The CO-OPS Storm Quicklook

Total Page:16

File Type:pdf, Size:1020Kb

The CO-OPS Storm Quicklook Storm QuickLook Lori Fenstermacher [email protected] Storm Tide Monitoring The CO-OPS Storm QuickLook The product provides a synopsis of near real-time oceanographic and meteorological observations at locations affected by a tropical cyclone. http://tidesandcurrents.noaa.gov/quicklook.shtml NOAA Sentinels New Hardened Stations – designed to withstand Category 4 Hurricanes Amerada Pass, LA Calcasieu Pass, LA during Hurricane Ike, 9/12/2008 Presently operating at 4 sites in Louisiana http://www.tidesandcurrents.noaa.gov/publications/SPIP.pdf Tide Station Upgrades NOAA SentinelsTom are Landondesigneddesigned to withstand wind and [email protected] action from a Category 4 Storm Tide Monitoring hurricane NOAA Sentinels Elevated frame storm surge platforms: Bay Waveland, MS, • Shell Beach, LA, • Lake Charles, LA • Amerada Pass, LA, • Freshwater Bayou Locks, LA • Calcasieu Pass, LA. Shell Beach and Amerada Pass are the two http://www.noaa.gov/features/monitoring_1008/sentinels.html sites planned for co-located CORS sites. QuickLook Product . Initiated when a tropical storm or hurricane warning is issued for the U.S. coast or its territories . Updated following NWS public advisories and at landfall . Provides a synopsis of near real‐time oceanographic and meteorological observations at locations affected by a tropical cyclone . 24 x 7 Monitoring and Quality Control . Displayed on CO‐OPS web pages and linked through NOAA All Hazards webpage NOAAWatch www.tidesandcurrents.noaa.gov www.noaawatch.gov GIS map showing satellite imagery, wind contours, storm Can adjust water level track and stations Datum (MLLW/NAVD88), included (courtesy of measurement NHC). units (Standard/Metric) and time zone (Local/UTC). Time series plots of water level, wind speed & gusts, barometric Water level and pressure and water & meteorological air temperature, analyses, next high updating in real-time - tide values/times and every 10-12 minutes. select NWS advisory text CO‐OPS Website Statistics . Saw record web traffic during multiple storms . Just under 3.5 million visits during the week of 9/07‐9/13 (Hanna, Ike) . Over 2.6 million visits during the week of 8/31‐9/06 (Gustav) . Highest 1 day total was 9/12 (Ike landfall) with over 913,000 visits (30 ‐60k daily average) . Average monthly visits from January‐July 2008 –1.1 million . Over 4 million visits for the month of August and over 6.1 million visits for the month of September . 70.5% of web visits in August and 69.3% in September referred from NOAAWatch! Storm Reports http://www.tidesandcurrents.noaa.gov/pub.html 2008 . Two preliminary water level and meteorological reports created . Hurricane Gustav data report is available on http://www.tidesandcurrents.noaa.gov/ . Hurricane Ike data report is presently being reviewed internally . Extensive Hurricane Ike technical report will be completed 2nd Quarter FY09 Additional storm reports by year, not including unnamed storms or nor’easters. Proposed Improvements for 2009 Hurricane Season . Utilizing Highest Astronomical Tide (HAT) . Height of the highest predicted tide . Streamlining the generation of a storm summary report for quicker dissemination to aid in post-storm recovery . Addition of Automated Real-Time Summary (ARNS) to the product . Rate of water level change . Is water level rising or falling? Automated Real‐Time Narrative Summary (ARNS) . A brief, single paragraph summarizing the observation received from data sensors within a predefined region or for a single station. Available for PORTS® and their respective stations as well as through the PORTS® Voice System. Ingests the real‐time data for all instruments within all PORTS® installations every six minutes and generates and disseminates textual summary phrases. 