CEE 370 Environmental Engineering Principles
CEE 370 Lecture #8 9/18/2019 Updated: 18 September 2019 Print version CEE 370 Environmental Engineering Principles Lecture #8 Environmental Chemistry VI: Acids- bases III, Organic Nomenclature Reading: Mihelcic & Zimmerman, Chapter 3 Davis & Masten, Chapter 2 Mihelcic, Chapt 3 David Reckhow CEE 370 L#8 1 Steps in Solving chemical equilibria 1. List all chemical species or elemental groupings that are likely to exist + + +2 + + Cations: Na , K , Ca , NH4 , H , etc. - - -2 - -3 -2 - Anions: NO3 , Cl , SO4 , OH , PO4 , HPO4 , H2PO4 , - - -2 Ac , HCO3 , CO3 , etc. Neutral species: NH3, HAc, H3PO4, H2CO3, etc. note that ionic salts (e.g., NaCl, KCl) completely dissociate in water an thus should not be listed. David Reckhow CEE 370 L#8 2 Lecture #8 Dave Reckhow 1 CEE 370 Lecture #8 9/18/2019 -3 Showing an example of 10 NaCO3 added to water Steps in Solving chemical equilibria (cont) 2. List all independent chemical equations that involve the species present, including: [H ][HCO ] A. Chemical Equilibria K 3 106.3 1 [H CO ] E.g., acid base equilibria 2 3 [H ][CO 2 ] K 3 1010.3 2 [HCO ] B. Mass Balance equations 3 Total amount of each element is conserved 2 3 3 Ccarbonates [H 2CO3 ][HCO3 ][CO3 ] 10 and Csodium [Na ] 10 C. Electroneutrality or charge balance All water solutions must be neutrally charged 2 [H ][Na ] [OH ][HCO3 ] 2[CO3 ] David Reckhow CEE 370 L#8 3 Steps in Solving chemical equilibria (cont) 3. Solve the equations You should have as many independent equations as chemical species Often it is easiest to solve for H+
[Show full text]