Baddeleyite, Zirconolite and Calzirtite in Lateritic Rocks from Ryoke and Chichibu Terranes, Japan

Total Page:16

File Type:pdf, Size:1020Kb

Baddeleyite, Zirconolite and Calzirtite in Lateritic Rocks from Ryoke and Chichibu Terranes, Japan 42 Journal of Mineralogical andD. NishioPetrological and T. Sciences, Minakawa Volume 99, page 42─53, 2004 Baddeleyite, zirconolite and calzirtite in lateritic rock from Ryoke and Chichibu Terranes 43 Baddeleyite, zirconolite and calzirtite in lateritic rocks from Ryoke and Chichibu Terranes, Japan * * Daisuke NISHIO and Tetsuo MINAKAWA *Institute of Biology and Earth Science, Petrology and Economic Geology, Graduate school of Science ─ And ─ Engineering, Ehime University, Bunkyo ─ cho 2 ─ 5, Matsuyama, Ehime 790 ─ 8577, Japan Baddeleyite, zirconolite and calzirtite were found in lateritic rocks from Ryoke and Chichibu Terranes in southwestern Japan. This is a new type of natural occurrence of the minerals. The lateritic rocks are associ- ated with limestone widely distributed into Ryoke metamorphic and Chichibu non ─metamorphic complexes. Baddeleyite, zirconolite and calzirtite are associated with Ti minerals such as anatase, ilmenite, perovskite and titanite. Calzirtite occurs simultaneously with perovskite. Rhabdophane─(Ce) like minerals also occurs in the lateritic rocks such as in emeries from Ko ─Oge Island. Baddeleyite and calzirtite have compositions close to the ideal compositions, ZrO2 and Ca2Zr5Ti2O16. Zirconolite, CaZrTi2O7, accommodates significant amounts of Fe, Nb, Ta, and small amounts of Al and REE. Minor amounts of ACT are also found in the mineral. The chemi- cal substitution in zirconolite is controlled by the reaction: REE3+ + 2(Al + Fe)3+ + (Nb + Ta)5+ ←→ Ca2+ + 3Ti4+. Baddeleyite is a relict of the lateritization stage, or formed by the decomposition of zircon. Zirconolite formed during the prograde stage of metamorphism by the reaction; calcite + 2anatase + baddeleyite ←→ zirconolite + ─ CO2. The formation of calzirtite in Ca metasomatic emery is independent from the deformation of zirconolite during the prograde stage of metamorphism. Introduction rane. Zirconolite from the Shinkiura mine was found in the metamorphic laterite as emery, belong to the Chichibu The sedimentary and metamorphic rocks related to Terrane. Calzirtite found in the lateritic metamorphic rock laterite occur in the Ryoke and Chichibu Terranes of from Ko─Oge Island, are part of the Ryoke Terrane. Japan (Iwao, 1978; Nishio and Minakawa, 2003). The Although zirconolite occurs in a wide range of rock major minerals in the host lateritic rock were described types and parageneses, the majority come from carbon- (e.g. Shimazaki et al., 1984; Nishio and Minakawa, 2003; atites (e.g. Williams and Gieré, 1996). Occurrences of Nishio et al., 2003), but the Zr ─bearing mineral was not. this mineral from laterite and related rocks have not yet The Zr minerals generally occur as accessory phases in been reported. Baddeleyite and calzirtite were not found the host rock. These Zr minerals usually contain REE in lateritic rocks, either. (rare earth elements including Y) and ACT (actinide In this paper we intend to report on newly discov- element). Therefore, the behavior of Zr minerals in a ered natural occurrences. We will also describe the crys- rock also controls the behavior of minor elements such tal chemistry of baddeleyite, zirconolite and calzirtite as REE and ACT. We discovered three Zr minerals, from the Ryoke and Chichibu Terranes in southwestern baddeleyite, zirconolite and calzirtite, from the Ryoke Japan. and Chichibu Terranes of Japan. Baddeleyite found in lateritic metamorphic rocks from Yuge, Ko ─ Oge and Mu- Interpretation of zirconolite and calzirtite tsuki Islands, belongs to the Ryoke Terrane. The lateritic sedimentary rocks from Kuwao, where baddeleyite was Zirconolite and calzirtite, together with their polytypes, found, belong to the Chichibu Terrane. Zirconolite found have compositions nearly equivalent to CaZrTi2O7 and ─ in the metamorphic laterite of Yuge, Myojin, Ko Oge and Ca2Zr5Ti2O16, respectively. In this study, the names of Mutsuki Islands, are from the metamorphic Ryoke Ter- zirconolite and calzirtite are used here as group names. D. Nishio, d─[email protected]─u.ac.jp Corresponding author The nomenclatures of zirconolite and calzirtite are de- T. Minakawa, [email protected]─u.ac.jp fined as follows. 