200 Permanent Stations Web Services Post storm SLOSH validation Currently NOAA is switching its geodetic reference datum from NGVD29 to NAVD88 2008 Statistical Summary . Busy season with 121 total QuickLooks posted (53 produced in 2007) . Tropical Storm Cristobal –7 advisories posted from 7/19‐7/21 . Hurricane Dolly ‐ 12 advisories posted from 7/21‐7/24 . Tropical Storm Edouard ‐ 9 advisories posted from 8/03‐8/05 . Tropical Storm Fay ‐ 29 advisories posted from 8/17‐8/24 . Hurricane Gustav ‐ 14 advisories posted from 8/31‐9/02 . Tropical Storm Hanna ‐ 11 advisories posted from 9/04‐9/07 . Hurricane Ike ‐ 26 advisories posted from 9/08‐9/14 . Hurricane Kyle ‐ 6 advisories posted from 9/28‐9/29 . Hurricane Omar ‐ 7 advisories posted from 10/14‐10/16 All QuickLooks are archived at: http://www.tidesandcurrents.noaa.gov/quicklook_archive.shtml CO-OPS Website Overview User Services Data Dissemination / Access [email protected] THREE Ways to Access Data Accessing Preliminary, Verified, and Predicted Data via dropdowns and listed under topics. Data accessible in tabular and Google Map format Google Map Links to Data Types XML Ver WL Pred Met Available Data Includes: Station Home Page Station Information Data Inventory Data Plots Tidal Datum Information Tidal Datum Information Tidal Datums Relative to Arbitrary Station Datum Mean Sea Level differences between 1983-2001 NTDE & 1960-1978 NTDE Average Difference = + / - 0.2 ft Benchmark Elevation Information Benchmark Elevation Information Location of Tide Gauge Datums Geodetic relative to relationship MLLW based on one mark Physical Oceanographic Real-Time System (PORTS®) Navigation Safety Improved Economic Efficiency Coastal Resource Protection 2 NEW GULF PORTS Lake Charles PORTS: 8767816 Lake Charles, 8768094 Calcasieu Pass, and 8767816 Bulk Terminal #1 Lower Mississippi River PORTS: 8761955 Carrollton, LA Available Sea Level Data Grand Isle = 9.24 mm / yr. or 3.03 ft / cent. Data Available through OPenDAP and Web Services CO-OPS Website Overview User Services Data Dissemination / Access [email protected].
Recommended publications
  • An Informed System Development Approach to Tropical Cyclone Track and Intensity Forecasting
    Linköping Studies in Science and Technology Dissertations. No. 1734 An Informed System Development Approach to Tropical Cyclone Track and Intensity Forecasting by Chandan Roy Department of Computer and Information Science Linköping University SE-581 83 Linköping, Sweden Linköping 2016 Cover image: Hurricane Isabel (2003), NASA, image in public domain. Copyright © 2016 Chandan Roy ISBN: 978-91-7685-854-7 ISSN 0345-7524 Printed by LiU Tryck, Linköping 2015 URL: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-123198 ii Abstract Introduction: Tropical Cyclones (TCs) inflict considerable damage to life and property every year. A major problem is that residents often hesitate to follow evacuation orders when the early warning messages are perceived as inaccurate or uninformative. The root problem is that providing accurate early forecasts can be difficult, especially in countries with less economic and technical means. Aim: The aim of the thesis is to investigate how cyclone early warning systems can be technically improved. This means, first, identifying problems associated with the current cyclone early warning systems, and second, investigating if biologically based Artificial Neural Networks (ANNs) are feasible to solve some of the identified problems. Method: First, for evaluating the efficiency of cyclone early warning systems, Bangladesh was selected as study area, where a questionnaire survey and an in-depth interview were administered. Second, a review of currently operational TC track forecasting techniques was conducted to gain a better understanding of various techniques’ prediction performance, data requirements, and computational resource requirements. Third, a technique using biologically based ANNs was developed to produce TC track and intensity forecasts.
    [Show full text]
  • Hurricane & Tropical Storm
    5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.
