ORGANIC CHEMISTRY Organic Chemistry Is Often Described As the Chemistry of Carbon-Based Compounds That Consist Primarily of Carbon and Hydrogen

Total Page:16

File Type:pdf, Size:1020Kb

ORGANIC CHEMISTRY Organic Chemistry Is Often Described As the Chemistry of Carbon-Based Compounds That Consist Primarily of Carbon and Hydrogen ORGANIC CHEMISTRY Organic chemistry is often described as the chemistry of carbon-based compounds that consist primarily of carbon and hydrogen. The unique chemistry of carbon • Carbon atoms have the ability to form four strong covalent bonds • Carbon undergoes a process known as hybridization which produces four available bonding sites ( see “process of hybridization”) • Carbon atoms bond with other carbon atoms to form chains or ring structures. This is called catenation These chains can be thousands of atoms long. • Carbon has the ability to make single, double and triple bonds with itself Catenation is described as the ability of carbon atoms to bond with themselves to form chain or ring structures The process of hybridisation A carbon atom in the ground state: C A carbon atom in the “excited” state: 4 x sp3 hyhrid sub-orbitals able to accept one electron each A process called orbital mixing now occurs where the 2s and 2p orbital’s now mix together to produce four sub-orbitals of equal energy. There sub- orbitals are known as sp3 hybrid orbital’s and it is these hybrid orbital’s that provide the four available bonding sites Classification of organic compounds THE HYDROCARBONS……are organic compounds containing carbon and hydrogen only H H H Alkanes H C H H C C H H H H Saturated compound – compounds in which all bonds between the carbon atoms are single bonds. H H Alkenes H C C H Unsaturated compound – compounds in which there is at least one double and/or triple bond between carbon atoms. Homologous Series and Functional groups Alkanes CnH2n+2 H H H H H H H H H H C C H H C C C H H C C C C H H H H H H H H H H C H C2H6 C3H8 4 10 Alkenes CnH2n H H H H H H H H H H C C C C H H C C H H C C C H C H H H C2H4 3 6 H C4H8 Homologous Series and Functional Groups Functional group - a bond, atom or group of atoms that form the centre of chemical activity in the organic compound. ( also identifies to which Homologous Series an organic compound belongs carbon – carbon single bond or…..halo group Representing organic compounds C4H10 C4H8 Organic nomenclature Straight chained hydrocarbon molecules The functional group determines the suffix of the name: Alkanes (single bonds) end in -ane. Alkenes (double bond) end in -ene. ethene ethane Branched hydrocarbon molecules Numerous organic molecules are found to have carbon based side chains attached to a main chain within the structure. These side chains are simply known as side branches or more scientifically correct – Alkyl Substituents Alkyl substituent – a carbon based “side chain” which is attached to the longest continuous carbon chain in an organic molecule. Naming branched chained alkanes Naming unsaturated hydrocarbons (alkenes) Exercise 1 : Name the following hydrocarbons 1. 2. 3. 4. 5. 6. Memorandum 1. 2-methylbutane 2. 2,3-dimethylbutane 3. 3-ethyl-3-methylpentane 4. 3-methylbut-1-ene 5. 3,3-dimethylbut-1-ene 6. 