Derecho Hazards in the United States

Total Page:16

File Type:pdf, Size:1020Kb

Load more

DERECHO HAZARDS IN THE UNITED STATES BY WALKER S. ASHLEY AND THOMAS L. MOTE Derechos are shown to be as hazardous as many tornadoes and hurricanes that affect the United States. uring the summer, hikers and canoeists often straight for them. The group was canoeing on Knife flock to Minnesota's Boundary Waters Canoe Lake in the BWCAW around noon when threatening DArea Wilderness (BWCAW) to observe the skies brought the group to shore. The group quickly beauty and tranquility of this remote land that is beached their canoes and took cover. filled with picturesque lakes and forests. However, As the storm hit, Emily and Maddy quickly pulled on the July 4th weekend in 1999, the serenity so often the girls together and huddled over them. Watching identified with the region briefly gave way to a terrify- trees crash around them, the two leaders hurried the ing display of one of nature's most violent storms—a group to an area that appeared safer near the water's derecho. edge. Although the storm seemed to last an eternity, On this holiday weekend, camp counselors Emily blue sky appeared on the western horizon a mere 30 Boyd and Maddy Bennett were guiding a group of min later. six teenage girls on a weeklong canoe exploration After the storm, the group returned back to the out of Moose Lake near Ely, Minnesota. Unknown location where they had huddled to gather their life to the group, a large windstorm producing gusts in vests. To their shock, felled trees had crushed the excess of 40 m s_1 had already cut a swath of dam- vests. One can only imagine in horror what would age across northern Minnesota and was heading have happened to the girls if Emily and Maddy had not moved them to the safer location. Emily later recalled that it was a "true miracle that no one [from AFFILIATIONS: ASHLEY—Meteorology Program, Department of their group] died in the storm that day." Shocked, Geography, Northern Illinois University, DeKalb, Illinois; MOTE— yet uninjured, the group spent the next two days Climatology Research Laboratory, Department of Geography, paddling over 20 miles and making six portages for The University of Georgia, Athens, Georgia home. Regrettably, 25 other hikers and canoeists CORRESPONDING AUTHOR: Walker Ashley, Meteorology in the area were not as lucky and suffered injuries, Program, Department of Geography, Northern Illinois University, including broken backs and necks. During the next DeKalb, IL 60II5. several days, rescue crews searched 2,200 camp- E-mail: [email protected] DOI: 10.1175/BAMS-86-11-1577 sites in the BWCAW and Superior National Forest, evacuating about 20 campers by air (Breining 2000). In final form 20 July 2005 ©2005 American Meteorological Society Unfortunately, the storm killed two campers farther downstream—one in Quebec, Canada (Mainville AMERICAN METEOROLOGICAL SOCIETY NOVEMBER 2005 BAFft | 1577 Unauthenticated | Downloaded 10/08/21 03:33 PM UTC 1999), and another in Vermont (NCDC 1999). The axis between 40 and 400 km) or for larger events, a Vermont death occurred as a person camping in a tent family of downburst clusters (major damage axis of on a raft was blown into the water, became entangled 400 km or more). Broadly, Johns and Hirt (1987) de- in the tent, and subsequently drowned. fined the derecho to include any family of downburst Convectively generated windstorms occur over clusters (Fujita and Wakimoto 1981) produced by an a wide array of temporal and spatial scales (Fujita extratropical convective system, but also developed 1978; Fujita and Wakimoto 1981; Golden and Snow specific criteria to define derechos utilizing con- 1999); however, the more widespread and longer temporary terms and datasets (cf. their section 2). lived of these windstorms are termed "derechos" Later studies by Bentley and Mote (1998), Evans (Hinrichs 1888; Johns and Hirt 1987). Though an and Doswell (2001), Bentley and Sparks (2003), and extreme derecho case, the 4 July 1999 windstorm Coniglio and Stensrud (2004) have utilized differing that swept through the BWCAW is an unforgettable criteria to define derechos. example of the ferocity that can be associated with United States derechos have been documented in derechos. the literature since the early 1980s (e.g., Johns and Although, Johns and Hirt (1987), Johns (1993), Hirt 1983); only recently have enough events been and Wakimoto (2001) have claimed that derechos documented over a sufficient period to begin to ana- account for much of the structural damage and lyze the climatology of these windstorms. Johns and casualties resulting from convectively induced non- Hirt (1987) were the first to present a climatology of tornadic winds, no study has examined the damage these events for the warm seasons from 1980 to 1983. and casualty statistics from derechos. Changnon et al. Bentley and Mote (1998) and Bentley and Sparks (2001) suggest the threat from weather disasters is (2003) recently analyzed the years 1986-2000, provid- likely to grow because of a number of societal factors, ing the basis for a 15-yr derecho climatology, includ- including rapid population growth and expansion, ing both cool- and