    [Show full text]
  • CV Available Upon Request
    Douglas R. Bernthal | Forensic Electrical Engineer, PE, CFEI 11602 Lake Underhill Road, Suite 140, Orlando, Florida 32825 (321) 251-9091 [email protected] Professional Summary: Mr. Bernthal has over 30 years’ experience in the areas of electrical fires and failures, Origin and Cause investigations, electrical design and troubleshooting, and project management. He also has over 10 years’ experience as a licensed Master and Journeyman Electrician in the electrical construction industry. His forensic experience involves onsite and joint examinations, expert forensic reports, litigation and electrical accident investigation. His engineering experience includes the design and installation of distributed generation projects, power distribution equipment, automated control systems, indoor and outdoor lighting systems and power quality systems. His project management experience includes creating job specifications, management of multiple subcontractors and interaction with owners, developers, architects and equipment manufacturers. Mr. Bernthal’s electrician experience includes industrial and commercial renovation projects, troubleshooting electrical outages at local businesses, and managing apprentice electricians on new industrial and commercial construction projects. Knowledge consists of: power distribution systems, motors and controls, electric services, transformers, bus duct systems, lighting systems and the National Electric Code. Areas of Expertise: • Electrical Fire and Explosions • Electrical Accidents/Fatalities • Lightning/Power
    [Show full text]
  • National Weather Service Southeast River Forecast Center
    National Weather Service Southeast River Forecast Center Critical Issue: Tropical Season Review 2008 Impact on Southeast U.S. Water Resources Issued: December 18, 2008 Summary: • A normal number of inland-moving tropical systems impacted the region. • T.S. Fay brought record rain and floods to parts of Florida. • Tropical rainfall resulted in significant hydrologic recharge over much of Florida, Alabama, southern Georgia, and central sections of North and South Carolina. • Some severely drought-impacted areas, including North Georgia, western North and South Carolina, and west central Florida, near Tampa, saw limited or no significant hydrologic recharge this season. 1 Southeast River Forecast Center There are several distinct times of the year when “typical” rainfall patterns provide an opportunity for the recharge of key water resources. The primary climatologically-based recharge period (with the exception of the Florida peninsula) is the winter and early spring months. Secondary periods include the tropical season and a small secondary window of severe weather in the fall. Tropical season, from June 1st through November 30th, is potentially a time for soil and reservoir recharge. Most tropical systems arrive in the late summer and early fall, which otherwise tends to be a relatively dry time of the year. Recharge from tropical systems can be “hit or miss.” While some areas may receive extensive rainfall, other nearby areas can remain completely dry. Rainfall will also vary between tropical seasons. Some seasons have been extremely wet (2004 and 2005), while other seasons had little if any tropical activity moving across the Southeast U.S. (2006 and 2007). This reduction of inland-moving tropical activity in 2006 and 2007 aggravated overall drought conditions.
    [Show full text]
  • Coral Reef Resilience Assessment of the Bonaire National Marine Park, Netherlands Antilles
    Coral Reef Resilience Assessment of the Bonaire National Marine Park, Netherlands Antilles Surveys from 31 May to 7 June, 2009 IUCN Climate Change and Coral Reefs Working Group About IUCN ,8&1,QWHUQDWLRQDO8QLRQIRU&RQVHUYDWLRQRI1DWXUHKHOSVWKHZRUOG¿QGSUDJPDWLFVROXWLRQVWRRXUPRVWSUHVVLQJ environment and development challenges. IUCN works on biodiversity, climate change, energy, human livelihoods and greening the world economy by supporting VFLHQWL¿FUHVHDUFKPDQDJLQJ¿HOGSURMHFWVDOORYHUWKHZRUOGDQGEULQJLQJJRYHUQPHQWV1*2VWKH81DQGFRPSD- nies together to develop policy, laws and best practice. ,8&1LVWKHZRUOG¶VROGHVWDQGODUJHVWJOREDOHQYLURQPHQWDORUJDQL]DWLRQZLWKPRUHWKDQJRYHUQPHQWDQG1*2 members and almost 11,000 volunteer experts in some 160 countries. IUCN’s work is supported by over 1,000 staff in RI¿FHVDQGKXQGUHGVRISDUWQHUVLQSXEOLF1*2DQGSULYDWHVHFWRUVDURXQGWKHZRUOG www.iucn.org IUCN Global Marine and Polar Programme The IUCN Global Marine and Polar Programme (GMPP) provides vital linkages for the Union and its members to all the ,8&1DFWLYLWLHVWKDWGHDOZLWKPDULQHDQGSRODULVVXHVLQFOXGLQJSURMHFWVDQGLQLWLDWLYHVRIWKH5HJLRQDORI¿FHVDQGWKH ,8&1&RPPLVVLRQV*033ZRUNVRQLVVXHVVXFKDVLQWHJUDWHGFRDVWDODQGPDULQHPDQDJHPHQW¿VKHULHVPDULQH protected areas, large marine ecosystems, coral reefs, marine invasives and the protection of high and deep seas. The Nature Conservancy The mission of The Nature Conservancy is to preserve the plants, animals and natural communities that represent the diversity of life on Earth by protecting the lands and waters they need to survive.
