FAO Fisheries & Aquaculture

Total Page:16

File Type:pdf, Size:1020Kb

FAO Fisheries & Aquaculture Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Cultured Aquatic Species Information Programme Sander lucioperca (Linnaeus, 1758) I. Identity V. Status And Trends a. Biological Features VI. Main Issues b. Images Gallery a. Responsible Aquaculture Practices II. Profile VII. References a. Historical Background a. Related Links b. Main Producer Countries c. Habitat And Biology III. Production a. Production Cycle b. Production Systems c. Diseases And Control Measures IV. Statistics a. Production Statistics b. Market And Trade Identity Sander lucioperca Linnaeus, 1758 [Percidae] FAO Names: En - Pike-perch, Fr - Sandre, Es - Lucioperca Biological features Body elongate, the snout pointed, head length greater than depth of body or equal to it. Upper jaw extends past eye level, small teeth in jaws and several large fangs in front also (never more of 18 branched rays). Two dorsal fins, the first spiny and separated by a narrow interspace from the second. Anal fin with 2-3 spines and 11-13 soft rays. Pelvic fins widely spaced, the distance between them almost as great as the base of one fin. Lateral line with 84-95 scales. Colour greenish-grey or brown on the back and sides becoming lighter on the lower sides and white on the belly. Young fish have 8-10 indistinct dusky bars on the sides; these are faint in the adult. Dorsal and tail fins dark spotted. View FAO FishFinder Species fact sheet Images gallery FAO Fisheries and Aquaculture Department Newly hatched larval pike-perch Weiss incubation jars with pike-perch eggs (Photograph courtesy A. Kowalska) Pike-perch grow-out pond Pike-perch RAS fingerling grow-out facility Pike-perch being stocked for RAS grow-out Pike-perch in final stage of on-growing in RAS Profile Historical background The beginnings of pike-perch culture date to the nineteenth century and are linked to carp (Cyprinus carpio) culture in earthen ponds in Central and Eastern Europe. Pike-perch was produced in insignificant quantities as a so-called additional fish. In the early twentieth century, production began of pike-perch stocking material (summer and fall fry) in earthen ponds (natural spawning) for stocking open waters. It was produced in monoculture (summer fry) or in polyculture with carp (fall fry). Pond pike-perch culture also began to develop in Western Europe (e.g. France) in the second half of the twentieth century. This type of pike-perch production has been and remains extensive in character, and this species has been and currently is viewed only as a supplementary fish. At the beginning of the twenty-first century, the first aquaculture facilities producing pike-perch in recirculation aquaculture systems (RAS) were established in Western Europe and, by the close of the first decade, there were less than ten of these facilities. Methods for intensive pike-perch culture are in the initial stages of development but this species is considered to offer good prospects for European aquaculture. Main producer countries FAO Fisheries and Aquaculture Department Currently, the main producing countries are the Czech Republic, Denmark, Hungary, Romania, Tunisia and Ukraine. In addition to the other countries shown on the FAO map, pike-perch are also grown in the Netherlands and Poland. Main producer countries of Pike-perch (FAO Fishery Statistics, 2009) Habitat and biology Pike-perch inhabits lakes, rivers, reservoirs and the coastal marine waters (in the catchment areas of the Caspian, Aral, Baltic, Black, and North seas. It is now widespread in France and western Europe, is rapidly extending its range in eastern and central England, and is acclimated to the waters of northern Africa (Algeria, Morocco, Tunisia), North America, and Asia (e.g. China, Kyrgyzstan). This species generally attains lengths of 50-70 cm and body weights (BW) of 2-5 kg but a maximum length of 130 cm and weights of 12-18 kg have been reported. Males reach sexual maturity at 2-3 years, females at 3-4 years. Depending on geographical zone, spawning is from April to mid June. Water temperature at spawning initiation ranges from 8.0 to 15.0 °C. Generally, water depth at natural spawning grounds ranges from 0.5 to 3.0 m. Pike-perch deposit eggs into nests that they have built on sand, gravel (preferred substrate), or aquatic vegetation. Males actively guard nests with eggs for 5-8 days until the larvae hatch. Relative fecundity is 170- 230 eggs/g BW. Eggs are small; the diameter of unhardened and hardened eggs range from 0.6-1.0 mm and 0.9-1.6 mm respectively. One kg comprises 1.5-2.2 million (unhardened) or 1.0-1.5 million (hardened) eggs. Incubation time is from 3 days (20 °C) to 11 days (10 °C) (80-120 °D). Incubation time for pike-perch eggs (from fertilization to larval hatching) can be calculated with the formula: I = 30 124 × T-2,07, where: I – incubation time (h), T – water temperature (°C). Larvae are small and devoid of pigment: BW – 0.4-0.5 mg and body length TL – 4.0-5.5 mm. Resorption of yolk sac reserves and lipid droplet is completed at TL 5.8-6.5 mm. Scales begin being laid down at TL 23-28 mm (initially on the caudal peduncle). Pike-perch are regarded as having three trophic phases: plankton phase until fish are TL 13-30 mm; mixed feed stage (invertebrate fauna + fish) until fish are TL 24-70 mm; and predatory phase (feed comprised exclusively of fish) from TL 34-80 mm. Production Production cycle FAO Fisheries and Aquaculture Department Production cycle of Pike-perch Production systems FAO Fisheries and Aquaculture Department Seed supply Spawners are obtained mostly from natural waters. Catches are made in fall (October-November; summer seine) or spring (March-April; trap gear, e.g. fyke-nets). Fish caught in the fall are held in earthen ponds. For each 1 kg of spawners there should be 10 m² of pond bottom and 1.5-3.5 kg of fodder fish. Spawners should be removed from the ponds when the mean daily water temperature is 8.0-9.0 °C and transported to spawning ponds or hatcheries. A few farms keep broodstocks, usually numbering 50-80 individuals/ha, which are kept in earthen ponds. A few farms produce pike-perch in RAS, and keep spawners in these systems (initial stages of domestication). Pike-perch do not exhibit distinct sexual dimorphism. Males usually exhibit breeding coloration in the pre- spawning period when they are darker than females. Females have distinctly more distended abdomens. Females with body weights of 1.5-4.0 kg and males of 0.8-2.0 kg are recommended for artificial spawning. Pike-perch spawners should be transported in tanks with aeration. If the transport time is les than 2 hours and the water temperature is 8.0-15.0 °C in 1 m³ tanks, a maximum of 60 kg of fish can be moved. During transport it is recommended that anti-stress agents such as table salt (5 g NaCl/litre) are applied. Several methods of pike-perch reproduction are used: Uncontrolled natural reproduction. One set of spawners (spawner set – 1 ♀ + 2 ♂) per 1-4 ha is released into earthen carp ponds. After spawning, the fish are left in the pond for 6-8 weeks until stocking material - summer fry - has been obtained. Controlled natural reproduction. Smaller earthen ponds are used (storage or wintering ponds) with surface areas of approximately 500 to 1 500 m² and depths of 1.5-2.0 m. Spawning nests (60 × 60 cm) are placed on pond bottoms 3-5 m apart. The substrate can be turf, sea grass, rice straw, or alder or willow roots. There should be 10 percent more nests than males. There should also be 10 percent more males than females. Nests with eggs are transported to a hatchery or another pond. Reproduction in lake cages. In Finland, cylindrical floating cages with a (diameter 2.0 m; depth 2.0 m) are used. In Poland pens are cubic with sides measuring 2.0 m. Spawning substrate is placed in the cages (as above) along with spawning sets. The females are injected hormonally, usually with human chorionic gonadotropin (hCG) or carp pituitary extract (CPE). Males usually do not require hormonal stimulation. Nests with eggs are moved to ponds or hatcheries. Artificial reproduction. After being transported to the hatchery, the fish are sorted by sex, and females by their degree of maturity. A catheter is used to sample eggs, which are then fixed in Serra's fixative to assess the position