – AGN in Dwarf Galaxies 206 – First Results from NICER: X-ray Astrophysics from 102 – High-Energy and Multiwavelength Polarimetry: the International Space Station Current Status and New Frontiers 300 – Black Holes Across the Mass Spectrum 103 – Missions & Instruments Poster Session 301 – The Future of Spectral-Timing of Compact Objects 104 – First Results from NICER: X-ray Astrophysics from 302 – Synergies with the Millihertz Gravitational Wave the International Space Station Poster Session Universe 105 – Galaxy Clusters and Cosmology Poster Session 303 – Dissertation Prize Talk - Stellar Death by Black 106 – AGN Poster Session Hole: How Tidal Disruption Events Unveil the High 107 – ISM & Galaxies Poster Session Energy Universe, Eric Coughlin 108 – Stellar Compact Poster Session 304 – Missions & Instruments 109 – Black Holes, Neutron Stars and ULX Sources Poster 305 – SNR/GRB/Gravitational Waves Session 306 – Cosmic Ray Feedback: From Supernova Remnants 110 – Supernovae and Particle Acceleration Poster Session to Galaxy Clusters 111 – Electromagnetic & Gravitational Transients Poster 307 – Diagnosing Astrophysics of Collisional Plasmas - A Session Joint HEAD/LAD Session 112 – Physics of Hot Plasmas Poster Session 400 – Solar/Stellar Compact II 113
    [Show full text]
  • Evolution of the Near-Infrared Luminosity Function in Rich Galaxy
    Evolution of the near-infrared luminosity function in rich galaxy clusters Neil Trentham Institute of Astronomy, University of Cambridge Madingley Road, Cambridge CB3 0HA and Bahram Mobasher Astrophysics Group, Imperial College Blackett Laboratory, Prince Consort Road, London SW7 2BZ Submitted to MNRAS arXiv:astro-ph/9805282v1 21 May 1998 ABSTRACT We present the K-band (2.2 µ) luminosity functions of the X-ray luminous clusters MS1054−0321 (z = 0.823), MS0451−0305 (z = 0.55), Abell 963 (z = 0.206), Abell 665 (z = 0.182) and Abell 1795 (z = 0.063) down to absolute magnitudes MK = −20. Our measurements probe fainter absolute magnitudes than do any previous studies of the near- infrared luminosity function of clusters. All the clusters are found to have similar luminosity functions within the errors, when the galaxy populations are evolved to redshift z = 0. It is known that the most massive bound systems in the Universe at all redshifts are X-ray luminous clusters. Therefore, assuming that the clusters in our sample correspond to a single population seen at different redshifts, the results here imply that not only had the stars in present-day ellipticals in rich clusters formed by z =0.8, but that they existed in as luminous galaxies then as they do today. Addtionally, the clusters have K-band luminosity functions which appear to be con- sistent with the K-band field luminosity function in the range −24 < MK < −22, although the uncertainties in both the field and cluster samples are large. Key words: galaxies : clusters: luminosity function – infrared: galaxies – galaxies: clusters: individual: MS1054-0321, MS0451-0305, Abell 963, Abell 665, Abell 1795 –2– 1 INTRODUCTION Recent observations of rich clusters of galaxies and their galaxy populations have revealed a number of interesting results: (i) Three X-ray luminous clusters at redshifts z ∼ 0.8 have been discovered in the ROSAT North Ecliptic Pole (NEP) survey (Gioia & Luppino 1994, Henry et al.
    [Show full text]
  • The Intracluster Magnetic Field Power Spectrum in Abell
    Astronomy & Astrophysics manuscript no. paper c ESO 2018 October 30, 2018 The intracluster magnetic field power spectrum in Abell 665 V. Vacca1, M. Murgia2,3, F. Govoni2, L. Feretti3, G. Giovannini3,4, E. Orr`u5, and A. Bonafede3,4 1 Dipartimento di Fisica, Universit`adegli studi di Cagliari, Cittadella Universitaria, I–09042 Monserrato (CA), Italy 2 INAF - Osservatorio Astronomico di Cagliari, Poggio dei Pini, Strada 54, I–09012 Capoterra (CA), Italy 3 INAF - Istituto di Radioastronomia, Via Gobetti 101, I–40129 Bologna, Italy 4 Dipartimento di Astronomia, Univ. Bologna, Via Ranzani 1, I–40127 Bologna, Italy 5 Institute for Astro and Particle Physics, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria − Received MM DD, YY; accepted MM DD, YY ABSTRACT Aims. The goal of this work is to investigate the power spectrum of the magnetic field associated with the giant radio halo in the galaxy cluster A665. Methods. For this, we present new deep Very Large Array total intensity and polarization observations at 1.4 GHz. We simulated Gaussian random three-dimensional turbulent magnetic field models to reproduce the observed radio halo emission. By comparing observed and synthetic radio halo images we constrained the strength and structure of the intracluster magnetic field. We assumed that the magnetic field power spectrum is a power law with a Kolmogorov index and we imposed a local equipartition of energy density between relativistic particles and field. Results. Under these assumptions, we find that the radio halo emission in A665 is consistent with a central magnetic field strength of about 1.3 µG. To explain the azimuthally averaged radio brightness profile, the magnetic field energy density should decrease following the thermal gas density, leading to an averaged magnetic field strength over the central 1 Mpc3 of about 0.75 µG.