    [Show full text]
  • Hurricane Omar October 13 to 18 Dale Destin Antigua and Barbuda
    Tropical Cyclone Report (The Antiguan and Barbudan Experience) Hurricane Omar October 13 to 18 Dale Destin Antigua and Barbuda Meteorological Service May 26, 2009 Report in Brief Omar was a historic tropical cyclone. Since record keeping started in 1851, a tropical cyclone has never formed and intensified into a category four (4) hurricane in the Caribbean Sea, east of 70 degrees west and then move northeastly across the Northeast Caribbean. Omar was the fourteenth named storm of the 2008 Atlantic Hurricane Season, the seventh hurricane and the fourth major hurricane. At its closest point (from the northwest coast), Omar was approximately 148 miles northwest of Antigua, and 130 miles northwest of Barbuda with maximum sustained winds of 135 miles per hour (mph). However, by definition, the hurricane did not strike Antigua and Barbuda; notwithstanding, the islands experienced minimal tropical storm conditions. The system caused severe rainfall, which resulted in disastrous flooding. Most of the flooding took place between 0900 and 1600 UTC (5 A.M. and 12 mid day local time) on the morning of October 16, when in excess of five (5) inches of rain fell in most areas. The flooding caused significant damage to agriculture and roads; however there were no loss of lives. Synoptic History Omar formed as a result of the combination of a tropical wave and the Tropical Upper-level Tropospheric Trough (TUTT) on October 13, 0600 UTC at 15.4 north latitude and 69.0 west longitude; this is about 488 miles west-southwest of Antigua. The TUTT that eventually combined with the wave to form Omar was across the Eastern Caribbean from as early as October 4.
    [Show full text]
  • Tropical Cyclone Report Hurricane Kyle (AL11008) 25-29 September 2008
    Tropical Cyclone Report Hurricane Kyle (AL11008) 25-29 September 2008 Lixion A. Avila National Hurricane Center 5 December 2008 Kyle was a category one hurricane on the Saffir-Simpson Hurricane Scale that made landfall in southwestern Nova Scotia. a. Synoptic History The development of Kyle was associated with a tropical wave that moved off the coast of Africa with some convective organization on 12 September. There was a weak low pressure area associated with the wave and the system moved westward and west-southwestward for a few days. As the tropical wave was approaching the Lesser Antilles, it began to interact with a strong upper-level trough over the eastern Caribbean Sea, resulting in an increase in cloudiness and thunderstorms. The surface area of low pressure became better defined as it crossed the Windward Islands and began to develop a larger surface circulation on 19 September. The low pressure area turned toward the northwest and became separated from the wave, which continued its westward track across the Caribbean Sea. The upper-level trough moved westward and weakened, causing small relaxation of westerly shear and allowing the convection associated with the low to become a little more concentrated. The low was near Puerto Rico on 21 September, and continued drifting northwestward. It then spent two days crossing Hispaniola, producing disorganized thunderstorms and a large area of squalls within a convective band over the adjacent Caribbean Sea. During this period, the system lacked a well-defined circulation center as indicated by reconnaissance and local surface data. The low moved northeastward away from Hispaniola, and finally developed a well- defined surface circulation center.
    [Show full text]
  • ANNUAL SUMMARY Atlantic Hurricane Season of 2008*
    MAY 2010 A N N U A L S U M M A R Y 1975 ANNUAL SUMMARY Atlantic Hurricane Season of 2008* DANIEL P. BROWN,JOHN L. BEVEN,JAMES L. FRANKLIN, AND ERIC S. BLAKE NOAA/NWS/NCEP, National Hurricane Center, Miami, Florida (Manuscript received 27 July 2009, in final form 17 September 2009) ABSTRACT The 2008 Atlantic hurricane season is summarized and the year’s tropical cyclones are described. Sixteen named storms formed in 2008. Of these, eight became hurricanes with five of them strengthening into major hurricanes (category 3 or higher on the Saffir–Simpson hurricane scale). There was also one tropical de- pression that did not attain tropical storm strength. These totals are above the long-term means of 11 named storms, 6 hurricanes, and 2 major hurricanes. The 2008 Atlantic basin tropical cyclones produced significant impacts from the Greater Antilles to the Turks and Caicos Islands as well as along portions of the U.S. Gulf Coast. Hurricanes Gustav, Ike, and Paloma hit Cuba, as did Tropical Storm Fay. Haiti was hit by Gustav and adversely affected by heavy rains from Fay, Ike, and Hanna. Paloma struck the Cayman Islands as a major hurricane, while Omar was a major hurricane when it passed near the northern Leeward Islands. Six con- secutive cyclones hit the United States, including Hurricanes Dolly, Gustav, and Ike. The death toll from the Atlantic tropical cyclones is approximately 750. A verification of National Hurricane Center official forecasts during 2008 is also presented. Official track forecasts set records for accuracy at all lead times from 12 to 120 h, and forecast skill was also at record levels for all lead times.
