Electrical Properties of Cati03

Total Page:16

File Type:pdf, Size:1020Kb

Electrical Properties of Cati03 The University of New South Wales Faculty of Science and Technology School of Materials Science and Engineering Electrical Properties of CaTi03 A Thesis in Ceramic Engineering by Mei-Fang Zhou Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy March 2004 U N b W 2 7 JAN 2005 LIBRARY CERTIFICATE OF ORIGINALITY I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged. (Signed) ACKNOWLEDGMENTS The author would like to express her thanks to the following people for their contributions to the completion of this work: Prof. J. Nowotny, my supervisor, for sparking my interest in this thesis project and for providing valuable advice on various aspects of the project. I am grateful for his constant encouragement and great assistance with the research plan, thesis corrections and valuable discussion. In particular, he contributed exceptional expertise in the defect chemistry of amphoteric semiconducting oxides. Prof. C. C. Sorrell, my supervisor, for his quality supervision. The scholarship provided by him has been a key factor in the completion of the project. I am grateful for his valuable advice, helpful discussions and training in scientific research approaches. In particular, he guided me on the crystal chemistry aspects of this work. Dr. T. Bak, my co-supervisor, for his every day guidance in performing this project and many valuable discussions that were so essential for me to understand defect chemistry and the impact of defect disorder on electrical properties. Dr. Lou Vance, ANSTO Materials, for his cooperation in many aspects of this research project, which was performed as part of a collaborative program between UNSW and ANSTO. Mr. J. W. Sharp for contributing his considerable technical and experimental expertise. Ms. Jane Gao for her support with computing and IT-related matters. I also am grateful for her support for my permanent resident application. II Dr. Y. Wang and Ms. I. Bolkovsky for the help with X-ray diffraction and Laser Roman Spectrometric analysis; Dr. C. H. Kong, Ms V. Piegerova and Mr. J. Budden for assistance with application of optical and electron microscopy. Other staff and my friends in the School of Materials Science and Engineering at the University of New South University, for various technical or practical support during the course of my study. Interlibrary Loan Section, Physical Science Library, UNSW for the acquisition of many papers otherwise unavailable. Commonwealth Department of Education, Science and Training, Australia for providing financial support in the form of International Postgraduate Research Scholarship (IPRS). My family members for their constant support and encouragement. Ill For my family ABSTRACT The present thesis studied semiconducting properties of polycrystalline CaTiC>3 at elevated temperatures and in controlled gas phase environment. The research included the determination of both electrical conductivity and thermoelectric power in the gas phase of well defined oxygen activity. The aim of research was the determination of the effect of processing conditions, including temperature and oxygen activity, on semiconducting properties of CaTiC>3, and related charge transport. The present work was performed as a collaborative project between UNSW and ANSTO. The CaTiC>3 specimen used in this study has been used for the fabrication of SYNROC at ANSTO. The measurements of electrical conductivity and thermoelectric power of CaTi03 in the ranges of temperature 973 - 1323 K and under oxygen partial pressure lO'-Kf Pa were applied in this work. These two properties were determined simultaneously in the condition of gas/solid equilibrium. The electrical conductivity data were used for (i) isothermal monitoring of the re­ equilibration kinetics after a new oxygen activity was imposed in the measuring chamber, and (ii) establishment of the equilibrium state. The thermoelectric power (Seebeck coefficient) data were used for the assessment of the conductivity type. The determined experimental data were used for the following assessments/analyses: • Verification of the gas/solid equilibrium • Verification of defect disorder models • Determination of the conductivity components related to different charge carriers (electrons, electron holes and ions) • Verification of the effect of oxygen activity on the n-p transition The obtained experimental data and their analysis result in the following conclusions: V 1. The electrical conductivity within the n-p transition range should be considered in terms of the conductivity components corresponding to electrons, electron holes and ions. The latter may assume a substantial value (up to 50% of the total value of the electrical conductivity). 2. The temperature dependence of the electrical conductivity includes both the mobility and the formation terms. The determined activation energy of the formation of defects and their mobility is 125.3 kJ/mol at 10 Pa and 94.4 kJ/mol at 72 kPa, respectively. 