warm-season events. These stud- together with increases in wealth, development, and ies identified the tendency for derechos to occur in urbanization. In order to illustrate the future risk specific seasonal corridors in the eastern two-thirds and potential vulnerability of the U.S. population of the United States. A separate study by Coniglio to these extreme windstorms, the following study and Stensrud (2004) attempted to further interpret reveals the hazards1 associated with derechos by the climatology of derechos by classifying systemati- examining the climatology, casualty statistics, and cally, based on specific intensity classifications, 244 damage estimates of events that occurred during the derechos from 1986 to 2001 (cf. their Table 1). These 18-yr period 1986-2003. It is initially hypothesized climatologies do contain minor differences but, in that derechos can be as hazardous, due to relatively general, substantiate each other in regard to the rela- high frequencies and large spatial extents, as some tive spatial and temporal distributions. Nevertheless, hurricanes and tornadoes. none of the studies could be considered a definitive climatology because of issues regarding the severe BACKGROUND. In 1888, Iowa physical scientist storm wind-event database (e.g., Doswell and Burgess Gustavus Hinrichs termed any convectively induced 1988; Weiss et al. 2002; and Schaefer et al. 2003), straight-line windstorm, or "straight blow of the the varying criteria utilized (Coniglio and Stensrud prairie," a derecho (a Spanish derivative meaning 2004), and the relatively short time period examined "straight-ahead" or "direct") in correspondence (Bentley and Sparks 2003). Furthermore, no study with the Spanish derivative tornado (based on the has examined thoroughly the hazards associated Spanish word tornar—meaning to "to turn"). Fujita with derechos. Therefore, this investigation examines and Wakimoto (1981) illustrated many of the same the casualties and damage produced by these events characteristics of Hinrichs' definition, labeling these in order to provide researchers, policy makers, and events as either a downburst cluster (major damage emergency managers with valuable information re- garding the often-overlooked extreme straight-line 1 Derecho hazard encompasses some aspect of derecho cli- windstorms known as derechos. matology, but also includes the effect these storms have on people and the built environment. In terms of this study, a RESEARCH METHODOLOGY. Derecho dataset. derecho hazard is defined as any derecho that results in a The contiguous U.S. derecho dataset utilized in this human casualty or any amount of reported economic dam- study was compiled through several sources including age. This is analogous to the "tornado hazard" description two long-term climatological studies—Bentley and provided by Boruff et al. (2003). Sparks (2003) and Coniglio and Stensrud (2004). First, 1578 I BAF15- NOVEMBER 2005 Unauthenticated | Downloaded 10/08/21 03:33 PM UTC a dataset containing 230 derechos identified by Bentley Every effort was made to remove from the dataset and Mote (1998) and Bentley and Sparks (2003) for the cases in which swaths of damage were caused solely period 1986-2000 was obtained (M. L. Bentley 2003, by supercells rather than quasi-linear convective sys- personal communication). Data utilized in the Bentley tems. However, the limitations of the composite radar and Mote (1998) and Bentley and Sparks (2003) stud- data made it difficult in some cases to distinguish ies were derived from the Storm Prediction Center's storm types, especially prior to 1995. Therefore, it (SPC's) online database of several convective wind is possible that some supercell, particularly high- gusts and the SPC's SeverePlot software (Hart 1993). precipitation supercell, cases remain in the dataset Bentley and Mote and Bentley and Sparks (2003) modi- prior to 1995. fied existing derecho identification methods proposed Additionally, no attempt was made to include the by Johns and Hirt (1987) in order to facilitate analysis requirement of a minimum of three 33 m s_1 wind of the large dataset (cf. their Table 1 or Coniglio and gust reports as originally suggested by Johns and Hirt Stensrud 2004, their Table 1). (1987). There appear to be a number of unresolved Second, the derecho database employed in stud- issues that suggest that the inclusion of the 33 m s_1 ies by Coniglio and Stensrud (2004) and Coniglio wind gust criteria may promote irregularities and et al. (2004), consisting of 244 events from 1986 to biases in the dataset. These unresolved issues include 2001, was acquired (available online at www.nssl. population biases (Johns and Evans 2000), changes noaa.gov/users/mcon/public__html/derlist.htm). in the verification practices (Schaefer et al. 2003), Coniglio compiled the database (hereafter Coniglio significant irregularities in extreme wind gust data and Stensrud 2004 dataset) utilizing the SPC's severe when examined by National Weather Service (NWS) convective wind database, SeverePlot software, and county warning areas of responsibility (Weiss et al.
Recommended publications
  • Squall Lines: Meteorology, Skywarn Spotting, & a Brief Look at the 18