    [Show full text]
  • Bonaire National Marine Park Hurricane Matthew – Reef Damage Assessment
    Bonaire National Marine Park Hurricane Matthew – Reef Damage Assessment On the evening of the 29th September 2016 Hurricane Matthew passed north of Bonaire by approximately 240km, with maximum sustained wind speeds over 120km/h. After passing Aruba as a category 2 hurricane, the path of Matthew slowed its forward progress and turned north-northeast. Heavy storm surge generated by Matthew continued to strike the coastline and on the 4th-5th of October, a resurgence of waves ranging from 1.4-1.7 m height pounded the northern and western (leeward) shores of Bonaire and Klein Bonaire. After the waves subsided, STINAPA immediately sent survey forms to dive operators requesting information on reef conditions and offered assistance in removing large debris. Bonaire National Marine Park rangers took photos of damage to piers, docks, ladders, etc. and began removing large debris from the reef (Appendix II: Image 7). On the 6th to 7th of October 2016, STINAPA staff, interns and volunteers surveyed sites along the leeward shore of Bonaire to assess the initial impact of Hurricane Matthew. Fig 1. Path of Hurricane Matthew. Image from NOAA’s National Hurricane Center: Matthew Graphics Archive. KONSERVANDO NATURALESA PA MEDIO DI MANEHO SANO NATUUR BEHOUD DOOR VERANTWOORD BEHEER NATURE CONSERVATION THROUGH SOUND MANAGEMENT PO Box 368 – Bonaire, Dutch Caribbean – Tel (599) 717 8444 – Fax (599) 717 7318 – E-mail [email protected] - Website: www.stinapa.org Banks: MCB acc.nr. 868.420.00 – RBC acc.nr. 8400000023068753 Methods Surveyors assessed a total of 18 sites via SCUBA in buddy teams on 6-7 Oct. 2016.
    [Show full text]
  • Hydrology and Water Quality of a Field and Riparian Buffer Adjacent to A
    G Model ECOENG-2313; No. of Pages 9 ARTICLE IN PRESS Ecological Engineering xxx (2012) xxx–xxx Contents lists available at SciVerse ScienceDirect Ecological Engineering j ournal homepage: www.elsevier.com/locate/ecoleng Hydrology and water quality of a field and riparian buffer adjacent to a mangrove wetland in Jobos Bay watershed, Puerto Rico c a,∗ a b c d a C.O. Williams , R. Lowrance , D.D. Bosch , J.R. Williams , E. Benham , A. Dieppa , R. Hubbard , e a f b a a E. Mas , T. Potter , D. Sotomayor , E.M. Steglich , T. Strickland , R.G. Williams a Southeast Watershed Research Laboratory, 2379 Rainwater Road, Tifton, GA 31794, United States b Blackland Research Center, Texas A&M University, Temple, TX 76502, United States c Charles E. Kellogg National Soil Survey Laboratory & Research, 100 Centennial Mall North, Lincoln, NE 68508, United States d National Estuarine Research Reserve, Call Box B, Aguirre, PR 00704, United States e Natural Resource Conservation Service-Caribbean, 2200 Pedro Albizu Campos Ave 23, Mayaguez, PR 00680, United States f University of Puerto Rico-Mayagüez, P.O. Box 9000, Mayagüez, PR 00681, United States a r t i c l e i n f o a b s t r a c t Article history: Agriculture in coastal areas of Puerto Rico is often adjacent to or near mangrove wetlands. Riparian buffers, Received 24 January 2012 while they may also be wetlands, can be used to protect mangrove wetlands from agricultural inputs of Received in revised form sediment, nutrients, and pesticides. We used simulation models and field data to estimate the water, 25 September 2012 nitrogen, and phosphorus inputs from an agricultural field and riparian buffer to a mangrove wetland Accepted 28 September 2012 in Jobos Bay watershed, Puerto Rico.