42 D. Nishio and T. Minakawa Baddeleyite, zirconolite and calzirtite in lateritic rock from Ryoke and Chichibu Terranes 43 only by single ─ crystal X ─ ray diffraction, because the Zirconolite two polytypes change in a continuous manner in small domains. Calzirtite ─ 1O transforms into another polytype Zirconolite is metamict or non ─ metamict mineral with tetragonal symmetry (calzirtite ─ 1Q) after heating to with many polytypes: zirconolite ─ 2M is a two layered 700 ─ 1350°C (Callegari et al., 1997). monoclinic polytype, zirconolite ─3O is a three layered orthorhombic polytype, zirconolite─3T is a three layered Geological setting trigonal polytype of CaZrTi2O7 (Bayliss et al., 1989). Zirkelite is a cubic mineral with (Ti, Ca, Zr)O2-x, and Figure 1 shows the location and geological map of polymignite is metamict zirconolite (Bayliss et al., the region studied in this paper. The Geiyo Islands are 1989). Smith and Lumpkin (1993) and Coelho et al. located in the central area of the Seto Inland Sea. From (1997) described synthetic 4M and 6T phases related to east to west, Yuge, Myojin, Ko ─ Oge and Mutsuki Islands zirconolite, which appear to be supercells of the zircono- are included in Ehime Prefecture. Cretaceous plutonic lite ─ 2M and 3T structures, respectively. rocks are widely distributed in the Geiyo Islands, and are considered to be part of the Ryoke Terrane (Suyari Calzirtite et al., 1992). The Islands of Yuge, Myojin, Ko ─ Oge and Mutsuki are mainly composed of schistose and massive Two polytypes of calzirtite have been reported: cal- granite or granodiorite, gneiss, schistose hornfels and zirtite ─ 1Q is a tetragonal polytype, and calzirtite ─1O is plagioclase ─amphibole schists. Limestone is included an orthorhombic polytype of Ca2Zr5Ti2O16 (e.g., Rossell, in gneisses, crystalline schist or schistose hornfels (e.g. 1982; Sinclair et al., 1986; Callegari et al., 1997). The Miyahisa et al., 1980; Shimazaki et al., 1984; Matsuura, tetragonal and orthorhombic forms are distinguishable 2000; Seno and Matsuura, 2000; Nishio and Minakawa, Figure 1. Location and geological map of Yuge, Myojin, Ko─Oge and Mutsuki Islands from Ryoke Terrane and Kuwao and the Shinkiura mine from Chichibu Terrane, Japan. 44 D. Nishio and T. Minakawa Baddeleyite, zirconolite and calzirtite in lateritic rock from Ryoke and Chichibu Terranes 45 Figure 2. Backscattered electron image of baddeleyite, zirconolite and calzirtite and the rhabdophane ─(Ce) like mineral from the Ryoke Terrane and Chichibu Terrane, Japan. A: from Yuge Island, B: in Ca─added zone from Ko─Oge Island, C: from Kuwao, D: from Shinkiura mine, E: in non─metasomatic zone from Ko─Oge Island. All, allanite─(Ce); An, anatase; Ap, apatite; Bd, baddeleyite; Clz, calzirtite; Ilm, ilmenite; Mgt, magnetite; Rha, rhabdophane─(Ce) like mineral; Sc, scheelite; Zir, zirconolite. 2003; Nishio et al., 2003). Ohita Prefecture (e.g. Iwao, 1978; Suyari et al., 1992). Mesozoic and Paleozoic strata distributed in the south of Shikoku and Kyushu and are grouped in the Chi- Occurrence and paragenesis chibu Terrane (e.g. Karakida et al., 1992). The group in Shikoku and Kyushu are composed mainly of pelitic rock, Zr minerals are found in lateritic rocks included in chert and limestone (e.g. Yoshimura et al., 1962; Suyari limestone from the Ryoke and Chichibu Terranes. The et al., 1992). Limestone from Kuwao, Kochi Prefecture rocks are characterized by high Al, Fe and Ti and low Si is non ─metamorphosed, although it has suffered slight content. Localities where