6-methylhept-3-ene Hydrocarbons with more than one double bond in the chain (dienes) The rules work exactly the same in all nomenclature, the only difference is that now two positions must be stated in the naming. These positions must still be at the lowest substituted position in the molecule For euphonic purposes, the vowel "a" must be added to the name before the suffix for dienes, e.g. buta−1,3−diene is correct, and not but−1,3−diene. CH3 2- methylpenta -1,3 - diene 2 – methylhexa – 1,4 - diene CH2 CH2 2-methylpent-1-ene Haloalkanes (Alkyl halides) General formula : CC nH2n+1X Functional group = X where X = F, Cl, Br, I ( halo functional group) The position of the halogen is specified by the lowest substituted carbon to which that halogen is attached. Naming : The haloalkane is named with the lowest substituted carbon having the halogen attached placed first in the naming sequence 3 Alcohols: General formula : CnH2n+1OH or CnH2n+2O Ethanol is used widely as a solvent in paints, glues, perfumes, aftershaves and any other household products. The strong hydrogen bonds in alcohols result in alcohols having higher melting and boiling points than hydrocarbons of similar size. Functional group: OH Pentane -2,3 - diol Carboxylic Acid : General formula CnH2nO2 Esters : CnH2nO2 Ester formation Isomerism Isomers – organic molecules which have the same molecular formula but different structural formulae. C6H14 2,2 – dimethylbutane 2 – methylpentane There are various other types of structural isomers that can be found in organic chemistry • Chain isomers – these are isomers that will have different chain lengths. The examples seen above are those of chain isomers • Positional isomers – these are isomers that have a different position of the same functional group CH2 = CH – CH2 –CH2 – CH3 CH3 – CH = CH – CH2 – CH3 C5H10 pent – 1 – ene pent – 2 – ene • Functional isomers – isomers that contain different functional groups (eg) carboxylic acids and esters O O CH3 – CH2 – CH2 – CH2 – C – OH C 5 H 10 O 2 CH3 – CH2 – O – C – CH2 – CH3 pentanoic acid ethyl propanoate Summary of Isomerism Exercise 1. 2. 3. 4. 5. 6. CH2 – CH – CH2 O-H O-H O-H 7. Memorandum 1. 1,2-dichloropropane 2. 1,1-dichloro-2,2-difluoroethane 3. Butan-2-ol 4. 2-methylbutan-2-ol 5. Propane-1,2,3-triol 6. Butyl propanoate 7. 3-methylpropa-1,2-diene Practice Example 2 Memorandum 2 Organic Chemical Reactions Organic chemical reactions can be classified into FIVE different types of reactions based on how the molecule is able to react under certain reaction conditions • Combustion • Addition • Substitution • Elimination • Esterification - seen already Combustion Alkanes, alkenes and alcohols burn in oxygen and form carbon dioxide and water. The reaction is exothermic and a great deal of energy is released. Propane is the gas used in Bunsen burners in the laboratory C3H8 + 5O2 3CO2 + 4H2O Butane burns in oxygen C4H10 + 6½O2 4CO2 + 5H2O (x 2) 2C4H10 + 13O2 8CO2 + 10H2O Ethanol burns in oxygen C2H6O + 3O2 2CO2 + 3H2O Addition - when a double bond is broken and new molecular fragments are added to both ends of the bond In the double bond, one of the bonds is very weak and will break under reaction conditions to form two unpaired electrons on each carbon. These radicals are highly reactive and will this bond to form an electron pair Hydrogenation Halogenation hydrohalide (HCl) water (H2O) Hydrohalogenation Hydration Substitution - “swapping” reactions • Halogenation (Free radical substitution) – alkanes to haloalkanes • Hydrolysis – haloalkanes to alcohols Elimination This is the opposite of addition where functional groups are removed to form an alkene • Dehydrohalogenation H H Cl H H - C - C - C - H H - C - C = C - H + HCl H H H H H H • Dehydration H H OH H H - C - C - C - H H - C - C = C - H + H2O H H H H H H • Cracking - the breaking up of large hydrocarbon molecules into smaller, more useful molecules and Past examination Question Memorandum .