    Squall Lines: Meteorology, Skywarn Spotting, & a Brief Look at the 18

    Squall Lines: Meteorology, Skywarn Spotting, & A Brief Look At The 18 June 2010 Derecho Gino Izzi National Weather Service, Chicago IL Outline • Meteorology 301: Squall lines – Brief review of thunderstorm basics – Squall lines – Squall line tornadoes – Mesovorticies • Storm spotting for squall lines • Brief Case Study of 18 June 2010 Event Thunderstorm Ingredients • Moisture – Gulf of Mexico most common source locally Thunderstorm Ingredients • Lifting Mechanism(s) – Fronts – Jet Streams – “other” boundaries – topography Thunderstorm Ingredients • Instability – Measure of potential for air to accelerate upward – CAPE: common variable used to quantify magnitude of instability < 1000: weak 1000-2000: moderate 2000-4000: strong 4000+: extreme Thunderstorms Thunderstorms • Moisture + Instability + Lift = Thunderstorms • What kind of thunderstorms? – Single Cell – Multicell/Squall Line – Supercells Thunderstorm Types • What determines T-storm Type? – Short/simplistic answer: CAPE vs Shear Thunderstorm Types • What determines T-storm Type? (Longer/more complex answer) – Lot we don’t know, other factors (besides CAPE/shear) include • Strength of forcing • Strength of CAP • Shear WRT to boundary • Other stuff Thunderstorm Types • Multi-cell squall lines most common type of severe thunderstorm type locally • Most common type of severe weather is damaging winds • Hail and brief tornadoes can occur with most the intense squall lines Squall Lines & Spotting Squall Line Terminology • Squall Line : a relatively narrow line of thunderstorms, often
  • A Preliminary Investigation of Derecho

    A Preliminary Investigation of Derecho

    7.A.1 TROPICAL CYCLONE TORNADOES – A RESEARCH AND FORECASTING OVERVIEW. PART 1: CLIMATOLOGIES, DISTRIBUTION AND FORECAST CONCEPTS Roger Edwards Storm Prediction Center, Norman, OK 1. INTRODUCTION those aspects of the remainder of the preliminary article Tropical cyclone (TC) tornadoes represent a relatively that was not included in this conference preprint, for small subset of total tornado reports, but garner space considerations. specialized attention in applied research and operational forecasting because of their distinctive origin within the envelope of either a landfalling or remnant TC. As with 2. CLIMATOLOGIES and DISTRIBUTION PATTERNS midlatitude weather systems, the predominant vehicle for tornadogenesis in TCs appears to be the supercell, a. Individual TCs and classifications particularly with regard to significant1 events. From a framework of ingredients-based forecasting of severe TC tornado climatologies are strongly influenced by the local storms (e.g., Doswell 1987, Johns and Doswell prolificacy of reports with several exceptional events. 1992), supercells in TCs share with their midlatitude The general increase in TC tornado reports, noted as relatives the fundamental environmental elements of long ago as Hill et al. (1966), and in the occurrence of sufficient moisture, instability, lift and vertical wind “outbreaks” of 20 or more per TC (Curtis 2004) probably shear. Many of the same processes – including those is a TC-specific reflection of the recent major increase in involving baroclinicity at various scales – appear
  • A 10-Year Radar-Based Climatology of Mesoscale Convective System Archetypes and Derechos in Poland