of the nucleus (on a 4-degree scale). Females are stimulated with hormone injections (hCG – 200-600 IU/kg BW or CPE – 2-5 mg/kg BW). Males receive half of the dose applied to females. After the sex products are obtained, the eggs are dry fertilized (1-2 ml semen/100 g eggs). Adhesiveness is removed from the eggs by rinsing them in an aqueous solution of tannin at a concentration of 0.5-1.0 g/litre water, bath time 2-5 min. Enzymatic preparations can also be applied – 0.5 percent aqueous protease solution (2 min for adhesive removal). Eggs are incubated in Weiss jars. Prophylactic baths are used to prevent the development of mould (e.g. 100 ppm formalin for 5 min). Out-of-season reproduction. This is the newest method, and it is used at hatcheries equipped with RAS and cooling systems for reducing water temperatures. Fish are stimulated environmentally (temperature and photoperiod). Thermal stimulation lasts for 18 weeks – 8 weeks cooling phase (20-8 °C), 6 weeks chilling phase (8-4-8 °C), 4 weeks warming phase (8-12 °C).
Recommended publications
  • A Thesis Entitled Molecular, Morphological, and Biogeographic Resolution of Cryptic Taxa in the Greenside Darter Etheostoma Blen
    A Thesis Entitled Molecular, morphological, and biogeographic resolution of cryptic taxa in the Greenside Darter Etheostoma blennioides complex By Amanda E. Haponski Submitted as partial fulfillment of the requirements for The Master of Science Degree in Biology (Ecology-track) ____________________________ Advisor: Dr. Carol A. Stepien ____________________________ Committee Member: Dr. Timothy G. Fisher ____________________________ Committee Member: Dr. Johan F. Gottgens ____________________________ College of Graduate Studies The University of Toledo December 2007 Copyright © 2007 This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Molecular, morphological, and biogeographic resolution of cryptic taxa in the Greenside Darter Etheostoma blennioides complex Amanda E. Haponski Submitted as partial fulfillment of the requirements for The Master of Science Degree in Biology (Ecology-track) The University of Toledo December 2007 DNA sequencing has led to the resolution of many cryptic taxa, which are especially prevalent in the North American darter fishes (Family Percidae). The Greenside Darter Etheostoma blennioides commonly occurs in the lower Great Lakes region, where two putative subspecies, the eastern “Allegheny” type E. b. blennioides and the western “Prairie” type E. b. pholidotum , overlap. The objective of this study was to test the systematic identity and genetic divergence distinguishing the two subspecies in areas of sympatry and allopatry in comparison to other subspecies and close relatives. DNA sequences from the mtDNA cytochrome b gene and control region and the nuclear S7 intron 1 comprising a total of 1,497 bp were compared from 294 individuals across 18 locations, including the Lake Erie basin and the Allegheny, Meramec, Obey, Ohio, Rockcastle, Susquehanna, and Wabash River systems.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • 2015 Lateral Lines Volume 33 Number
    Volume 33, Issue: 3 December 20, 2015 in this issue >>> 3 President's corner 4 2016 Iowa AFS meeting 5 Call for Papers Iowa Chapter of the American Fisheries Society Lateral Lines current topics >>> Crystal Darter, 6 Let the Invasion Begin Mississippi River 10 Big Springs Appreciation Day— Connects Farmers to the Path of Page 6-9 Water that Drains from Their Lands 13 Getting Data from the Field to your Desktop Faster 17 Effectiveness of Pulsed Direct Current at Reducing Walleye AFS Escapement from a Simulated Reservoir End-of-Year Book Sale IN THE NEWS: 18 Foray into the Wilds of Iowa finds Northern Pearl Dace and Least Darter but not Northern Sunfish 24 Why Didn’t the Fish Cross Under the Road? 26 Mountain Growth Helped Spawn Fish Diversity in New Zealand Volume 33, Issue: 3 December 20 , 2015 Visit Iowa AFS on the web: http://www.fisheriessociety.org/iowa/ index.html OFFICERS PRESIDENT SECRETARY/TREASURER Our Mission: Lewis Bruce Ryan Hupfeld To improve the Cold Springs Station Rathbun Hatchery conservation and 57744 Lewis Rd 15053 Hatchery Place sustainability