Recommended publications
  • Comparison of Sulfur to Oxygen*
    OpenStax-CNX module: m34977 1 Comparison of Sulfur to Oxygen* Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 1 Size Table 1 summarizes the comparative sizes of oxygen and sulfur. Element Atomic radius Covalent radius Ionic radius (Å) van der Waal ra- (Å) (Å) dius (Å) Oxygen 0.48 0.66 1.40 1.52 Sulfur 0.88 1.05 1.84 1.80 Table 1: Comparison of physical characteristics for oxygen and sulfur. 2 Electronegativity Sulfur is less electronegative than oxygen (2.4 and 3.5, respectively) and as a consequence bonds to sulfur are less polar than the corresponding bonds to oxygen. One signicant result in that with a less polar S-H bond the subsequent hydrogen bonding is weaker than observed with O-H analogs. A further consequence of the lower electronegativity is that the S-O bond is polar. 3 Bonds formed Sulfur forms a range of bonding types. As with oxygen the -2 oxidation state prevalent. For example, sulfur forms analogs of ethers, i.e., thioethers R-S-R. However, unlike oxygen, sulfur can form more than two covalent (non-dative) bonds, i.e., in compounds such as SF4 and SF6. Such hypervalent compounds were originally thought be due to the inclusion of low energy d orbitals 3 2 in hybrids (e.g., sp d for SF6); however, a better picture involves a combination of s and p ortbitals in bonding (Figure 1). Any involvement of the d orbitals is limited to the polarization of the p orbitals rather than direct hydridization.
    [Show full text]
  • Effect of Catenation and Basicity of Pillared Ligand on the Water Stability of Mofs
    Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013 SUPPORTING INFORMATION (SI) Effect of Catenation and basicity of Pillared Ligand on the Water Stability of MOFs Himanshu Jasuja, and Krista S. Walton* School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, USA * [email protected] EXPERIMENTAL SECTION 1. Characterization 1.1 PXRD (Powder X-Ray diffraction) patterns 14400 10000 6400 Intensity (counts) Intensity 3600 1600 400 0 5 10 15 20 25 30 35 40 45 50 2Theta (°) Figure S1: Comparison of PXRD pattern for as-synthesized Zn-BDC-DABCO or DMOF and its theoretical pattern from single crystal data Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013 14400 10000 6400 Intensity (counts) Intensity 3600 1600 400 0 5 10 15 20 25 30 35 40 45 50 2Theta (°) Figure S2: Comparison of PXRD pattern for as-synthesized Zn-BDC-BPY or MOF-508a and its theoretical pattern from single crystal data 14400 10000 6400 Intensity (counts) Intensity 3600 1600 400 0 5 10 15 20 25 30 35 40 45 50 2Theta (°) Figure S3: Comparison of PXRD pattern for as-synthesized Zn-TMBDC-DABCO or DMOF-TM and its theoretical pattern from single crystal data Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013 14400 10000 6400 Intensity (counts) Intensity 3600 1600 400 0 5 10 15 20 25 30 35 40 45 50 2Theta (°) Figure S4: Comparison of PXRD pattern for as-synthesized Zn-TMBDC-BPY or MOF- 508-TM and its theoretical pattern from single crystal data 6400 3600 Intensity (counts) Intensity 1600 400 0 10 15 20 25 30 35 40 45 2Theta (°) Figure S5: PXRD patterns for as-synthesized Zn-BDC-BPY or MOF-508a and activated Zn-BDC-BPY or MOF-508b displaying shifting of peaks towards right on activation which was also observed by Chen et.
    [Show full text]
  • Hydrocarbons & Homologous Series
    St Peter the Apostle High School Chemistry Department Hydrocarbons & Homologous Series N4 & N5 Homework Questions Answer questions as directed by your teacher. National 4 level questions are first followed by National 5 level questions. National 4 Questions 1. Crude oil is a mixture of many chemical compounds. Before the compounds can be used, the crude oil must be separated into fractions. (a) Name the kind of chemical compounds found in crude oil. (b) Explain what is meant by the term fraction. (c) Which two changes of state occur when a fraction is obtained from crude oil? (d) The table below compares the composition of a sample of crude oil from the North Sea with one from an oil field in the Middle East. % of chemicals in two samples of crude oil Chemicals North Sea crude Middle East crude gases & gasoline 7 6 petroleum spirit 20 14 kerosine & diesel 30 25 residue chemicals 43 55 Use the information in the table to suggest one reason why North Sea crude oil might be more useful than Middle East crude oil for modern day needs. (4) 2. Name three alkanes and state a use for each. (3) 3. For each of the following molecules (a) pentene (b) ethane (c) butane (d) propene (i) draw the full structural formula (ii) draw the shortened structural formula (4) 4. State the molecular formula for each of the following hydrocarbons (a) hexane (b) ethane (c) the alkane with 9 carbons (d) the alkene with 12 carbons (4) 5. Which of the following hydrocarbons does not belong to the same homologous series as the others? A CH4 B C3H8 C C4H10 D C6H12 (1) 6.
