Nederlandse Namen Van Eierleggende Zoogdieren En

Total Page:16

File Type:pdf, Size:1020Kb

Nederlandse Namen Van Eierleggende Zoogdieren En Blad1 A B C D E F G H I J K L M N O P Q 1 Nederlandse namen van Eierleggende zoogdieren en Buideldieren 2 Prototheria en Metatheria Monotremes and Marsupials Eierleggende zoogdieren en Buideldieren 3 4 Klasse Onderklasse Orde Onderorde Superfamilie Familie Onderfamilie Geslacht Soort Ondersoort Vertaling Latijnse naam Engels Frans Duits Spaans Nederlands 5 Mammalia L.: melkklier +lia Mammals Zoogdieren 6 Prototheria G.: eerste dieren Protherids Oerzoogdieren 7 Monotremata G.:één opening Monotremes Eierleggende zoogdieren 8 Tachyglossidae L: van Tachyglossus Echidnas Mierenegels 9 Zaglossus G.: door + tong Long-beaked echidnas Vachtegels 10 Zaglossus bruijnii Antonie Augustus Bruijn Western long-beaked echidna Échidné de Bruijn Langschnabeligel Equidna de hocico largo occidental Gewone vachtegel 11 Long-beaked echidna 12 Long-nosed echidna 13 Long-nosed spiny anteater 14 New Guinea long-nosed echidna 15 Zaglossus bartoni Francis Rickman Barton Eastern long-beaked echidna Échidné de Barton Barton-Langschnabeligel Equidna de hocico largo oriental Zwartharige vachtegel 16 Barton's long-beaked echidna 17 Z.b.bartoni Francis Rickman Barton Barton's long-beaked echidna Wauvachtegel 18 Z.b.clunius L.: clunius=stuit Northwestern long-beaked echidna Huonvachtegel 19 Z.b.diamondi Jared Diamond Diamond's long-beaked echidan Grootste zwartharige vachtegel 20 Z.b.smeenki Chris Smeenk Smeenk's long-beaked echidna Kleinste zwartharige vachtegel 21 Zaglossus attenboroughi David Attenborough Attenborough's long-beaked echidna Échidné d'Attenborough Attenborough-Lanschnabeligel Equidna de hocico largo de Attenborough Attenboroughs vachtegel 22 Attenborough's echidna 23 Attenborough's long-nosed echidna 24 Cyclops long-beaked echidna 25 Cyclops long-nosed echidna 26 Sir David's long-beaked echidna 27 Sir David's long-nosed echidna 28 Tachyglossus snelle tong Short-beaked echidnas Echte mierenegels 29 Tachyglossus aculeatus stekelig Short-beaked echidna Échidné à nez court Ameisenigel Equidna de hocico corto Mierenegel 30 Australian echidna Gewone mierenegel 31 Short-nosed echidna Australische mierenegel 32 Spiny anteater Stekelmierenegel 33 T.a.aculeatus stekelig Common echidna Oostelijke mierenegel 34 T.a.acanthion kleine stekel Australian echidna Woestijnmierenegel 35 T.a.lawesii William George Lawes Port Moresby echidna Port Moresbymierenegel 36 T.a.multiaculeatus met veel stekels Southern echidna Kangaroo-mierenegel 37 Kangaroo Island echidna 38 T.a.setosus borstelig Tasmanian echidna Borstelmierenegel 39 Bristly echidna 40 Ornithorhynchidae G.:ornis=vogel,rhynchos=snuit Platypuses Vogelbekdieren 41 Ornithorhynchus Platypuses Vogelbekdieren 42 Ornithorhynchus anatinus L.:eendachtig Platypus Ornithorynque Schnabeltier Ornitorinco Vogelbekdier 43 Duck-billed platypus 44 Metatheria G.:veranderd beest Marsupials Buideldieren 45 Didelphimorphia G.:twee baarmoeders + vormen Opossums Buidelratachtigen 46 Didelphidae G.:twee baarmoeders + idae Opossums Buidelratten 47 Glironiinae van Glironia Furry-tailed opossums Pluimstaartbuidelratten 48 Glironia slaapmuisachtig Bushy-tailed opossums