of fishery Lewis, IA 51544 Moravia, IA 52531 resources and aquatic (712)769-2587 (641)647-2406 ecosystems by [email protected] [email protected] advancing fisheries and aquatic science PRESIDENT-ELECT MEMBERSHIP CHAIR and promoting the Jeff Kopaska D. Allen Pattillo development of fisheries professionals. Boone Research Fisheries Extension 1436 225th St 339 Science II Boone, IA 50036 Iowa State University (515)432-2823 Ames, IA 50011 [email protected] (515)294-8616 [email protected] COMMITTEE CHAIRS Audit Continuing Education Best Paper Ben Dodd Clay Pierce Chad Dolan [email protected] [email protected] [email protected] Membership Student Affairs Newsletter Editor D.
    [Show full text]
  • Geological Survey of Alabama Calibration of The
    GEOLOGICAL SURVEY OF ALABAMA Berry H. (Nick) Tew, Jr. State Geologist WATER INVESTIGATIONS PROGRAM CALIBRATION OF THE INDEX OF BIOTIC INTEGRITY FOR THE SOUTHERN PLAINS ICHTHYOREGION IN ALABAMA OPEN-FILE REPORT 0908 by Patrick E. O'Neil and Thomas E. Shepard Prepared in cooperation with the Alabama Department of Environmental Management and the Alabama Department of Conservation and Natural Resources Tuscaloosa, Alabama 2009 TABLE OF CONTENTS Abstract ............................................................ 1 Introduction.......................................................... 1 Acknowledgments .................................................... 6 Objectives........................................................... 7 Study area .......................................................... 7 Southern Plains ichthyoregion ...................................... 7 Methods ............................................................ 8 IBI sample collection ............................................. 8 Habitat measures............................................... 10 Habitat metrics ........................................... 12 The human disturbance gradient ................................... 15 IBI metrics and scoring criteria..................................... 19 Designation of guilds....................................... 20 Results and discussion................................................ 22 Sampling sites and collection results . 22 Selection and scoring of Southern Plains IBI metrics . 41 1. Number of native species ................................
    [Show full text]
  • Status and Critical Habitat of Rare Fish Species in the Mississippi River from the Coon Rapids Dam to the Iowa Border
    State Wildlife Grant Final Report Status and critical habitat of rare fish species in the Mississippi River from the Coon Rapids Dam to the Iowa border Konrad Schmidt (Nongame Fish Program) Nick Proulx (Bio-criteria Development Program) Minnesota Department of Natural Resources Division of Ecological Resources 9 March 2009 Paddlefish (Polyodon spathula) from Lake Pepin Abstract From 2006 through 2008, the Mississippi River was surveyed from the Coon Rapids Dam (Pool A) to the Iowa border (Pool 9). Sampling gear consisted of boat and backpack electroshockers, gill nets, trap nets, trawls, seines, dip nets and setlines. Habitats included main and side channels, backwaters, tributary mouths and tailwater zones of dams. The three year study found 16 of 22 Species in the Greatest Conservation Need (SGCN) reported from the Minnesota reach of the Mississippi River. Introduction The study area covers 192 river miles and includes 12 pools impounded by locks and dams that were originally designed for commercial navigation, but this corridor has become extremely popular with recreational watercraft users. The US Army Corps of Engineers maintains the navigation channel of the pools at a minimum depth of nine feet. Prior to the lock and dam system, thousands of closing and wing dams were constructed during the late 1800s. The closing dams reduced flow to backwaters and side channels, while wing dams directed current down the main channel to maintain navigable depths. These structures are not maintained, but most remain and continue to function. The long-term results of this altered flow regime has filled in many side channels and backwaters with sediments or greatly reduced their depth and size.