baddeleyite, zirconolite and alteration and skarn formation through contact with the calzirtite were found are summarized in Table 1. The oc- Ohkueyama granite intrusion from the Shinkiura mine, currences and paragenesis of baddeleyite, zirconolite and 44 D. Nishio and T. Minakawa Baddeleyite, zirconolite and calzirtite in lateritic rock from Ryoke and Chichibu Terranes 45 Figure 3. Photomicrographs of zirconolite and calzirtite from Yuge Island and Ko─Oge Island from the Ryoke Terrane, Japan. A and B from Yuge Island; C, D, E, and F from Ko─Oge Island. Bars are 30um long. A, C, and E: Plane─polarized light, B, D, and F: Crossed polars. Bd, baddeleyite; Clz, calzirtite; Pv, perovskite; Zir, zirconolite. Table 1. List of occurrences of baddeleyite, zirconolite and calzirtite in the lateritic rock from Ryoke Terrane and Chichibu Terrane, Japan +, obserbed; −, not obserbed. 46 D. Nishio and T. Minakawa Baddeleyite, zirconolite and calzirtite in lateritic rock from Ryoke and Chichibu Terranes 47 Table 2. Chemical compositions of Zr minerals from the Ryoke Terrane, Japan * total Fe as Fe2O3. Bd, baddeleyite; Clz, calzirtite; Zir, zirconolite; Zr, zircon. Zir(L) and (H) are Low and High Zir in Figure 2B, respectively. calzirtite are described as follows. on Yuge, Myojin and Mutsuki Islands. The composition of the lateritic rocks from Ko ─Oge Island is consistent Ryoke Terrane with emery (Nishio et al., 2003). Emery in the region is classified in two zones, one as a non ─metasomatic zone, Recrystallized lateritic rocks with dark color are included and another as a metasomatically Ca─added zone (Nishio in limestone from Yuge, Myojin, Ko─Oge and Mutsuki Is- et al., 2003). Calzirtite is only found in the latter. The lands. The lateritic rocks from these islands show a little constituent minerals of the lateritic rock from each island difference
Recommended publications
  • Baddeleyite Microstructures in Variably Shocked Martian Meteorites: an Opportunity to Link Shock Barometry and Robust Geochronology
    51st Lunar and Planetary Science Conference (2020) 2302.pdf BADDELEYITE MICROSTRUCTURES IN VARIABLY SHOCKED MARTIAN METEORITES: AN OPPORTUNITY TO LINK SHOCK BAROMETRY AND ROBUST GEOCHRONOLOGY. L. G. Staddon1*, J. R. Darling1, N. R. Stephen2, J. Dunlop1, and K. T. Tait3,4. 1School of Environment, Geography and Geoscience, University of Portsmouth, UK; *[email protected], 2Plymouth Electron Microscopy Centre, Plymouth University, UK, 3Department of Earth Sciences, University of Toronto, Canada, 4Royal Ontario Museum, Toronto, Canada. Introduction: Baddeleyite (monoclinic ZrO2; m- [6]. Shergottites in which plagioclase has undergone ZrO2) has recently been shown to be capable of provid- complete transformation to maskelynite (S4), suggest- ing robust crystallisation ages for shergottites via in- ing shock pressures of at least ~29 GPa [6], are repre- situ U-Pb isotopic analyses [1,2]. However, in contrast sented by enriched shergottites NWA 8679 and NWA to experimental work [3], these studies also highlight 7257. Both samples are similarly evolved lithologies, that U-Pb isotope systematics of baddeleyite can be abundant in late stage phases such as Fe-Ti oxides, Cl- strongly modified by shock metamorphism. Up to apatite and Si- and K- rich mesostasis, though NWA ~80% radiogenic Pb loss was recorded within North- 7257 is doleritic [9,10]. Enriched basaltic shergottite west Africa (NWA) 5298 [1], with close correspond- NWA 5298 represents the most heavily shocked mar- ence of U-Pb isotopic ratios and baddeleyite micro- tian meteorite studied here (S6), containing both structures [4]. Combined microstructural analysis and maskelynite and vesicular plagioclase melt [4]. U-Pb geochronology of baddeleyite therefore offers Baddeleyite grains >2 µm in length were located tremendous potential to provide robust constraints on via a combination of automated backscattered electron crystallisation and impact ages for martian meteorites.