Pluimstaartbuidelratten 49 Glironia venusta elegant Bushy-tailed opossum Opossum à queue touffue Buschschwanzbeutelratte Raposa de cola peluda Pluimstaartbuidelrat 50 Furry-tailed opossum 51 Caluromyinae van Caluromys Woolly opossums Wolhaarbuidelratten 52 Caluromys mooistaartmuis Woolly opossums Wolhaarbuidelratten 53 Caluromys derbianus 13e Lord Derby Derby's woolly opossum Opossum de Derby Derby-Wollbeutelratte Raposa lanuda de Derby Derbywolhaarbuidelrat 54 Central American woolly opossum 55 Derby's pale-eared woolly opossum 56 C.d.derbianus Edward Smith-Stanley,13e Lord Derby Earl's woolly opossum Columbiaanse buidelrat 57 C.d.aztecus Azteeks Mexican woolly opossum Azteekse buidelrat 58 C.d.centralis centraal Costa Rican woolly opossum Costaricaanse buidelrat 59 C.d.fervidus vurig Central American woolly opossum Vuurrode buidelrat 60 C.d.nauticus van de zee Insular woolly opossum Panamese buidelrat 61 C.d.pallidus bleek Pale woolly opossum Bleke buidelrat 62 Caluromys lanatus wollig Brown-eared woolly opossum Opossum laineux Braunohr-Wollbeutelratte Raposa lanuda occidental Rode wolhaarbuidelrat 63 Western woolly opossum 64 C.l.lanatus wollig Paraguay woolly opossum Paraguayaanse buidelrat 65 C.l.cicur L.: tam Columbia woolly opossum Colombiaanse buidelrat 66 C.l.nattereri Johann Natterer Brazil woolly opossum Mato Grossobuidelrat 67 C.l.ochropus bleekpoot Amazonas woolly opossum Geelpootbuidelrat 68 C.l.ornatus versierd Peru woolly opossum Peruaanse buidelrat 69 C.l.vitalinus leven gevend Minas Gerais woolly opossum Minas Geraisbuidelrat 70 Caluromys philander mensenvriend Bare-tailed woolly opossum Opossum jaune Gelbe Wollbeutelratte Raposa lanuda oriental Gele wolhaarbuidelrat 71 C.p.philander mensenvriend Guiana woolly opossum Guyaanse buidelrat 72 C.p.affinis bondgenoot Mato Grosso woolly opossum Gele Mato Grossobuidelrat 73 C.p.dichurus verdeelde staart Sao Paulo woolly opossum Sao Paulobuidelrat 74 C.p.trinitatis van de Drie-eenheid = Trinidad Trinidad woolly opossum Gele Trinidadbuidelrat 75 Caluromysiops lijkend op Caluromys Black-shouldered opossums Gekraagde buidelratten 76 Caluromysiops irrupta ingedrongen Black-shouldered opossum Opossum à épaules noires Schwarzschulterbeutelratte Raposa lanuda de hombros negros Gekraagde buidelrat 77 Hyladelphinae G.:bos, baarmoeder + inae Kalinowski's opossums Kalinowski's buidelratten 78 Hyladelphys G.:bos, baarmoeder Kalinowski's opossums Kalinowski's buidelratten 79 Hyladelphys kalinowskii Jan Kalinowski Kalinowski's opossum Opossum de Kalinowski Kalinowkis Zwergbeutelratte Marmosa de Kalinowski Kalinowski's buidelrat 80 Kalinowski's mouse opossum 81 Peru gracile mouse opossum 82 Didelphinae G.:twee baarmoeders True opossums Buidelratonderfamilie 83 Marmosini van Marmosa Marmosid opossums Dwergbuidelratten s.l. 84 Marmosa waterspuwer Mouse opossums Dwergbuidelratten s.s. 85 Marmosa rubra rood Red mouse opossum Opossum roux Rote Zwergbeutelratte Marmosa rojiza Rode dwergbuidelrat 86 Marmosa simonsi Perry Oveitt Simons Simons's mouse opossum Opossum de Simons Simons Zwergbeutelratte Marmosa de Simons Simons' dwergbuidelrat 87 Marmosa isthmica van de isthmus Panama mouse opossum Opossum isthmique Panama-Zwergbeutelratte Marmosa de Panamá Panamese dwergbuidelrat 88 