    [Show full text]
  • Geological Survey of Alabama Calibration of The
    GEOLOGICAL SURVEY OF ALABAMA Berry H. (Nick) Tew, Jr. State Geologist ECOSYSTEMS INVESTIGATIONS PROGRAM CALIBRATION OF THE INDEX OF BIOTIC INTEGRITY FOR THE SOUTHERN PLAINS ICHTHYOREGION IN ALABAMA OPEN-FILE REPORT 1210 by Patrick E. O'Neil and Thomas E. Shepard Prepared in cooperation with the Alabama Department of Environmental Management and the Alabama Department of Conservation and Natural Resources Tuscaloosa, Alabama 2012 TABLE OF CONTENTS Abstract ............................................................ 1 Introduction.......................................................... 2 Acknowledgments .................................................... 6 Objectives........................................................... 7 Study area .......................................................... 7 Southern Plains ichthyoregion ...................................... 7 Methods ............................................................ 9 IBI sample collection ............................................. 9 Habitat measures............................................... 11 Habitat metrics ........................................... 12 The human disturbance gradient ................................... 16 IBI metrics and scoring criteria..................................... 20 Designation of guilds....................................... 21 Results and discussion................................................ 23 Sampling sites and collection results . 23 Selection and scoring of Southern Plains IBI metrics . 48 Metrics selected for the
    [Show full text]
  • Caviar, Soup and Other Dishes Made of Eurasian Ruffe, Gymnocephalus
    Svanberg and Locker Journal of Ethnic Foods (2020) 7:3 Journal of Ethnic Foods https://doi.org/10.1186/s42779-019-0042-2 ORIGINAL ARTICLE Open Access Caviar, soup and other dishes made of Eurasian ruffe, Gymnocephalus cernua (Linnaeus, 1758): forgotten foodstuff in central, north and west Europe and its possible revival Ingvar Svanberg1* and Alison Locker2 Abstract Background: Many freshwater fish species that were earlier appreciated by consumers have disappeared in the central, north and west European foodways. Although they were regarded as healthy and tasty, commercially captured marine species and highly processed products have nowadays replaced these fishes. The global transformations of the food system contribute to the erosion of many local foodstuffs. Habitual tastes disappear. Methods: The article is based on a vast amount of scattered original data found in sources such as in local ethnographical studies, fishing reports, topographic literature, zoological literature, archaeological fish reports, and cookery books Results and discussion: This article discusses how Eurasian ruffe, Gymnocephalus cernua (L., 1758), once was used, and the reason for its disappearance, as foodstuff in some parts of Europe. Actually, it is a fish with potential for a revival as fine food. The authors discuss the chances of its rediscovery as a foodstuff, which could be used for instance within the concept of the New Nordic Cuisine and beyond. There are also environmental reasons to increase the use of local biodiversity not to mention making tastier
    [Show full text]
  • The Israeli Journal of Aquaculture - Bamidgeh, IIC:63.2011.545, 7 Pages
    The Israeli Journal of Aquaculture - Bamidgeh, IIC:63.2011.545, 7 pages The IJA appears exclusively as a peer- reviewed on -line Open Access journal at http://www.siamb.org.il Sale of IJA papers is strictly forbidden. Comparison of Growth in Pike-Perch (Sander lucioperca) and Hybrids of Pike-Perch (S. lucioperca) × Volga Pike- Perch (S. volgensis) T. Müller1*, M. Bódis2, B. Urbányi1, M. Bercsényi2 1 Department of Aquaculture, Institute of Environmental and Landscape Management, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, H-2103 Páter Károly u.1, Hungary 2 Georgikon Faculty, Pannon University, Keszthely, H-8360 Deák F. u.16, Hungary (Received 1.2.10, Accepted 6.3.10) Key words: Sander lucioperca, Sander volgensis, S. lucioperca x S. volgensis hybrids, comparative growth Abstract Growth of intensively cultured pike-perch Sander lucioperca (L.) and hybrids of pike-perch females × Volga pike-perch (S. volgensis Gmelin, 1789) males (1.75 g) were compared in a 35-day experiment. Fish were sorted into three groups (50 fish/aquarium): S. lucioperca grown separately (Group P), hybrids grown separately (Group H), and a mixed group of 25 S. lucioperca (Group Mp) grown together with 25 hybrids (Group Mh). The stocking density was 0.44 g/l. Final body weights were 6.83 g, 6.54 g, 5.17 g, and 4.84 g, and specific growth rates were 3.9%/day, 3.75%/day, 3.1%/day, and 2.89%/day, for groups Mp, P, Mh, and H, respectively. The weight, length, and specific growth rates of the S.