    A 10-Year Radar-Based Climatology of Mesoscale Convective System Archetypes and Derechos in Poland

    AUGUST 2020 S U R O W I E C K I A N D T A S Z A R E K 3471 A 10-Year Radar-Based Climatology of Mesoscale Convective System Archetypes and Derechos in Poland ARTUR SUROWIECKI Department of Climatology, University of Warsaw, and Skywarn Poland, Warsaw, Poland MATEUSZ TASZAREK Department of Meteorology and Climatology, Adam Mickiewicz University, Poznan, Poland, and National Severe Storms Laboratory, Norman, Oklahoma, and Skywarn Poland, Warsaw, Poland (Manuscript received 29 December 2019, in final form 3 May 2020) ABSTRACT In this study, a 10-yr (2008–17) radar-based mesoscale convective system (MCS) and derecho climatology for Poland is presented. This is one of the first attempts of a European country to investigate morphological and precipitation archetypes of MCSs as prior studies were mostly based on satellite data. Despite its ubiquity and significance for society, economy, agriculture, and water availability, little is known about the climatological aspects of MCSs over central Europe. Our results indicate that MCSs are not rare in Poland as an annual mean of 77 MCSs and 49 days with MCS can be depicted for Poland. Their lifetime ranges typically from 3 to 6 h, with initiation time around the afternoon hours (1200–1400 UTC) and dissipation stage in the evening (1900–2000 UTC). The most frequent morphological type of MCSs is a broken line (58% of cases), then areal/cluster (25%), and then quasi- linear convective systems (QLCS; 17%), which are usually associated with a bow echo (72% of QLCS). QLCS are the feature with the longest life cycle.
  • Template for Electronic Journal of Severe Storms Meteorology

    Template for Electronic Journal of Severe Storms Meteorology

    Lyza, A. W., A. W. Clayton, K. R. Knupp, E. Lenning, M. T. Friedlein, R. Castro, and E. S. Bentley, 2017: Analysis of mesovortex characteristics, behavior, and interactions during the second 30 June‒1 July 2014 midwestern derecho event. Electronic J. Severe Storms Meteor., 12 (2), 1–33. Analysis of Mesovortex Characteristics, Behavior, and Interactions during the Second 30 June‒1 July 2014 Midwestern Derecho Event ANTHONY W. LYZA, ADAM W. CLAYTON, AND KEVIN R. KNUPP Department of Atmospheric Science, Severe Weather Institute—Radar and Lightning Laboratories University of Alabama in Huntsville, Huntsville, Alabama ERIC LENNING, MATTHEW T. FRIEDLEIN, AND RICHARD CASTRO NOAA/National Weather Service, Romeoville, Illinois EVAN S. BENTLEY NOAA/National Weather Service, Portland, Oregon (Submitted 19 February 2017; in final form 25 August 2017) ABSTRACT A pair of intense, derecho-producing quasi-linear convective systems (QLCSs) impacted northern Illinois and northern Indiana during the evening hours of 30 June through the predawn hours of 1 July 2014. The second QLCS trailed the first one by only 250 km and approximately 3 h, yet produced 29 confirmed tornadoes and numerous areas of nontornadic wind damage estimated to be caused by 30‒40 m s‒1 flow. Much of the damage from the second QLCS was associated with a series of 38 mesovortices, with up to 15 mesovortices ongoing simultaneously. Many complex behaviors were documented in the mesovortices, including: a binary (Fujiwhara) interaction, the splitting of a large mesovortex in two followed by prolific tornado production, cyclic mesovortexgenesis in the remains of a large mesovortex, and a satellite interaction of three small mesovortices around a larger parent mesovortex.
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY

    ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY

    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
  • A Preliminary Investigation of Derecho-Producing Mcss In

    A Preliminary Investigation of Derecho-Producing Mcss In

    P 3.1 TROPICAL CYCLONE TORNADO RECORDS FOR THE MODERNIZED NWS ERA Roger Edwards1 Storm Prediction Center, Norman, OK 1. INTRODUCTION and BACKGROUND since 1954 was attributable to the weakest (F0) bin of damage rating (Fig. 1). This is the very class of Tornadoes from tropical cyclones (hereafter TCs) tornado that is most common in TC records, and most pose a specialized forecast challenge at time scales difficult to detect in the damage above that from the ranging from days for outlooks to minutes for concurrent or subsequent passage of similarly warnings (Spratt et al. 1997, Edwards 1998, destructive, ambient TC winds. As such, it is possible Schneider and Sharp 2007, Edwards 2008). The (but not quantifiable) that many TC tornadoes have fundamental conceptual and physical tenets of gone unrecorded even in the modern NWS era, due midlatitude supercell prediction, in an ingredients- to their generally ephemeral nature, logistical based framework (e.g., Doswell 1987, Johns and difficulties of visual confirmation, presence of swaths Doswell 1992), fully apply to TC supercells; however, of sparsely populated near-coastal areas (i.e., systematic differences in the relative magnitudes of marshes, swamps and dense forests), and the moisture, instability, lift and shear in TCs (e.g., presence of damage inducers of potentially equal or McCaul 1991) contribute strongly to that challenge. greater impact within the TC envelope. Further, there is a growing realization that some TC tornadoes are not necessarily supercellular in origin (Edwards et al. 2010, this volume). Several major TC tornado climatologies have been published since the 1960s (e.g., Pearson and Sadowski 1965, Hill et al.
  • Rapid Assessment of Tree Damage Resulting from a 2020 Windstorm in Iowa, USA

    Rapid Assessment of Tree Damage Resulting from a 2020 Windstorm in Iowa, USA

    Article Rapid Assessment of Tree Damage Resulting from a 2020 Windstorm in Iowa, USA Thomas C. Goff 1,*, Mark D. Nelson 1, Greg C. Liknes 1, Tivon E. Feeley 2 , Scott A. Pugh 1 and Randall S. Morin 1 1 Northern Research Station, USDA Forest Service, Madison, WI 53726, USA; [email protected] (M.D.N.); [email protected] (G.C.L.); [email protected] (S.A.P.); [email protected] (R.S.M.) 2 Iowa Department of Natural Resources, Des Moines, IA 50319, USA; [email protected] * Correspondence: [email protected] Abstract: A need to quantify the impact of a particular wind disturbance on forest resources may require rapid yet reliable estimates of damage. We present an approach for combining pre-disturbance forest inventory data with post-disturbance aerial survey data to produce design-based estimates of affected forest area and number and volume of trees damaged or killed. The approach borrows strength from an indirect estimator to adjust estimates from a direct estimator when post-disturbance remeasurement data are unavailable. We demonstrate this approach with an example application from a recent windstorm, known as the 2020 Midwest Derecho, which struck Iowa, USA, and adjacent states on 10–11 August 2020, delivering catastrophic damage to structures, crops, and trees. We 3 estimate that 2.67 million trees and 1.67 million m of sound bole volume were damaged or killed on 23 thousand ha of Iowa forest land affected by the 2020 derecho. Damage rates for volume Citation: Goff, T.C.; Nelson, M.D.; were slightly higher than for number of trees, and damage on live trees due to stem breakage was Liknes, G.C.; Feeley, T.E.; Pugh, S.A.; more prevalent than branch breakage, both likely due to higher damage probability in the dominant Morin, R.S.
  • Derecho Families