    [Show full text]
  • Chemistry Study Materials for Class 10 (NCERT Based: Questions with Answers) Ganesh Kumar Date:- 28/07/2020
    Chemistry Study Materials for Class 10 (NCERT Based: Questions with Answers) Ganesh Kumar Date:- 28/07/2020 74. How much carbon is present on earth and CO2 in atmosphere? Answer: 0.02%, 0.03% 75. What is valency of carbon? Answer: 4 76. Why does carbon form strong bonds? Answer: It is due to small size. 77. What will be the product formed when carbon is burnt in presence of air? Answer: Carbon dioxide 78. What is Allotropy? Answer: It is a property due to which an element can exist in more than one form which differ in physical properties but have similar chemical properties, e.g., carbon, sulphur, phosphorus, oxygen show allotropy. 79. Name three allotropes of carbon. Answer: Diamond, graphite and Buckminster fullerenes 80. Which is the purest allotrope of carbon? Answer: Buckminster fullerenes. 81. Why is graphite soft and slippery? Answer: Due to weak vander Waals’ forces of attraction between hexagonal layers. 82. Why is diamond hard? Answer: It is due to strong covalent bonds. 83. Why is diamond lustrous? Answer: It is due to high refractive index. 84. Carbon has four electrons in its valence shell. How does carbon attain stable electronic configuration. Answer: By sharing four electrons with other atoms. 85. Why is carbon tetravalent? Answer: It is because carbon can share form electrons to complete its octet. 86. Which gas is present in LPG? Answer: Butane and Isobutane 87. Which element exhibits the property of catenation to maximum extent and why? Answer: Carbon shows catenation to maximum extent because it forms strong covalent bonds.
    [Show full text]
  • Group 13 Elements
    GROUP I5 ELEMENTS Q. 1. Give chemical reaction in support of the statement that all the bonds in PCI5 molecule are not equivalent. Ans. Due to greater bond pair-bond pair repulsions, the two axial P — Cl bonds are less stable than the three equatorial P — Cl bonds. It is because of this reason that when PC15 is heated, the less stable axial bonds are Broken to form Cl2. Δ PCl5 -------------- PCl3 + Cl2. Q. 2. The tendency for catenation decreases down the group 14. Or Why carbon shows catenation but silicon does not Ans. As we move down the group 14, the atomic size increases and hence the strength of M—M bond decreases steadily. Consequently the tendency for catenation decreases down the group. Q. 3. PCI5 is known but NC15 is not known. Explain. 2 2 6 2 1 1 1 Ans. Electronic configuration of P is 1s 2s 2p 3s 3px 3py 3pz . Thus phosphorus has empty 3d orbitals in which the elecron of the 3s-orbital can be excited but nitrogen has no d-orbitals as its electronic configuration is 2 2 1 1 1 1s 2s 2px 2py 2pz . Q. 4. Why molecular nitrogen is not reactive ? Ans. The bond dissociation energy for the triple bond in N = N is very high because of small size of N-atoms and hence small internuclear distance. Q.5. H3PO3 is diprotic (or)dibasic. Why? Ans. Since it has only two ionisable H – atoms which are present as OH groups. Q. 6. Nitrogen exists as diatomic molecule, N2, whereas phosphorus exists a tetratomic molecule P4.