    [Show full text]
  • Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization
    materials Review Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization Albina I. Orlova 1 and Michael I. Ojovan 2,3,* 1 Lobachevsky State University of Nizhny Novgorod, 23 Gagarina av., 603950 Nizhny Novgorod, Russian Federation 2 Department of Radiochemistry, Lomonosov Moscow State University, Moscow 119991, Russia 3 Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK * Correspondence: [email protected] Received: 31 May 2019; Accepted: 12 August 2019; Published: 19 August 2019 Abstract: Crystalline ceramics are intensively investigated as effective materials in various nuclear energy applications, such as inert matrix and accident tolerant fuels and nuclear waste immobilization. This paper presents an analysis of the current status of work in this field of material sciences. We have considered inorganic materials characterized by different structures, including simple oxides with fluorite structure, complex oxides (pyrochlore, murataite, zirconolite, perovskite, hollandite, garnet, crichtonite, freudenbergite, and P-pollucite), simple silicates (zircon/thorite/coffinite, titanite (sphen), britholite), framework silicates (zeolite, pollucite, nepheline /leucite, sodalite, cancrinite, micas structures), phosphates (monazite, xenotime, apatite, kosnarite (NZP), langbeinite, thorium phosphate diphosphate, struvite, meta-ankoleite), and aluminates with a magnetoplumbite structure. These materials can contain in their composition various cations in different combinations and ratios: Li–Cs, Tl, Ag, Be–Ba, Pb, Mn, Co, Ni, Cu, Cd, B, Al, Fe, Ga, Sc, Cr, V, Sb, Nb, Ta, La, Ce, rare-earth elements (REEs), Si, Ti, Zr, Hf, Sn, Bi, Nb, Th, U, Np, Pu, Am and Cm. They can be prepared in the form of powders, including nano-powders, as well as in form of monolith (bulk) ceramics.
    [Show full text]
  • Zirconolite, Chevkinite and Other Rare Earth Minerals from Nepheline Syenites and Peralkaline Granites and Syenites of the Chilwa Alkaline Province, Malawi
    Zirconolite, chevkinite and other rare earth minerals from nepheline syenites and peralkaline granites and syenites of the Chilwa Alkaline Province, Malawi R. G. PLATT Dept. of Geology, Lakehead University, Thunder Bay, Ontario, Canada F. WALL, C. T. WILLIAMS AND A. R. WOOLLEY Dept. of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 5BD, U.K. Abstract Five rare earth-bearing minerals found in rocks of the Chilwa Alkaline Province, Malawi, are described. Zirconolite, occurring in nepheline syenite, is unusual in being optically zoned, and microprobe analyses indicate a correlation of this zoning with variations in Si, Ca, Sr, Th, U, Fe, Nb and probably water; it is argued that this zoning is a hydration effect. A second compositional zoning pattern, neither detectable optically nor affected by the hydration, is indicated by variations in Th, Ce and Y such that, although total REE abundances are similar throughout, there appears to have been REE fractionation during zirconolite growth from relatively heavy-REE and Th-enrichment in crystal cores to light-REE enrichment in crystal rims. Chevkinite is an abundant mineral in the large granite quartz syenite complexes of Zomba and Mulanje, and analyses are given of chevkinites from these localities. There is little variation in composition within each complex, and only slight differences between them; they are all typically light-REE-enriched. The Mulanje material was shown by X-ray diffraction to be chevkinite and not the dimorph perrierite, but chemical arguments are used in considering the Zomba material to be the same species. Other rare earth minerals identified are monazite, fluocerite and bastn/isite.