    [Show full text]
  • Kyfishid[1].Pdf
    Kentucky Fishes Kentucky Department of Fish and Wildlife Resources Kentucky Fish & Wildlife’s Mission To conserve, protect and enhance Kentucky’s fish and wildlife resources and provide outstanding opportunities for hunting, fishing, trapping, boating, shooting sports, wildlife viewing, and related activities. Federal Aid Project funded by your purchase of fishing equipment and motor boat fuels Kentucky Department of Fish & Wildlife Resources #1 Sportsman’s Lane, Frankfort, KY 40601 1-800-858-1549 • fw.ky.gov Kentucky Fish & Wildlife’s Mission Kentucky Fishes by Matthew R. Thomas Fisheries Program Coordinator 2011 (Third edition, 2021) Kentucky Department of Fish & Wildlife Resources Division of Fisheries Cover paintings by Rick Hill • Publication design by Adrienne Yancy Preface entucky is home to a total of 245 native fish species with an additional 24 that have been introduced either intentionally (i.e., for sport) or accidentally. Within Kthe United States, Kentucky’s native freshwater fish diversity is exceeded only by Alabama and Tennessee. This high diversity of native fishes corresponds to an abun- dance of water bodies and wide variety of aquatic habitats across the state – from swift upland streams to large sluggish rivers, oxbow lakes, and wetlands. Approximately 25 species are most frequently caught by anglers either for sport or food. Many of these species occur in streams and rivers statewide, while several are routinely stocked in public and private water bodies across the state, especially ponds and reservoirs. The largest proportion of Kentucky’s fish fauna (80%) includes darters, minnows, suckers, madtoms, smaller sunfishes, and other groups (e.g., lam- preys) that are rarely seen by most people.
    [Show full text]
  • Quick ID Features for Bait Fish [Pdf]
    OHIO DEPARTMENT OF NATURAL RESOURCES DIVISION OF WILDLIFE Quick ID Features for Baitfish DEALER EDITION PUB 5487-D Quick ID Features for Baitfish TABLE OF CONTENTS Common Bait Fish-At a Glance ................................03 Sliver Carp and Bighead Carp ..................................18 Common Minnows: Family Cyprinidae .....................04 Grass Carp and Black Carp ......................................19 Suckers: Family Catostomidae .................................05 Silver Carp, Bighead Carp, and Golden Shiner ............20 Gizzard Shad: Family Clupeidae ..............................06 Silver Carp, Bighead Carp, Mooneye, and Goldeye .......21 Skipjack Herring: Family Clupeidae .........................07 Silver Carp, Bighead Carp, and Skipjack Herring ..........22 Smelt (Rainbow): Family Osmeridae ........................08 Silver Carp, Bighead Carp, and Gizzard Shad ..............23 Brook Silverside: Family Atherinidae .........................09 Bowfin, Burbot, and Snakehead ...............................24 Brook Stickleback: Family Gasterosteidae .................10 Blackstripe Topminnow and Northern Studfish ..........25 Trout-Perch: Family Percopsidae .............................11 Mottled Sculpin, Tubenose Goby, and Round Goby ....26 Sculpins: Family Cottidae .......................................12 Yellow Perch, White Bass, and Eurasian Ruffe .............27 Darters: Family Percidae ........................................13 White Bass, White Perch, and Freshwater Drum ..........28 Blackstripe Topminnow: Family
    [Show full text]
  • (Percidae) Is the Valid Generic Name for Walleye, Sauger, and Eurasian