    [Show full text]
  • Unit 12 Carbon Akd Its Compounds
    UNIT 12 CARBON AKD ITS COMPOUNDS Structure 12.1 Introduction 12.2 Objectives 12.3 Allotropes of Carbon 12.4 Why are there a Large Number of Carbon Compounds in Nature 12.4.1 Catenation 12.4.2 Isomerism 12.5 Hydrocarbons 12.5.1 Saturated Hydrocarbons 12.5.2 Unsaturated Hydrocarbons 12.5.3 Homologous Hydrocarbons 12.5.4 Aromatic Hydrocarbons 12.6 Some other Organic Compounds 12.6.1 Hydrocarbon as Parent Compound 12.6.2 Functional Groups 12.6.3 Alcohols 12.6.4 Carboxylic Acids 12.6.5 Esters 12.7 Man Made Materials from Carbon Compounds 12.7.1 Polymers-Fibres, Plastics, Rubbers 12.7.2 Soaps and Detergents 12.8 Let Us Sum Up 12.9 Unit-end Exercises 12.10 Answers to Check Your Progress 12.11 Suggested Readings 12.1 INTRODUCTION In the previous unit you have studied about the strategies of teaching about some metallic and non-metallic elements and some of their compounds. In the present unit we shall discuss the teaching of some exemplary concepts and subtopics related to carbon and its compounds. Here it is important to appreciate that carbon and organic compounds need to be dealt as separate from other elements and their compounds. As you go through this unit you would be familiarizing yourself with teaching of allotropic forms of carbon, hydrocarbons and other compounds of carbon and finally the man made materials obtained from carbon compounds. This unit shows us that living bodies and their products contain a large quantity of carbon compounds in our daily life.
    [Show full text]
  • CEE 370 Environmental Engineering Principles
    CEE 370 Lecture #8 9/18/2019 Updated: 18 September 2019 Print version CEE 370 Environmental Engineering Principles Lecture #8 Environmental Chemistry VI: Acids- bases III, Organic Nomenclature Reading: Mihelcic & Zimmerman, Chapter 3 Davis & Masten, Chapter 2 Mihelcic, Chapt 3 David Reckhow CEE 370 L#8 1 Steps in Solving chemical equilibria 1. List all chemical species or elemental groupings that are likely to exist + + +2 + + Cations: Na , K , Ca , NH4 , H , etc. - - -2 - -3 -2 - Anions: NO3 , Cl , SO4 , OH , PO4 , HPO4 , H2PO4 , - - -2 Ac , HCO3 , CO3 , etc. Neutral species: NH3, HAc, H3PO4, H2CO3, etc. note that ionic salts (e.g., NaCl, KCl) completely dissociate in water an thus should not be listed. David Reckhow CEE 370 L#8 2 Lecture #8 Dave Reckhow 1 CEE 370 Lecture #8 9/18/2019 -3 Showing an example of 10 NaCO3 added to water Steps in Solving chemical equilibria (cont) 2. List all independent chemical equations that involve the species present, including: [H ][HCO ] A. Chemical Equilibria K 3 106.3 1 [H CO ] E.g., acid base equilibria 2 3 [H ][CO 2 ] K 3 1010.3 2 [HCO ] B. Mass Balance equations 3 Total amount of each element is conserved 2 3 3 Ccarbonates [H 2CO3 ][HCO3 ][CO3 ] 10 and Csodium [Na ] 10 C. Electroneutrality or charge balance All water solutions must be neutrally charged 2 [H ][Na ] [OH ][HCO3 ] 2[CO3 ] David Reckhow CEE 370 L#8 3 Steps in Solving chemical equilibria (cont) 3. Solve the equations You should have as many independent equations as chemical species Often it is easiest to solve for H+
    [Show full text]
  • Hydrocarbons and Homologous Series
    Hydrocarbons and homologous series A homologous series is a family of hydrocarbons with similar chemical properties who share the same general formula e.g. alkanes, alkenes, cycloalkanes. Alkanes Their names all end in –ane. The alkanes have many uses: methane – (natural gas) cooking, heating propane – used in gas cylinders for BBQ etc octane – used in petrol for cars The general formula of the alkanes is They are saturated hydrocarbons as they contain single bonds only. The names, molecular formula and the structural formula of the first eight alkanes must be learned. Using a mnemonic can make learning the names easier. Systematic Naming There are some general rules which you should remember when naming organic compounds: The longest unbranched chain containing the functional group is the parent molecule, or simply the longest unbranched chain for alkanes. Remember that, the longest chain can go round a bend. Indicate the position of the functional group with a number, numbering from the end nearest the functional group. Name the branches, and indicate the number of branches. o Methyl indicates there is one carbon atom in the branch. o Ethyl indicates there are two carbon atoms in the branch. o The prefix 'di' indicates there are two branches. o The prefix 'tri' indicates there are three branches. Indicate the position of the branches with a number, numbering from the end nearest the functional group. For more than one branch, the branches are identified in alphabetical order, ignoring any 'di', 'tri', etc, prefixes. Each branch needs to be numbered individually, even if they are attached to the same carbon atom.