    [Show full text]
  • X-Ray Spectroscopy of Cooling Clusters
    X-ray Spectroscopy of Cooling Clusters J. R. Peterson a,1 & A. C. Fabian b,2 aKavli Institute for Particle Astrophysics and Cosmology (KIPAC), Stanford University, PO Box 20450, Stanford, CA 94309, USA bInstitute of Astronomy (IoA), Cambridge University, Madingley Road, Cambridge CB3 0HA, UK Abstract We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolu- tion X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radia- tive cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We dis- cuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling. arXiv:astro-ph/0512549v1 21 Dec 2005 1 JRP E-mail: [email protected] 2 ACF E-mail: [email protected] Preprint submitted to Elsevier Preprint 5 February 2008 Contents 1 Introduction 4 2 Clusters of Galaxies 5 3 Physics of the Intracluster Medium 7 3.1 X-ray Emission from Collisional Plasmas 7 3.2 Magneto-hydrodynamics 15 3.3 Cooling flows 18 4 X-ray Instrumentation and Observational Techniques 24 4.1 X-ray Telescopes and their Relevance to Clusters 24 4.2 Analysis Techniques 26 5 X-ray Spectra of Cooling Clusters 28 5.1 Early Work on Imaging Observations 28 5.2
    [Show full text]
  • Bruggen's Slide Presentation
    PARTICLE ACCELERATION ON COSMOLOGICAL SCALES @HambObs MARCUS BRÜGGEN Abell 2744 Optical 1 Mpc Pearce+ (2017) Abell 2744 X-rays: intracluster mediumOptical (ICM) 1 Mpc Pearce+ (2017) Abell 2744 Radio: cosmicX-rays: rays intracluster (CR) + magnetic mediumOptical fields(ICM) 1 Mpc Pearce+ (2017) Abell 2744 Radio: cosmicX-rays: rays intracluster (CR) + magnetic mediumOptical fields(ICM) ~μGauss 1 Mpc Pearce+ (2017) Abell 2744 Radio: cosmicX-rays: rays intracluster (CR) + magnetic mediumOptical fields(ICM) ~μGauss radio spectra slope: spectral index (α) “flat” “steep” Diffuse cluster radio emission has a steep 1 Mpc spectrum Pearce+ (2017) DIFFUSE CLUSTER EMISSION JVLA 1-4 GHz latest reviews: Feretti+2012; Brunetti & Jones 2014 Pearce et al. (2017) 1.0 Mpc X-rays: 0.5-2.0 keV RELIC HALOS HALO • Mpc sizes, centrally located • Unpolarized Tailed radio galaxy • X-ray luminosity radio power correlation foreground AGN • Found in disturbed clusters DIFFUSE CLUSTER EMISSION JVLA 1-4 GHz latest reviews: Feretti+2012; Brunetti & Jones 2014 Pearce et al. (2017) 1.0 Mpc X-rays: 0.5-2.0 keV RELICS RELIC • Mpc sizes, cluster outskits • Elongated, filamentary morphologies • Polarized • Found in disturbed clusters HALOS HALO • Mpc sizes, centrally located • Unpolarized Tailed radio galaxy • X-ray luminosity radio power correlation foreground AGN • Found in disturbed clusters HOW DO YOU ACCELERATE PARTICLES? FERMI (1949): SCATTER OFF MOVING CLOUDS. VERY SLOW (V2/C2) BECAUSE CLOUDS BOTH APPROACH AND RECEDE IN SHOCKS, ACCELERATION IS 1ST ORDER IN V/C BECAUSE FLOWS
    [Show full text]
  • Structures and Components in Galaxy Clusters: Observations and Models
    SSRv manuscript No. (will be inserted by the editor) Structures and components in galaxy clusters: observations and models A.M. Bykov · E.M. Churazov · C. Ferrari · W.R. Forman · J.S. Kaastra · U. Klein · M. Markevitch · J. de Plaa Received: date / Accepted: date Abstract Clusters of galaxies are the largest gravitationally bounded struc- tures in the Universe dominated by dark matter. We review the observa- tional appearance and physical models of plasma structures in clusters of A.M. Bykov Ioffe Institute, 194021, St. Petersburg, Russia E-mail: [email protected]ffe.ru E.M. Churazov Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany; Space Research Institute (IKI), Profsoyuznaya 84/32, Moscow 117997, Russia E-mail: [email protected] C. Ferrari Laboratoire Lagrange, UMR7293, Universit´ede Nice Sophia-Antipolis, CNRS, Ob- servatoire de la C^oted'Azur E-mail: [email protected] W.R. Forman Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA E-mail: [email protected] J.S. Kaastra SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands E-mail: [email protected] U. Klein Argelander-Institut f¨urAstronomie, University of Bonn, Germany E-mail: [email protected] M. Markevitch Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA E-mail: [email protected] J. de Plaa SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, arXiv:1512.01456v1 [astro-ph.CO] 4 Dec 2015 The Netherlands E-mail: [email protected] 2 galaxies.
    [Show full text]