    [Show full text]
  • The Stability, Electronic Structure, and Optical Property of Tio2 Polymorphs
    The stability, electronic structure, and optical property of TiO2 polymorphs Tong Zhu and Shang-Peng Gaoa) Department of Materials Science, Fudan University, Shanghai 200433, P. R. China Phonon density of states calculation shows that a new TiO2 polymorph with tridymite structure is mechanically stable. Enthalpies of 9 TiO2 polymorphs under different pressure are presented to study the relative stability of the TiO2 polymorphs. Band structures for the TiO2 polymorphs are calculated by density functional theory with generalized gradient approximation and the band energies at high symmetry k-points are corrected using the GW method to accurately determine the band gap. The differences between direct band gap energies and indirect band gap energies are very small for rutile, columbite and baddeleyite TiO2, indicating a quasi-direct band gap character. The band gap energies of baddeleyite (quasi-direct) and brookite (direct) TiO2 are close to that of anatase (indirect) TiO2. The band gap of the newly predicted tridymite-structured TiO2 is wider than the other 8 polymorphs. For optical response calculations, two-particle effects have been included by solving the Bethe-Salpeter equation for Coulomb correlated electron-hole pairs. TiO2 with cotunnite, pyrite, and fluorite structures have optical transitions in the visible light region. I. INTRODUCTION 1,2 Even after half a century of research, investigation of the fundamental properties of TiO2 crystal phases remains very important properly due to their important role to effectively utilize solar energy. For instance, 3 4 photocatalytic splitting of water into H2 and O2, photovoltaic generation of electricity, degradation of 5,6 7 environmentally hazard materials, and reduction of CO2 into hydrocarbon fuels.
    [Show full text]
  • U-Pb (And U-Th) Dating of Micro-Baddeleyite
    UU--PbPb (and(and UU--ThTh)) datingdating ofof micromicro--baddeleyitebaddeleyite 30 μm Axel K. Schmitt UCLA SIMS, NSF National Ion Microprobe Facility Collaborators:Collaborators: T.T. MaMarkrk HarrisonHarrison (UCLA)(UCLA) KevinKevin ChamberlainChamberlain (University(University ofof Wyoming)Wyoming) BaddeleyiteBaddeleyite (BAD(BAD--üü--LLĒĒ--iteite)*)* basicsbasics • chemical formula: ZrO2 • monoclinic (commonly twinned) • minor HfO2, TiO2, FeO, SiO2 • U between ~200 – 1000 ppm • low common Pb, Th/U <<0.2 • wide range of occurrences (terrestrial and extraterrestrial) • mafic and ultramafic rocks (basalt, gabbro, diabase) • alkali rocks (carbonatite, syenite) • mantle xenoliths (from kimberlites) • metacarbonates • impact-related rocks (tektites) Wingate and Compston, 2000 *National*National LibraryLibrary ServiceService forfor thethe BlindBlind andand PhysicallyPhysically HandicappeHandicappedd (NLS),(NLS), LibraryLibrary ofof CongressCongress BaddeleyiteBaddeleyite dating:dating: applicationsapplications andand examplesexamples BulkBulk analysisanalysis (TIMS)(TIMS) • Mafic dikes and layered intrusions (e.g., Heaman et al., 1992) • Detrital baddeleyite (e.g., Bodet and Schärer, 2000) InIn--situsitu methodsmethods (SIMS,(SIMS, LALA ICPICP MS,MS, EPMA)EPMA) • Mafic dikes and gabbros (e.g., Wingate et al., 1998; French et al., 2000) • SNC meteorites (Herd et al., 2007: 70±35 Ma and 171±35 Ma) MicroMicro--baddeleyitebaddeleyite analysis:analysis: inin--situsitu advantagesadvantages • Bulk analysis difficulties: • time-intensive, highly