    [Show full text]
  • 2. Allotropy in Carbon the Property Due to Which an Element Exists In
    SUBJECT-CHEMISTRY DATE- 22/11/2020 CLASS- X TOPICS- Chap. 4 Carbon and its Compounds Carbon is one of the most essential components of living organisms. There are two stable isotopes of carbon C-12 and C-13. After these two one more isotope of carbon is present C-14. Carbon is used for radiocarbon dating One of the most amazing properties of carbon is its ability to make long carbon chains and rings. This property of carbon is known as catenation. Carbon has many special abilities out of all one unique ability is that carbon forms double or triple bonds with itself and with other electronegative atoms like oxygen and nitrogen. These two properties of carbon i.e catenation and multiple bond formation, it has the number of allotropic forms. Allotrope is nothing but the existence of an element in many forms which will have different physical property but will have similar chemical properties and its forms are called allotropes of allotropic forms. Allotropes are defined as the two or more physical forms of one element. These allotropes are all based on carbon atoms but exhibit different physical properties, especially with regard to hardness. The two common, crystalline allotropes of carbon are diamond and graphite. Carbon shows allotropy because it exists in different forms of carbon. Though these allotropes of carbon have a different crystal structure and different physical properties, their chemical properties are the same and show similar chemical properties. Both diamond and graphite have symbol C. Both give off carbon dioxide when strongly heated in the presence of oxygen.
    [Show full text]
  • Dalkeith High School National 5 Chemistry: Unit 2 Key Area – Homologous Series Learning Statement
    Dalkeith High School National 5 Chemistry: Unit 2 Key Area – Homologous Series Learning Statement Red Green Amber A homologous series is a group of compounds with: o similar chemical properties o the same general formula o a gradual change in physical properties such as melting and boiling point. Examples of homologous series include groups of compounds called the alkanes, cycloalkanes and alkenes. The Alkanes The alkanes are the simplest homologous series of hydrocarbons. o The names of the first eight alkanes are: No. C’s 1 2 3 4 5 6 7 8 Name methane ethane propane butane pentane hexane heptane octane o You need to be able to name and draw the first eight alkanes. o The names of the alkanes always end in …ANE. o The alkanes contain C-C single bonds. o The general formula for the alkanes is CnH2n+2. Alkanes can be straight chained like the above, or branched. Branched alkanes can be named systematically according to rules set down by the International Union of Pure and Applied Chemistry (IUPAC). o Find the longest continuous chain of carbons o Identify any branches off the longest chain, e.g. methyl or ethyl o Put the name together with the branches first and the name of the long chain last. The longest chain should be numbered to give branches the lowest possible number. e.g. Here the longest chain is 6 carbons. There is an ethyl branch on carbon 3 and a methyl branch on carbon 4. So this is: 3-ethyl-4-methylhexane The Cycloalkanes The cycloalkanes are a homologous series of hydrocarbons with cyclic shapes.