Isthmian mouse opossum 89 Marmosa zeledoni José Castulo Zeledón Zeledon's mouse opossum Opossum de Zeledon Zeledons Zwergbeutelratte Marmosa de Zeledón Zeledons dwergbuidelrat 90 Marmosa mexicana Mexicaans Mexican mouse opossum Opossum de Mexique Mexico-Zwergbeutelratte Marmosa de México Mexicaanse dwergbuidelrat 91 Marmosa xerophila droogteliefhebber Dryland mouse opossum Opossum xérophile Trockenland-Zwergbeutelratte Marmosa de La Guajira Woestijndwergbuidelrat 92 Guajira mouse opossum 93 Orange mouse opossum 94 Pale mouse opossum 95 Marmosa robinsoni Christopher Robinson Robinson's mouse opossum Opossum de Robinson Robinsons Zwergbeutelratte Marmosa de Robinson Robinsons dwergbuidelrat 96 Marmosa tyleriana Tyleria- bos, Sidney F.Tyler Tyleria mouse opossum Opossum des tépuis Tepui-Zwergbeutelratte Marmosa de Tyler Tepuidwergbuidelrat 97 Tyler's mouse opossum 98 Marmosa waterhousii George Robert Waterhouse Waterhouse's mouse opossum Opossum de Waterhouse Waterhouse-Zwergbeutelratte Marmosa de Waterhouse Waterhouse' dwergbuidelrat 99 Marmosa macrotarsus Grote middenvoet Western Amazonian mouse opossum Opossum macrotarse Grossfuss-Zwergbeutelratte Marmosa amazónica Amazonedwergbuidelrat 100 Marmosa murina muisachtig Linnaeus's mouse opossum Opossum murin Maus-Zwergbeutelratte Marmosa de Linneo Aeneasdwergbuidelrat 101 Murine mouse opossum Aeneasrat 102 Murine opossum 103 Marmosa andersoni Sydney Anderson Anderson's mouse opossum Opossum d'Anderson Andersons Zwergbeutelratte Marmosa de Anderson Andersons dwergbuidelrat 104 Heavy-browed mouse opossum 105 Marmosa lepida aangenaam Rufous mouse opossum Opossum de Bartlett Fuchsrote Zwergbeutelratte Marmosa rufa Vosrode dwergbuidelrat 106 Little rufous mouse opossum 107 Marmosa constantiae van Constance White-bellied woolly mouse opossum Opossum de Constance Weissbauch-Zwergbeutelratte Marmosa lanuda de vientre claro Witbuikdwergbuidelrat 108 Bay-colored mouse opossum 109 Pale bellied woolly mouse opossum 110 Marmosa regina koningin Bare-tailed woolly mouse opossum Opossum royal Nacktschwanz-Zwergbeutelratte Marmosa lanuda de cola desnuda Kaalstaartdwergbuidelrat 111 Short-furred woolly mouse opossum 112 M.r.regina L.: koningin Short-furred mouse opossum Korthaardwergbuidelrat 113 M.r.germana L.: vol Germana mouse opossum Ecuadoraanse dwergbuidelrat 114 M.r.raposa L.: vos Andean mouse opossum Andesdwergbuidelrat 115 Marmosa demararae Demarara, Guyana North-eastern woolly mouse opossum Opossum de Demarara Nordöstliche Zwergbeutelratte Marmosa lanuda septentrional Demararadwergbuidelrat 116 Long-furred woolly mouse opossum 117 Woolly mouse opossum 118 M.d.demerarae Demarara, Guyana Quíca Guyaanse dwergbuidelrat 119 M.d.areniticola zandbewoner? Venezuela woolly mouse opossum Roraimadwergbuidelrat 120 M.d.domina vrouwe Amazonian mouse opossum Acredwergbuidelrat 121 M.d.esmaraldae Esmeralda, Venezuela Esmeralda mouse opossum Esmeraldadwerbuidelrat 122 M.d.meridae Merida, Venezuela Merida mouse opossum Meridadwergbuidelrat 123 Marmosa alstoni Edward Ricard Alston Alston's woolly mouse opossum Opossum d'Alston Alstons Zwergbeutelratte Marmosa lanuda de Alston Alstons dwergbuidelrat 124 Altson's mouse opossum
Recommended publications
  • Can Kangaroos Survive in the Wheatbelt?