    [Show full text]
  • Constraints on the Formation of the Archean Siilinjärvi Carbonatite-Glimmerite Complex, Fennoscandian Shield
    Constraints on the formation of the Archean Siilinjärvi carbonatite-glimmerite complex, Fennoscandian shield E. Heilimo1*, H. O’Brien2 and P. Heino3 1 Geological Survey of Finland, P.O. Box 1237, FI-70211, Kuopio, Finland (*correspondance: [email protected]) 2 Geological Survey of Finland, P.O. Box 96, FI-02151, Espoo, Finland. 3 Yara Suomi Oy, Siilinjärvi mine, P.O. Box FI-71801 Siilinjärvi, Finland. Abstract The Siilinjärvi carbonatite-glimmerite complex is the The main glimmerite-carbonatite intrusion within the Table 1 Siilinjärvi ore zone rocks, modal mineralogy, Genesis oldest carbonatite deposit currently mined for phos- Siilinjärvi complex occurs as a central tabular, up to 900 and calculated major element chemistry. The Siilinjärvi glimmerite-carbonatite complex prob- Ore1 Glimmerite Carbonatite apatite Carbonatite Lamprophyre phorous, and one of the oldest known on Earth at 2610 m wide, body of glimmerite and carbonatite running the containing apatite poor dike3 ably represents a plutonic complex formed as the result ± 4 Ma. The carbonatite-glimmerite is a 900 m wide length of the complex, surrounded by a fenite margin. Micas2 65 81.5 1.2 of passage of highly potassic magmas into and through Amphibole 5 4.5 0.6 0.2 and 14.5 km long tabular body of glimmerite with sub- Unlike many other carbonatite-bearing complexes that Calcite 15 1.6 61.2 86.8 a magma chamber, and the consequent accumulation ordinate carbonatite, surroundeed by fenites. The rocks contain a sequence of phlogopite-rich rocks intruded by Dolomite 4 0.9 13.4 10.6 of crystallizing minerals, a process that was active over Apatite 10 10.4 9.9 0.8 range from nearly pure glimmerite (tetraferriphlogo- a core of carbonatite (c.f., Kovdor, Phalaborwa), at Siil- Accessorices 1 0.7 0.1 0.4 the lifetime of the magma chamber.
    [Show full text]
  • Electrical Properties of Cati03
    The University of New South Wales Faculty of Science and Technology School of Materials Science and Engineering Electrical Properties of CaTi03 A Thesis in Ceramic Engineering by Mei-Fang Zhou Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy March 2004 U N b W 2 7 JAN 2005 LIBRARY CERTIFICATE OF ORIGINALITY I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged. (Signed) ACKNOWLEDGMENTS The author would like to express her thanks to the following people for their contributions to the completion of this work: Prof. J. Nowotny, my supervisor, for sparking my interest in this thesis project and for providing valuable advice on various aspects of the project. I am grateful for his constant encouragement and great assistance with the research plan, thesis corrections and valuable discussion. In particular, he contributed exceptional expertise in the defect chemistry of amphoteric semiconducting oxides.