    [Show full text]
  • 8 September 2019 Print Version
    Updated: 18 September 2019 Print version CEE 370 Environmental Engineering Principles Lecture #8 Environmental Chemistry VI: Acids- bases III, Organic Nomenclature Reading: Mihelcic & Zimmerman, Chapter 3 Davis & Masten, Chapter 2 Mihelcic, Chapt 3 David Reckhow CEE 370 L#8 1 Steps in Solving chemical equilibria 1. List all chemical species or elemental groupings that are likely to exist + + +2 + + Cations: Na , K , Ca , NH4 , H , etc. - - -2 - -3 -2 - Anions: NO3 , Cl , SO4 , OH , PO4 , HPO4 , H2PO4 , - - -2 Ac , HCO3 , CO3 , etc. Neutral species: NH3, HAc, H3PO4, H2CO3, etc. note that ionic salts (e.g., NaCl, KCl) completely dissociate in water an thus should not be listed. David Reckhow CEE 370 L#8 2 -3 Showing an example of 10 NaCO3 added to water Steps in Solving chemical equilibria (cont) 2. List all independent chemical equations that involve the species present, including: [H + ][HCO− ] A. Chemical Equilibria K = 3 =10−6.3 1 [H CO ] E.g., acid base equilibria 2 3 [H + ][CO−2 ] K = 3 =10−10.3 2 [HCO− ] B. Mass Balance equations 3 Total amount of each element is conserved − −2 −3 + −3 Ccarbonates = [H 2CO3 ]+[HCO3 ]+[CO3 ] =10 and Csodium = [Na ] =10 C. Electroneutrality or charge balance All water solutions must be neutrally charged + + − − −2 [H ]+[Na ] = [OH ]+[HCO3 ]+ 2[CO3 ] David Reckhow CEE 370 L#8 3 Steps in Solving chemical equilibria (cont) 3. Solve the equations You should have as many independent equations as chemical species Often it is easiest to solve for H+ and then use that concentration to calculate all other
    [Show full text]
  • Inorganic Chemistry
    INORGANIC CHEMISTRY Silicones and Phosphazenes Prof. Ranjit K. Verma University Department of Chemistry Magadh University Bodh Gaya-824234 (31.07.2006) CONTENTS Introduction Silicones General introduction Structural features and synthesis Interesting properties and uses Phosphazenes General introduction Nature of bonding in triphosphazenes Uses Keywords Polymers, catenation, silicones, halosilanes, silicone oils, silicone elastomers, silicone resins, phosphazenes, diphosphazenes, polyphosphazenes, bonding in triphosphazenes, homorphic and heteromorphic interactions 1 Introduction Polymers have revolutionized human civilization. Carbon forms polymers most extensively on account of its unparalleled catenation property (tendency to form chains). Although to a limited extent, catenation is exhibited by some other elements in Group 14 and Group 15. For example, in Group 14, the catenation tendency follows the sequence C >> Si > Ge ~ Sn >>Pb. In Group 15, the NN single bond is so weak that its chain length does not go beyond 3 (in N3ion). The chain length in case of phosphorus is up to 2 (e.g. in P2H4). Silicon in Group 14 forms polymeric silanes with difficulty. In conjugation with oxygen however, it makes extensive SiOSi linkages forming silicones. Similarly, in conjugation with nitrogen, phosphorus shows unique capability of forming extensive — N = P — bonds in what are called phosphazenes. These two classes of polymers established Si and P as the second and the third most extensively polymer- forming elements, respectively and, have revolutionized polymer science on account of their oxidative, thermal and radiation stabilities. The C = C and C – H bonds in C-based polymers are susceptible to oxidation and the C-C bonds are prone to cleavage, but these two classes of silicones and phosphazenes are free from these lacunae.
    [Show full text]