    [Show full text]
  • 2008 Tropical Cyclone Review Summarises Last Year’S Global Tropical Cyclone Activity and the Impact of the More Significant Cyclones After Landfall
    2008 Tropical Cyclone 09 Review TWO THOUSAND NINE Table of Contents EXECUTIVE SUMMARY 1 NORTH ATLANTIC BASIN 2 Verification of 2008 Atlantic Basin Tropical Cyclone Forecasts 3 Tropical Cyclones Making US Landfall in 2008 4 Significant North Atlantic Tropical Cyclones in 2008 5 Atlantic Basin Tropical Cyclone Forecasts for 2009 15 NORTHWEST PACIFIC 17 Verification of 2008 Northwest Pacific Basin Tropical Cyclone Forecasts 19 Significant Northwest Pacific Tropical Cyclones in 2008 20 Northwest Pacific Basin Tropical Cyclone Forecasts for 2009 24 NORTHEAST PACIFIC 25 Significant Northeast Pacific Tropical Cyclones in 2008 26 NORTH INDIAN OCEAN 28 Significant North Indian Tropical Cyclones in 2008 28 AUSTRALIAN BASIN 30 Australian Region Tropical Cyclone Forecasts for 2009/2010 31 Glossary of terms 32 FOR FURTHER DETAILS, PLEASE CONTACT [email protected], OR GO TO OUR CAT CENTRAL WEBSITE AT HTTP://WWW.GUYCARP.COM/PORTAL/EXTRANET/INSIGHTS/CATCENTRAL.HTML Tropical Cyclone Report 2008 Guy Carpenter ■ 1 Executive Summary The 2008 Tropical Cyclone Review summarises last year’s global tropical cyclone activity and the impact of the more significant cyclones after landfall. Tropical 1 cyclone activity is reviewed by oceanic basin, covering those that developed in the North Atlantic, Northwest Pacific, Northeast Pacific, North Indian Ocean and Australia. This report includes estimates of the economic and insured losses sus- tained from each cyclone (where possible). Predictions of tropical cyclone activity for the 2009 season are given per oceanic basin when permitted by available data. In the North Atlantic, 16 tropical storms formed during the 2008 season, compared to the 1950 to 2007 average of 9.7,1 an increase of 65 percent.
    [Show full text]
  • Nicholas Makris and Kerry Emanuel
    XzV-V-03-001 C2 OCEAN ACOUSTIC HURRICANE DETECTION AND CLASSIFICATION Nicholas Makris and Kerry Emanuel MITSG 03-31 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ OCEAN ACOUSTIC HURRICANE DETECTION AND CLASSIFICATION NicholasMakris and Kerry Emanuel MITSG 03-31 SeaGrant College Program MassachusettsInstitute of Technology Cambridge,Massachusetts 02139 NOAA Grant No.: NA86RG0074 ProjectNo.: RCM-9 Ocean Acoustic Hurricane Detection and Classification Completion Report 2003 Princi le Investi ator: Nicholas Makris MassachusettsInstitute of Technology phone: 617-258-6104 fax: 617-253-2350 email: makris .mi t,edu Co-Princi leInvesti ator: Kerry Emanuel MassachusettsInstitute of Technology phone: 617-253-2462 email: emanuel!texmex.mit.edu Objective: Thepurpose of thisproject is to investigatethe feasibility of usingunderwater acousticsensing techniques to safelyand inexpensively estimate the destructive power of a hurricane. Introduction: We have experimentally demonstratedthat Underwater Acoustic methods may be usedto measurethe wind speedand destructive power of a hurricane,using data from a NOAA hydrophone in the North Atlantic. From this hydrophone data we determined an empiricalrelationship I-V" betweena hurricane'swind speedV and the underwater noiseintensity I it generates.Given this relationshipwe showthat acousticintensity measurementscan be used to accurately estimate hurricane wind speed.To find this relationship, wind speeddata had to be synthesizedfrom satellite and aircraft meteorological measurements.While the results strongly support the use of underwater
    [Show full text]