    Journal of the Department of Agriculture, Western Australia, Series 4 Volume 31 Number 1 1990 Article 4 1-1-1990 Can kangaroos survive in the wheatbelt? Graham Arnold Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4 Part of the Biodiversity Commons, Environmental Monitoring Commons, and the Other Animal Sciences Commons Recommended Citation Arnold, Graham (1990) "Can kangaroos survive in the wheatbelt?," Journal of the Department of Agriculture, Western Australia, Series 4: Vol. 31 : No. 1 , Article 4. Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol31/iss1/4 This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact [email protected]. Can kangaroos survive in the wheaibelt? mm mmmm By Graham Arnold, Senior Principal Research Scientist, CSIRO Division of Wildlife and Ecology, Helena Valley One of the costs of agricultural development in Western Australia over the past 100 years has been the loss of most of the native vegetation and, consequently, massive reductions in the numbers of most of our native fauna. Thirteen mammal species are extinct and many bird and mammal species are extinct in some areas. These losses will increase as remnant native vegetation degrades under the impact of nutrients washed and blown from farmland, from the invasion by Western grey kangaroo grazing weeds and from grazing sheep. on pasture in the early morning. Even kangaroos are affected.
    [Show full text]
  • Special Publications Museum of Texas Tech University Number 63 18 September 2014
    Special Publications Museum of Texas Tech University Number 63 18 September 2014 List of Recent Land Mammals of Mexico, 2014 José Ramírez-Pulido, Noé González-Ruiz, Alfred L. Gardner, and Joaquín Arroyo-Cabrales.0 Front cover: Image of the cover of Nova Plantarvm, Animalivm et Mineralivm Mexicanorvm Historia, by Francisci Hernández et al. (1651), which included the first list of the mammals found in Mexico. Cover image courtesy of the John Carter Brown Library at Brown University. SPECIAL PUBLICATIONS Museum of Texas Tech University Number 63 List of Recent Land Mammals of Mexico, 2014 JOSÉ RAMÍREZ-PULIDO, NOÉ GONZÁLEZ-RUIZ, ALFRED L. GARDNER, AND JOAQUÍN ARROYO-CABRALES Layout and Design: Lisa Bradley Cover Design: Image courtesy of the John Carter Brown Library at Brown University Production Editor: Lisa Bradley Copyright 2014, Museum of Texas Tech University This publication is available free of charge in PDF format from the website of the Natural Sciences Research Laboratory, Museum of Texas Tech University (nsrl.ttu.edu). The authors and the Museum of Texas Tech University hereby grant permission to interested parties to download or print this publication for personal or educational (not for profit) use. Re-publication of any part of this paper in other works is not permitted without prior written permission of the Museum of Texas Tech University. This book was set in Times New Roman and printed on acid-free paper that meets the guidelines for per- manence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources. Printed: 18 September 2014 Library of Congress Cataloging-in-Publication Data Special Publications of the Museum of Texas Tech University, Number 63 Series Editor: Robert J.
    [Show full text]
  • Macropod Herpesviruses Dec 2013
    Herpesviruses and macropods Fact sheet Introductory statement Despite the widespread distribution of herpesviruses across a large range of macropod species there is a lack of detailed knowledge about these viruses and the effects they have on their hosts. While they have been associated with significant mortality events infections are usually benign, producing no or minimal clinical effects in their adapted hosts. With increasing emphasis being placed on captive breeding, reintroduction and translocation programs there is a greater likelihood that these viruses will be introduced into naïve macropod populations. The effects and implications of this type of viral movement are unclear. Aetiology Herpesviruses are enveloped DNA viruses that range in size from 120 to 250nm. The family Herpesviridae is divided into three subfamilies. Alphaherpesviruses have a moderately wide host range, rapid growth, lyse infected cells and have the capacity to establish latent infections primarily, but not exclusively, in nerve ganglia. Betaherpesviruses have a more restricted host range, a long replicative cycle, the capacity to cause infected cells to enlarge and the ability to form latent infections in secretory glands, lymphoreticular tissue, kidneys and other tissues. Gammaherpesviruses have a narrow host range, replicate in lymphoid cells, may induce neoplasia in infected cells and form latent infections in lymphoid tissue (Lachlan and Dubovi 2011, Roizman and Pellet 2001). There have been five herpesvirus species isolated from macropods, three alphaherpesviruses termed Macropodid Herpesvirus 1 (MaHV1), Macropodid Herpesvirus 2 (MaHV2), and Macropodid Herpesvirus 4 (MaHV4) and two gammaherpesviruses including Macropodid Herpesvirus 3 (MaHV3), and a currently unclassified novel gammaherpesvirus detected in swamp wallabies (Wallabia bicolor) (Callinan and Kefford 1981, Finnie et al.