3. It was found that the p(C>2) corresponding to zero value of the thermoelectric power differs substantially from the minimum of electrical conductivity as a function of p(C>2). Therefore, the latter cannot be considered as corresponding to the n-p transition. This phenomenon indicates that the semiconducting properties of CaTiCb differ essentially from other oxide semiconductors which exhibit a good agreement between the minimum of the electrical conductivity and zero value of thermoelectric power. The discrepancy between the two is likely due to different mobility of electrons and electron holes. The possibilities of incorporation of different impurities into lattice structure of CaTiCb to form substitutional solid solution or interstitial solid solution are assessed. Three atom contact models describing the CaTiCb structure are considered and the total effective concentration of the impurity elements affecting electrical properties of CaTiCb was determined. The obtained experimental data were used to derive an equation that can be used for prediction of the electrical conductivity of CaTiCb as a function of temperature and oxygen partial pressure: vpredia = e-'wmll,T(p(O2)x\0rry + 27.81x10''" e~m,MIRT(p(02)x\tfrY + 68.67xl03+r" g-15®10"”' VI NOMENCLATURE A Sum of concentration of foreign ion A' Concentration of acceptors [atomic ratio] An Kinetic constant related to scattering of electrons Ap Kinetic constant related to scattering of electron holes e Elementary charge [ 1.60206x 10'19C] Ea Activation energy [kJ/mol] Ec Energy of the bottom of the conduction band [eV] Ef Fermi energy [eV] Ev Energy of the top of the valence band [eV] F Faraday constant [96500C] AG Change of free energy [J] h Electron holes AF1 Change of enthalpy [J] AHf Formation enthalpy of the predominant defects [J] k Boltzmann constant [8.6167x10'5eV/K, 1.3807x10'23J/K] K Equilibrium constant m Parameter related to defect disorder n Concentration of electrons [atomic ratio] Nn Density of states for electrons [atomic ratio] Np Density of states for holes [atomic ratio] p Concentration of electron holes [atomic ratio] p(C>2) Oxygen partial pressure [Pa] R Electrical resistance [Q] S Thermoelectric power, S [V/K] Sn Seebeck coefficient components related to electrons [V/K] Sp Seebeck coefficient components related to electron holes [V/K] AS Change of entropy [J] T Absolute temperature [K] VII AT Temperature change across a specimen [K] t Transfer number tj Transport number of ions tn Transfer number of electrons tp Transfer number of electron holes AV Change of potential difference across a specimen [V] z Valency of defects [Tixi] Concentration of Ti ions in their lattice site [Vii””] Concentration of fully charged Ti vacancies [atom ratio] [ ] Concentration of defects n Mobility [mVS'1] p Specific resistivity [Q-cm] g Electrical conductivity [cnf'Q'1] Qj Ionic conductivity component [cnf’Q'1] an Electron conductivity component [cnf'Q"1] gp Electron hole conductivity component [cnf’Q'1] VIII TABLE OF CONTENTS SECTION________________________________________________________ PAGE CERTIFICATE OF ORIGINALITY....................................................................................... I ACKNOWLEDGMENTS....................................................................................................... II ABSTRACT...............................................................................................................................V NOMENCLATURE..............................................................................................................VII TABLE OF CONTENTS........................................................................................................IX LIST OF FIGURES..............................................................................................................XIII LIST OF TABLES..............................................................................................................
Recommended publications
  • 2 Literature Review
    2 Literature review 2.1 Thin film solid state reactions A solid state chemical reaction in the classical sense occurs when local transport of matter is observed in crystalline phases and new phases are formed.1 This definition does not mean that gaseous or liquid phases may not take part in the solid state reactions. However, it does mean that the reaction product occurs as a solid phase. Thus, the tarnishing of metals during dry or wet oxidation is also considered to be a solid state reaction. Commonly, the solid state reac- tions are heterogeneous reactions. If after reaction of two substances one or more solid product phases are formed, then a heterogeneous solid state reaction is said to have occurred. Spinel- and pyrochlore-forming reactions are well-known examples of solid-state reactions where a ternary oxide forms.5–11 In this Ph.D. thesis, heterogeneous solid state reactions are considered. Extended crystal defects as high mobility paths for atoms are essential in the reactivity of solids. Furthermore, interfaces play an important role in the solid state reactions because during hetero- geneous reactions interfaces move and mass transport occurs across them. The interfaces can be coherent, semicoherent or incoherent.28 At the interface, chemical reactions take place between species and defects; they are often associated with structural transformations and volume changes. The characteristics of thin film solid state reactions running on the nanometer scale are con- siderably different from solid state reactions proceeding in the bulk. During bulk reactions, the diffusion process is rate limiting and controls the growth.