    Derecho Families

    P4.4 DERECHO FAMILIES Walker S. Ashley* and Thomas L. Mote Climatology Research Laboratory, Atmospheric Sciences Program, Department of Geography, University of Georgia, Athens, Georgia Mace L. Bentley Meteorology Program, Department of Geography, Northern Illinois University, DeKalb, Illinois 1. INTRODUCTION 2. METHODOLOGY Early studies by Miller (1972) and Johns (1982) observed that severe weather outbreaks are likely to 2.1 Derecho Dataset repeat on several successive days across the conterminous U.S. Johns (1982) found that 71% of all The conterminous U.S. derecho dataset utilized in U.S. northwest flow (NWF) outbreaks during 1962-77 this study was compiled through several means, were associated with a series of severe weather events including: 1) two recently completed long-term (defined by Johns as any combination of two or more climatologies by Bentley and Sparks (2003) and outbreaks that occurs with no more than two calendar Coniglio and Stensrud (2004) [See 7A.2 (this volume) days between any outbreaks in the series). Most of the for further information on these datasets]; 2) an NWF outbreak series consisted of two or three severe examination of all derecho literature to reveal any weather outbreaks, but could contain as much as eight missing derecho events not documented by the or more separate outbreaks within a series. Johns and aforementioned climatological studies; 3) the inclusion Hirt (1987) suggested that warm-season derechos are of several additional events that did not meet the Johns often associated with meteorological
  • 4 Derecho: Fast State Machine Replication for Cloud Services

    4 Derecho: Fast State Machine Replication for Cloud Services

    4 Derecho: Fast State Machine Replication for Cloud Services SAGAR JHA, Cornell University, USA JONATHAN BEHRENS, Cornell University, USA and MIT, USA THEO GKOUNTOUVAS, MATTHEW MILANO, WEIJIA SONG, EDWARD TREMEL, ROBBERT VAN RENESSE, SYDNEY ZINK, and KENNETH P. BIRMAN, Cornell University, USA Cloud computing services often replicate data and may require ways to coordinate distributed actions. Here we present Derecho, a library for such tasks. The API provides interfaces for structuring applications into patterns of subgroups and shards, supports state machine replication within them, and includes mechanisms that assist in restart after failures. Running over 100Gbps RDMA, Derecho can send millions of events per second in each subgroup or shard and throughput peaks at 16GB/s, substantially outperforming prior solu- tions. Configured to run purely on TCP, Derecho is still substantially faster than comparable widely used, highly-tuned, standard tools. The key insight is that on modern hardware (including non-RDMA networks), data-intensive protocols should be built from non-blocking data-flow components. CCS Concepts: • Computer systems organization → Dependable and fault tolerant systems and networks; • Software and its engineering → Cloud computing; Additional Key Words and Phrases: Cloud computing, RDMA, non-volatile memory, replication, consistency ACM Reference format: Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Matthew Milano, Weijia Song, Edward Tremel, Robbert van Renesse, Sydney Zink, and Kenneth P. Birman. 2019. Derecho: Fast State Machine Replication for Cloud Services. ACM Trans. Comput. Syst. 36, 2, Article 4 (March 2019), 49 pages. https://doi.org/10.1145/3302258 1 INTRODUCTION There is a pervasive need for cloud-hosted services that guarantee rapid response based on the most up-to-date information, scale well, and support high event rates.
  • The Historic Derecho of June 29, 2012