    [Show full text]
  • Checklist of the Mammals of Indonesia
    CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation i ii CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation By Ibnu Maryanto Maharadatunkamsi Anang Setiawan Achmadi Sigit Wiantoro Eko Sulistyadi Masaaki Yoneda Agustinus Suyanto Jito Sugardjito RESEARCH CENTER FOR BIOLOGY INDONESIAN INSTITUTE OF SCIENCES (LIPI) iii © 2019 RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI) Cataloging in Publication Data. CHECKLIST OF THE MAMMALS OF INDONESIA: Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation/ Ibnu Maryanto, Maharadatunkamsi, Anang Setiawan Achmadi, Sigit Wiantoro, Eko Sulistyadi, Masaaki Yoneda, Agustinus Suyanto, & Jito Sugardjito. ix+ 66 pp; 21 x 29,7 cm ISBN: 978-979-579-108-9 1. Checklist of mammals 2. Indonesia Cover Desain : Eko Harsono Photo : I. Maryanto Third Edition : December 2019 Published by: RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI). Jl Raya Jakarta-Bogor, Km 46, Cibinong, Bogor, Jawa Barat 16911 Telp: 021-87907604/87907636; Fax: 021-87907612 Email: [email protected] . iv PREFACE TO THIRD EDITION This book is a third edition of checklist of the Mammals of Indonesia. The new edition provides remarkable information in several ways compare to the first and second editions, the remarks column contain the abbreviation of the specific island distributions, synonym and specific location. Thus, in this edition we are also corrected the distribution of some species including some new additional species in accordance with the discovery of new species in Indonesia.
    [Show full text]
  • Platypus Collins, L.R
    AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March.
    [Show full text]
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • MORNINGTON PENINSULA BIODIVERSITY: SURVEY and RESEARCH HIGHLIGHTS Design and Editing: Linda Bester, Universal Ecology Services
    MORNINGTON PENINSULA BIODIVERSITY: SURVEY AND RESEARCH HIGHLIGHTS Design and editing: Linda Bester, Universal Ecology Services. General review: Sarah Caulton. Project manager: Garrique Pergl, Mornington Peninsula Shire. Photographs: Matthew Dell, Linda Bester, Malcolm Legg, Arthur Rylah Institute (ARI), Mornington Peninsula Shire, Russell Mawson, Bruce Fuhrer, Save Tootgarook Swamp, and Celine Yap. Maps: Mornington Peninsula Shire, Arthur Rylah Institute (ARI), and Practical Ecology. Further acknowledgements: This report was produced with the assistance and input of a number of ecological consultants, state agencies and Mornington Peninsula Shire community groups. The Shire is grateful to the many people that participated in the consultations and surveys informing this report. Acknowledgement of Country: The Mornington Peninsula Shire acknowledges Aboriginal and Torres Strait Islanders as the first Australians and recognises that they have a unique relationship with the land and water. The Shire also recognises the Mornington Peninsula is home to the Boonwurrung / Bunurong, members of the Kulin Nation, who have lived here for thousands of years and who have traditional connections and responsibilities to the land on which Council meets. Data sources - This booklet summarises the results of various biodiversity reports conducted for the Mornington Peninsula Shire: • Costen, A. and South, M. (2014) Tootgarook Wetland Ecological Character Description. Mornington Peninsula Shire. • Cook, D. (2013) Flora Survey and Weed Mapping at Tootgarook Swamp Bushland Reserve. Mornington Peninsula Shire. • Dell, M.D. and Bester L.R. (2006) Management and status of Leafy Greenhood (Pterostylis cucullata) populations within Mornington Peninsula Shire. Universal Ecology Services, Victoria. • Legg, M. (2014) Vertebrate fauna assessments of seven Mornington Peninsula Shire reserves located within Tootgarook Wetland.