    [Show full text]
  • 4Utpo3so UM-P-88/125
    4utpo3So UM-P-88/125 The Incorporation of Transuranic Elements in Titanatc Nuclear Waste Ceramics by Hj. Matzke1, B.W. Seatonberry2, I.L.F. Ray1, H. Thiele1, H. Trisoglio1, C.T. Walker1, and T.J. White3'4'5 1 Commission of the European Communities, Joint Research Centre, i Karlsruhe Establishment, ' \ 'I European Institute for Transuranium Elements, Postfach 2340, D-7500 Karlsruhe, Federal Republic of Germany. 2 Advanced Materials Program, Australian Nuclear Science and Technology Organization, Private Mail Bag No. 1, Menai, N.S.W., 2234, Australia. 3 National Advanced Materials Analytical Centre, School of Physics, The University of Melbourne, Parkville, Vic, 3052, Australia. Supported by the Australian Natio-al Energy Research, Development and Demonstration Programme. 4 Member, The American Ceramic Society 5 Author to whom correspondence whould oe addressed 2 The incorporation of actinide elements and their rare earth element analogues in titanatc nuclear waste forms are reviewed. New partitioning data are presented for three waste forms contining Purex waste simulant in combination with either NpC^, PuC>2 or An^Oo. The greater proportion of transuranics partition between perovskitc and ztrconoiite, while some americium may enter loveringite. Autoradiography revealed clusters of plutonium atoms which have been interpreted as unrcacted dioxide or scsquioxide. It is concluded that the solid state behavior of transaranic elements in titanate waste forms is poorly understood; certainly inadequate to tailor a ceramic for the incorporation of fast breeder reactor wastes. A number of experiments are proposed that will provide an adequate, data base for the formulation and fabrication of transuranic-bearing jj [i waste forms. ' ' 1 ~> I.
    [Show full text]
  • And Zircon (Zrsio) from Anorthositic Rocks of the Laramie Anorthositecomplexo Wyoming: Petrologic Consequencesand U-Pb Ages
    Ameican Mineralogist, Volume 80, pages I3I7-1327, 1995 Baddeleyite(ZrOr) and zircon (ZrSiO) from anorthositic rocks of the Laramie anorthositecomplexo Wyoming: Petrologic consequencesand U-Pb ages J.lvrns S. Scolrnsr* KrylN R. Cn*rnrRLArN Department of Geology and Geophysics,University of Wyoming, Laramie, Wyoming 82071, U.S.A. Ansrn-c.cr The Zr-bearing minerals baddeleyite (ZrOr) and zircon (ZrSiOo) occur within plagro- clase-rich (61-950/oplagioclase) cumulates of the Laramie anorthosite complex (LAC), southeasternWyoming. In each of the examined samples,zircon is present as relatively coarse(l-2 mm) interstitial grains, and baddeleyiteoccurs as small (0.05 mm) inclusions within cumulus plagioclase.Zircon crystallized betweencumulus plagioclasecrystals near solidus temperatures from highly fractionated, Zr-saturated liquids. The resultant shape ofzircon was controlled by the form ofthe remaining pore space.The origin ofbaddeleyite in the anorthositic rocks of the LAC is lesswell constrained.It may have crystallizedearly from the anorthositic parental magmas at relatively low silica activities; however, this would require baddeleyite saturation at extremely low Zr concentrations in the parental magmas(<< 100 ppm). Baddeleyite and zircon U-Pb agesreveal that several petrologically distinct intrusions were emplaced and crystallized in the LAC over a relatively restricted 1-3 m.y. interval aI ca. 1434 Ma. The 2o7Pb/2o6Pbages obtained for the baddeleyiteand zircon in eachsample are identical within error (+1-3 m.y.), and U concentrations are uniformly low (<240 ppm), supporting a genetically related origin for the minerals. Two anorthositic layered cumulates and a crosscutting, oxide-rich troctolite from the Poe Mountain anorthosite have crystallization agesthat are identical within error: 1434.4 + 0.6, 1434.5 + 0.6, and 1434.1 + 0.7 Ma, respectively.
    [Show full text]
  • Carbonatites of the World, Explored Deposits of Nb and REE—Database and Grade and Tonnage Models
    Carbonatites of the World, Explored Deposits of Nb and REE—Database and Grade and Tonnage Models By Vladimir I. Berger, Donald A. Singer, and Greta J. Orris Open-File Report 2009-1139 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2009 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod/ Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov/ Telephone: 1-888-ASK-USGS Suggested citation: Berger, V.I., Singer, D.A., and Orris, G.J., 2009, Carbonatites of the world, explored deposits of Nb and REE— database and grade and tonnage models: U.S. Geological Survey Open-File Report 2009-1139, 17 p. and database [http://pubs.usgs.gov/of/2009/1139/]. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. ii Contents Introduction 1 Rules Used 2 Data Fields 2 Preliminary analysis: —Grade and Tonnage Models 13 Acknowledgments 16 References 16 Figures Figure 1. Location of explored Nb– and REE–carbonatite deposits included in the database and grade and tonnage models 4 Figure 2. Cumulative frequency of ore tonnages of Nb– and REE–carbonatite deposits 14 Figure 3 Cumulative frequency of Nb2O5 grades of Nb– and REE–carbonatite deposits 15 Figure 4 Cumulative frequency of RE2O3 grades of Nb– and REE–carbonatite deposits 15 Figure 4 Cumulative frequency of P2O5 grades of Nb– and REE–carbonatite deposits 16 Tables Table 1.
