Article Rapid Assessment of Tree Damage Resulting from a 2020 Windstorm in Iowa, USA Thomas C. Goff 1,*, Mark D. Nelson 1, Greg C. Liknes 1, Tivon E. Feeley 2 , Scott A. Pugh 1 and Randall S. Morin 1 1 Northern Research Station, USDA Forest Service, Madison, WI 53726, USA;
[email protected] (M.D.N.);
[email protected] (G.C.L.);
[email protected] (S.A.P.);
[email protected] (R.S.M.) 2 Iowa Department of Natural Resources, Des Moines, IA 50319, USA;
[email protected] * Correspondence:
[email protected] Abstract: A need to quantify the impact of a particular wind disturbance on forest resources may require rapid yet reliable estimates of damage. We present an approach for combining pre-disturbance forest inventory data with post-disturbance aerial survey data to produce design-based estimates of affected forest area and number and volume of trees damaged or killed. The approach borrows strength from an indirect estimator to adjust estimates from a direct estimator when post-disturbance remeasurement data are unavailable. We demonstrate this approach with an example application from a recent windstorm, known as the 2020 Midwest Derecho, which struck Iowa, USA, and adjacent states on 10–11 August 2020, delivering catastrophic damage to structures, crops, and trees. We 3 estimate that 2.67 million trees and 1.67 million m of sound bole volume were damaged or killed on 23 thousand ha of Iowa forest land affected by the 2020 derecho. Damage rates for volume Citation: Goff, T.C.; Nelson, M.D.; were slightly higher than for number of trees, and damage on live trees due to stem breakage was Liknes, G.C.; Feeley, T.E.; Pugh, S.A.; more prevalent than branch breakage, both likely due to higher damage probability in the dominant Morin, R.S.