    [Show full text]
  • 3.Pdf Open Access
    Veterinary World, EISSN: 2231-0916 RESEARCH ARTICLE Available at www.veterinaryworld.org/Vol.13/November-2020/3.pdf Open Access Genetic characterization and phylogenetic study of Indonesian cuscuses from Maluku and Papua Island based on 16S rRNA gene Rini Widayanti1 , Richo Apriladi Bagas Pradana1 , Rony Marsyal Kunda2 and Suhendra Pakpahan3 1. Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; 2. Biology Study Program, Faculty of Mathematics and Natural Sciences, Universitas Pattimura, Ambon, Indonesia; 3. Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, West Java, Indonesia. Corresponding author: Suhendra Pakpahan, e-mail: [email protected] Co-authors: RW: [email protected], RABP: [email protected], RMK: [email protected] Received: 04-06-2020, Accepted: 22-09-2020, Published online: 04-11-2020 doi: www.doi.org/10.14202/vetworld.2020.2319-2325 How to cite this article: Widayanti R, Pradana RAB, Kunda RM, Pakpahan S (2020) Genetic characterization and phylogenetic study of Indonesian cuscuses from Maluku and Papua Island based on 16S rRNA gene, Veterinary World, 13(11): 2319-2325. Abstract Background and Aim: Indonesian cuscuses are now becoming scarce because of the reduction of habitat and poaching. Further, molecular characterization of Indonesian cuscuses is still very lacking. This study aimed to determine genetic markers and phylogenetic relationships of Indonesian cuscuses based on 16S rRNA gene sequences. Materials and Methods: This study used 21 cuscuses caught from two provinces and 16 islands: 13 from Maluku and eight from Papua. Cuscus samples were taken by biopsy following ethics guidelines for animals.
    [Show full text]
  • Helminths of the Common Opossum Didelphis Marsupialis
    Available online at www.sciencedirect.com Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 88 (2017) 560–571 www.ib.unam.mx/revista/ Taxonomy and systematics Helminths of the common opossum Didelphis marsupialis (Didelphimorphia: Didelphidae), with a checklist of helminths parasitizing marsupials from Peru Helmintos de la zarigüeya común Didelphis marsupialis (Didelphimorphia: Didelphidae), con una lista de los helmintos de marsupiales de Perú a,∗ a b c a Jhon D. Chero , Gloria Sáez , Carlos Mendoza-Vidaurre , José Iannacone , Celso L. Cruces a Laboratorio de Parasitología, Facultad de Ciencias Naturales y Matemática, Universidad Nacional Federico Villarreal, Jr. Río Chepén 290, El Agustino, 15007 Lima, Peru b Universidad Alas Peruanas, Jr. Martínez Copagnon Núm. 1056, 22202 Tarapoto, San Martín, Peru c Laboratorio de Parasitología, Facultad de Ciencias Biológicas, Universidad Ricardo Palma, Santiago de Surco, 15039 Lima, Peru Received 9 June 2016; accepted 27 March 2017 Available online 19 August 2017 Abstract Between May and November 2015, 8 specimens of Didelphis marsupialis Linnaeus, 1758 (Didelphimorphia: Didelphidae) collected in San Martín, Peru were examined for the presence of helminths. A total of 582 helminths representing 11 taxa were identified (2 digeneans and 9 nematodes). Five new host records and 4 species of nematodes [Gongylonemoides marsupialis (Vaz & Pereira, 1934) Freitas & Lent, 1937, Trichuris didelphis Babero, 1960, Viannaia hamata Travassos, 1914 and Viannaia viannaia Travassos, 1914] are added to the composition of the helminth fauna of the marsupials in this country. Further, a checklist of all available published accounts of helminth parasites reported from Peru is provided. To date, a total of 38 helminth parasites have been recorded.