    [Show full text]
  • Features of Crystalline and Electronic Structures of Sm2mtao7 (M=Y, In, Fe) and Their Hydrogen Production Via Photocatalysis
    Ceramics International 43 (2017) 3981–3992 Contents lists available at ScienceDirect Ceramics International journal homepage: www.elsevier.com/locate/ceramint Features of crystalline and electronic structures of Sm2MTaO7 (M=Y, In, Fe) MARK and their hydrogen production via photocatalysis ⁎ Leticia M. Torres-Martíneza, , M.A. Ruíz-Gómezb, E. Moctezumac a Departamento de Ecomateriales y Energía, Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León UANL, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 64455, México b Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Unidad Mérida, Antigua carretera a Progreso, km 6, Cordemex, Mérida, Yucatán C.P. 97310, México c Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava #6, San Luis Potosí, S.L.P. C.P. 78290, México ARTICLE INFO ABSTRACT Keywords: This paper reports on the crystal structure determination of a new phase of Sm2YTaO7 synthesized by a solid- Pyrochlore state reaction. Rietveld refinement using X-ray powder diffraction (XRD) data and electron diffraction using Rietveld analysis transmission electron microscopy (TEM) revealed that Sm2YTaO7 crystallized into an orthorhombic system Crystal structure with space group C2221, and according to the crystalline arrangement, it can be considered as a weberite-type Photocatalysis phase. A detailed analysis of the crystal chemistry of the family with formula Sm MTaO (M=Y, In, Fe, Ga) was Hydrogen production 2 7 performed, which indicated that all of these complex oxides are composed of corner-sharing octahedral layers of TaO6 units within a three-, two- or one-dimensional array. In addition, for comparison, the crystal structure, 3+ 3+ 5+ space group and lattice parameters of approximately 100 previously synthesized oxides in the A2 B B O7 family were collected and analyzed, and a structural map based on the radius ratio rA/rB is reported.
    [Show full text]
  • The Fourteenth International Meeting on Ferroelectricity
    The Fourteenth International Meeting on Ferroelectricity BOOK OF ABSTRACTS San Antonio, Texas, USA September 4th – 8th, 2017 2 SPONSORSHIP 2 3 PREFACE The Fourteenth International Meeting on Ferroelectricity is held on September 4th to 8th, 2017 in San Antonio, Texas, USA. Over the past half century, since this series started (in 1965, at Prague, Czechoslovakia) the meeting is held every four years in different locations around the world, IMF has provided the platform to bring together researchers from academia, industry and government laboratories to share their knowledge in the field and to present the development of novel applications of ferroelectricity in various interdisciplinary and cross-coupled research areas. As a result, the IMF series has nurtured several special Symposia and Conferences in related fields and accelerated the rapid growth and extended interests in the field of ferroelectrics around the globe. The major themes and drives of these premier meetings have been to present the recent developments in the new understandings of fundamentals, advances in the field and bringing out the novel emerging cross-coupled effects among various characteristics of materials such as semiconductors, biosystems, and so on. Over the decades the conference has provided extensive and cumulative understanding of a large family of novel ferroic materials. The previous thirteen IMFs spread over the last fifty years have successfully established the field by serving its goals to the targeted research community. The Fourteenth International Meeting on Ferroelectricity (IMF-2017) Organization committee is pleased to welcome you and thanks for your participation and support to continue this important tradition of the Ferroelectrics Community.
    [Show full text]