    [Show full text]
  • Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization
    materials Review Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization Albina I. Orlova 1 and Michael I. Ojovan 2,3,* 1 Lobachevsky State University of Nizhny Novgorod, 23 Gagarina av., 603950 Nizhny Novgorod, Russian Federation 2 Department of Radiochemistry, Lomonosov Moscow State University, Moscow 119991, Russia 3 Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK * Correspondence: [email protected] Received: 31 May 2019; Accepted: 12 August 2019; Published: 19 August 2019 Abstract: Crystalline ceramics are intensively investigated as effective materials in various nuclear energy applications, such as inert matrix and accident tolerant fuels and nuclear waste immobilization. This paper presents an analysis of the current status of work in this field of material sciences. We have considered inorganic materials characterized by different structures, including simple oxides with fluorite structure, complex oxides (pyrochlore, murataite, zirconolite, perovskite, hollandite, garnet, crichtonite, freudenbergite, and P-pollucite), simple silicates (zircon/thorite/coffinite, titanite (sphen), britholite), framework silicates (zeolite, pollucite, nepheline /leucite, sodalite, cancrinite, micas structures), phosphates (monazite, xenotime, apatite, kosnarite (NZP), langbeinite, thorium phosphate diphosphate, struvite, meta-ankoleite), and aluminates with a magnetoplumbite structure. These materials can contain in their composition various cations in different combinations and ratios: Li–Cs, Tl, Ag, Be–Ba, Pb, Mn, Co, Ni, Cu, Cd, B, Al, Fe, Ga, Sc, Cr, V, Sb, Nb, Ta, La, Ce, rare-earth elements (REEs), Si, Ti, Zr, Hf, Sn, Bi, Nb, Th, U, Np, Pu, Am and Cm. They can be prepared in the form of powders, including nano-powders, as well as in form of monolith (bulk) ceramics.
    [Show full text]
  • Perovskites: Crystal Structure, Important Compounds and Properties
    Perovskites: crystal structure, important compounds and properties Peng Gao GMF Group Meeting 12,04,2016 Solar energy resource PV instillations Global Power Demand Terrestrial sun light To start • We have to solve the energy problem. • Any technology that has good potential to cut carbon emissions by > 10 % needs to be explored aggressively. • Researchers should not be deterred by the struggles some companies are having. • Someone needs to invest in scaling up promising solar cell technologies. Origin And History of Perovskite compounds Perovskite is calcium titanium oxide or calcium titanate, with the chemical formula CaTiO3. The mineral was discovered by Gustav Rose in 1839 and is named after Russian mineralogist Count Lev Alekseevich Perovski (1792–1856).” All materials with the same crystal structure as CaTiO3, namely ABX3, are termed perovskites: Origin And History of Perovskite compounds Very stable structure, large number of compounds, variety of properties, many practical applications. Key role of the BO6 octahedra in ferromagnetism and ferroelectricity. Extensive formation of solid solutions material optimization by composition control and phase transition engineering. A2+ B4+ O2- Ideal cubic perovskite structure (ABO3) Classification of Perovskite System Perovskite Systems Inorganic Halide Oxide Perovskites Perovskites Alkali-halide Organo-Metal Intrinsic Doped Perovskites Halide Perovskites Perovskites A2Cl(LaNb2)O7 Perovskites 1892: 1st paper on lead halide perovskites Structure deduced 1959: Kongelige Danske Videnskabernes
    [Show full text]
  • Structure Refinement of Polycrystalline Orthorhombic Yttrium Substituted Calcium Titanate: Ca1−Xyxtio3+Δ (X = 0·1–0·3)