    The Historic Derecho of June 29, 2012

    Service Assessment The Historic Derecho of June 29, 2012 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service Silver Spring, Maryland Cover Photograph: Visible satellite image at 5 p.m. Eastern Daylight Time (EDT) June 29, 2012, as the derecho moved across Ohio. National Lightning Data Network (NLDN) Cloud to ground (CG) lightning strikes for the 1-hour period, 4-5 p.m. EDT, are plotted in red. Surface observations are plotted in green. Smaller insets show radar reflectivity images of the derecho during the afternoon and evening. ii Service Assessment The Historic Derecho of June 29, 2012 January 2013 National Weather Service Laura K. Furgione Acting Assistant Administrator for Weather Services iii Preface On June 29, 2012, a derecho of historic proportions struck the Ohio Valley and Mid-Atlantic states. The derecho traveled for 700 miles, impacting 10 states and Washington, D.C. The hardest hit states were Ohio, West Virginia, Virginia, and Maryland, as well as Washington, D.C. The winds generated by this system were intense, with several measured gusts exceeding 80 mph. Unfortunately, 13 people were killed by the extreme winds, mainly by falling trees. An estimated 4 million customers lost power for up to a week. The region impacted by the derecho was also in the midst of a heat wave. The heat, coupled with the loss of power, led to a life-threatening situation. Heat claimed 34 lives in areas without power following the derecho. Due to the significance of this event, the National Oceanic and Atmospheric Administration’s National Weather Service formed a Service Assessment Team to evaluate the National Weather Service’s performance before and during the event.
  • City of Minneapolis Office of Emergency Management

    City of Minneapolis Office of Emergency Management

    CITY OF MINNEAPOLIS OFFICE OF EMERGENCY MANAGEMENT Straight Line Wind Fact Sheet AM I AT RISK? Since most thunderstorms produce some straight–line The term “straight–line” wind is used to differentiate the winds as a result of outflow generated by the thunderstorm damage they cause from tornado damage. Strong, downdraft, anyone living in thunderstorm–prone areas is at damaging winds can come from a number of different risk. Damage from severe thunderstorm winds account for thunderstorm processes. Most thunderstorm winds that half of all severe reports in the lower 48 states and is more cause damage at the ground are a result of outflow common than damage from tornadoes. Wind speeds can generated by a thunderstorm downdraft. Damaging winds reach up to 100 mph and can produce a damage path are classified as those exceeding 50–60 mph. A severe extending for hundreds of miles. thunderstorm is capable of producing winds with speeds faster than 100 mph, even without a tornado. People living in mobile homes are especially at risk for injury and death. Even anchored mobile homes can be A storm that is capable of producing consistent straight– seriously damaged when winds gust over 80 mph. line winds of 58 mph or more and covers an area of more People who are outdoors are most at risk to straight line than 240 miles is known as a “derecho”. A derecho is a wind. Campers or hikers in forested areas are vulnerable to widespread, long–lived wind storm that is associated with being injured or killed by falling trees, and people on bodies a band of rapidly moving showers or thunderstorms.
  • The 1 June 2004 North Texas-Louisiana Derecho

    The 1 June 2004 North Texas-Louisiana Derecho

    The 1 June 2004 North Texas Derecho: A Case Study Abstract A case study of the 1 June 2004 storms that produced damaging winds across north Texas and Louisiana is presented. The synoptic and mesoscale environment is analyzed with emphasis on operational forecast parameters. Northwesterly flow aloft and strong instability produced a favorable environment for a linear mesoscale convective system (MCS). Storm evolution is analyzed from initiation through MCS organization using archived data from the Weather Event Simulator (WES). Although surface boundaries played an important role in storm initiation, the storms moved away from those boundaries and were not dependent on them to sustain convection. Early in the episode, right and left supercell splits were observed. Two supercells in close proximity to each other developed intense outflow winds and then merged with new convection to form a forward- propagating MCS. In this case, individual supercells played an important role in the event, producing some of the most damaging winds. The intense winds produced damage to trees, buildings, and power lines over a wide swath more than 400 km long and 100 km wide. 1. Introduction Forecasting damaging straight line wind events is important because these storms account for a significant amount of property damage and casualties. A recent study that compared derechos to hurricanes and tornadoes during the period of 1986- 2003 concluded that derechos can be similar to most United States tornadoes and hurricanes in terms of their threat to life and property (Ashley and Mote 2005). One such storm event affected the Dallas- Ft. Worth Metroplex and the region to its east during the evening and overnight hours of 1- 2 June 2004.