    ESSAY Stizostedion Rafinesque, 1820 (Percidae) is the Valid Generic Name for Walleye, Sauger, and Eurasian Pikeperch John Clay Bruner | University of Alberta, Department of Biological Sciences, 116 St & 85 Ave, Edmonton, Alberta T6G 2E9, Canada. E-mail: [email protected] Theodore Nicholas Gill’s misconception of Lorenz Okenfuss’s use of the Latvian vernacular name Sander for Cuvier’s French vernacular name Les Sandres, as a properly coined Latin name, led to Gill’s and subsequent authors’ incorrect acceptance of Sander as the senior synonym for Stizostedion. However, some authors, aware Sander is a common name and never proposed as a valid generic name, have continued using the correct generic name Stizostedion. American Fisheries Society guidelines for pub- lication in their journals and the Canadian Journal of Fisheries and Aquatic Sciences requires authors to use the current edition of Common and Scientific Names of Fishes from the United States, Canada, and Mexico, which has incorrectly used Sander in the last two editions. Thus, fishery biologists have been forced to use an incorrect generic name for one of the most important freshwater fisheries of North America. Stability of zoological nomenclature will never be at- are found possessing the same distinctions, in which tained as long as authors exercise indiscriminately their case my two perches may then be called Stizostedion privilege of introducing into the literature any name salmoneum, and Lepibema chrysops. that suits their fancy or convenience. Few users of sci- entific terminology have the means, the time, or the in- Rafinesque’s Stizostedion thus was the first correctly de- clination to verify the validity of each name they use.
    [Show full text]
  • Pikeperch Hybrid Sander Lucioperca × Sander Volgensis
    PANNON PIKEPERCH: PIKEPERCH HYBRID SANDER LUCIOPERCA × SANDER VOLGENSIS TAMÁS MÜLLER* – MIKLÓS BERCSÉNYI** – BENCE SCHMIDT-KOVÁCS*** – GÁBOR SZILÁGYI*** – ZOLTÁN BOKOR* – BÉLA URBÁNYI* *Department of Aquaculture, Szent István University, Gödöllô, Hungary e-mail:[email protected] **University of Pannonia Georgikon Faculty, Keszthely, Hungary ***V’95 Ltd., Nagyatád, Halastó, Hungary Due to the geographical and climatic conditions of the pikeperch consumes live food, thus, this species require Carpathian basin, the dominant fish species of standard a specific diet. fish farms is the common carp. According to last year’s The lack of knowledge on (pond) culture conditions statistical summary of fish production of pond culture, inhibited evaluation of intensive rearing methods so far. 75% of the total harvested market-size fish (14,282 tons) In the last 15 years, research on percids has accelerated. is common carp and 1,26% is the rate of carnivorous Pikeperch rearing on formulated feeds is a new alternative species (catfish, pikeperch, pike). The amount of way for the intensification of its production (Bódis et al. pikeperch (Sander lucioperca) was only 27,1 tons (0,19%!) 2007, Kestemont et al. 2007). However, there is another (Statisztikai Jelentések, lehalászás Jelentés, 2015, in possible way to increase the production of percids. Instead Hungarian). Because of a market demand for better of technology improvement, a new product shall be created meat quality and less fattening products the production which can be implemented and used in a production of rate of Hungarian carnivorous fish should be increased. pond culture. This way, there is no need for an expensive A significant increase of pikeperch production can be farm construction.
    [Show full text]