    [Show full text]
  • An Investigation Into Factors Affecting Breeding Success in The
    An investigation into factors affecting breeding success in the Tasmanian devil (Sarcophilus harrisii) Tracey Catherine Russell Faculty of Science School of Life and Environmental Science The University of Sydney Australia A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy 2018 Faculty of Science The University of Sydney Table of Contents Table of Figures ............................................................................................................ viii Table of Tables ................................................................................................................. x Acknowledgements .........................................................................................................xi Chapter Acknowledgements .......................................................................................... xii Abbreviations ................................................................................................................. xv An investigation into factors affecting breeding success in the Tasmanian devil (Sarcophilus harrisii) .................................................................................................. xvii Abstract ....................................................................................................................... xvii 1 Chapter One: Introduction and literature review .............................................. 1 1.1 Devil Life History ...................................................................................................
    [Show full text]
  • Ba3444 MAMMAL BOOKLET FINAL.Indd
    Intot Obliv i The disappearing native mammals of northern Australia Compiled by James Fitzsimons Sarah Legge Barry Traill John Woinarski Into Oblivion? The disappearing native mammals of northern Australia 1 SUMMARY Since European settlement, the deepest loss of Australian biodiversity has been the spate of extinctions of endemic mammals. Historically, these losses occurred mostly in inland and in temperate parts of the country, and largely between 1890 and 1950. A new wave of extinctions is now threatening Australian mammals, this time in northern Australia. Many mammal species are in sharp decline across the north, even in extensive natural areas managed primarily for conservation. The main evidence of this decline comes consistently from two contrasting sources: robust scientifi c monitoring programs and more broad-scale Indigenous knowledge. The main drivers of the mammal decline in northern Australia include inappropriate fi re regimes (too much fi re) and predation by feral cats. Cane Toads are also implicated, particularly to the recent catastrophic decline of the Northern Quoll. Furthermore, some impacts are due to vegetation changes associated with the pastoral industry. Disease could also be a factor, but to date there is little evidence for or against it. Based on current trends, many native mammals will become extinct in northern Australia in the next 10-20 years, and even the largest and most iconic national parks in northern Australia will lose native mammal species. This problem needs to be solved. The fi rst step towards a solution is to recognise the problem, and this publication seeks to alert the Australian community and decision makers to this urgent issue.
    [Show full text]
  • Matses Indian Rainforest Habitat Classification and Mammalian Diversity in Amazonian Peru
    Journal of Ethnobiology 20(1): 1-36 Summer 2000 MATSES INDIAN RAINFOREST HABITAT CLASSIFICATION AND MAMMALIAN DIVERSITY IN AMAZONIAN PERU DAVID W. FLECK! Department ofEveilltioll, Ecology, alld Organismal Biology Tile Ohio State University Columbus, Ohio 43210-1293 JOHN D. HARDER Oepartmeut ofEvolution, Ecology, and Organismnl Biology Tile Ohio State University Columbus, Ohio 43210-1293 ABSTRACT.- The Matses Indians of northeastern Peru recognize 47 named rainforest habitat types within the G61vez River drainage basin. By combining named vegetative and geomorphological habitat designations, the Matses can distinguish 178 rainforest habitat types. The biological basis of their habitat classification system was evaluated by documenting vegetative ch<lracteristics and mammalian species composition by plot sampling, trapping, and hunting in habitats near the Matses village of Nuevo San Juan. Highly significant (p<:O.OOI) differences in measured vegetation structure parameters were found among 16 sampled Matses-recognized habitat types. Homogeneity of the distribution of palm species (n=20) over the 16 sampled habitat types was rejected. Captures of small mammals in 10 Matses-rc<:ognized habitats revealed a non-random distribution in species of marsupials (n=6) and small rodents (n=13). Mammal sighlings and signs recorded while hunting with the Matses suggest that some species of mammals have a sufficiently strong preference for certain habitat types so as to make hunting more efficient by concentrating search effort for these species in specific habitat types. Differences in vegetation structure, palm species composition, and occurrence of small mammals demonstrate the ecological relevance of Matses-rccognized habitat types. Key words: Amazonia, habitat classification, mammals, Matses, rainforest. RESUMEN.- Los nalivos Matslis del nordeste del Peru reconacen 47 tipos de habitats de bosque lluvioso dentro de la cuenca del rio Galvez.
    [Show full text]