    Bull. Mater. Sci., Vol. 34, No. 1, February 2011, pp. 89–95. c Indian Academy of Sciences. Structure refinement of polycrystalline orthorhombic yttrium substituted calcium titanate: Ca1−xYxTiO3+δ (x = 0·1–0·3) RASHMI CHOURASIA and O P SHRIVASTAVA∗ Department of Chemistry, Dr H.S. Gour University, Sagar 470 003, India MS received 23 May 2007; revised 7 September 2010 Abstract. The perovskite ceramic phases with composition Ca1−xYxTiO3+δ (where x = 0·1, 0·2and0·3; hereafter CYT-10, CYT-20 and CYT-30) have been synthesized by solid state reaction at 1050◦C. The structure refinement using general structure analysis system (GSAS) software converges to satisfactory profile indicators such as Rietveld 2 parameters: Rp, Rwp,RF and goodness of fit. The title phases crystallize at room temperature in the space group Pbnm (#62) with a = 5·3741(4) Å, b = 5·4300(4) Å, c = 7·6229(5) Å and Z = 4. Major interatomic distances, bond angles and structure factors have been calculated from the step analysis data of the compound. The crys- tal morphology has been examined by scanning electron microscopy. Energy dispersive X-ray (EDX) analysis of the specimens show that yttrium enters into the structural framework of CaTiO3. The particle size of the ceramic phases along major reflection planes ranges between 12 and 40 nm. The polyhedral (CaO8 and TiO6) distortions and valence calculations from bond strength data are also reported. Keywords. Perovskites; powder X-ray diffraction; Rietveld refinement; GSAS; nanoceramic. 1. Introduction 2. Experimental Perovskite type oxides of general formula ABO3 are well 2.1 Ceramic route synthesis of Ca1−x Yx TiO3 (x = 0·1–0·3) known for their property of cationic substitution on A site phases (Goodenough et al 1976; Myhra et al 1986; Ringwood 1985; Shrivastava and Shrivastava 2002).
    [Show full text]
  • Zirconolite, Chevkinite and Other Rare Earth Minerals from Nepheline Syenites and Peralkaline Granites and Syenites of the Chilwa Alkaline Province, Malawi
    Zirconolite, chevkinite and other rare earth minerals from nepheline syenites and peralkaline granites and syenites of the Chilwa Alkaline Province, Malawi R. G. PLATT Dept. of Geology, Lakehead University, Thunder Bay, Ontario, Canada F. WALL, C. T. WILLIAMS AND A. R. WOOLLEY Dept. of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 5BD, U.K. Abstract Five rare earth-bearing minerals found in rocks of the Chilwa Alkaline Province, Malawi, are described. Zirconolite, occurring in nepheline syenite, is unusual in being optically zoned, and microprobe analyses indicate a correlation of this zoning with variations in Si, Ca, Sr, Th, U, Fe, Nb and probably water; it is argued that this zoning is a hydration effect. A second compositional zoning pattern, neither detectable optically nor affected by the hydration, is indicated by variations in Th, Ce and Y such that, although total REE abundances are similar throughout, there appears to have been REE fractionation during zirconolite growth from relatively heavy-REE and Th-enrichment in crystal cores to light-REE enrichment in crystal rims. Chevkinite is an abundant mineral in the large granite quartz syenite complexes of Zomba and Mulanje, and analyses are given of chevkinites from these localities. There is little variation in composition within each complex, and only slight differences between them; they are all typically light-REE-enriched. The Mulanje material was shown by X-ray diffraction to be chevkinite and not the dimorph perrierite, but chemical arguments are used in considering the Zomba material to be the same species. Other rare earth minerals identified are monazite, fluocerite and bastn/isite.
    [Show full text]
  • Combustion Synthesis, Sintering, Characterization, and Properties
    Hindawi Advances in Materials Science and Engineering Volume 2019, Article ID 9639016, 9 pages https://doi.org/10.1155/2019/9639016 Research Article Calcium Titanate from Food Waste: Combustion Synthesis, Sintering, Characterization, and Properties Siriluk Cherdchom,1 Thitiwat Rattanaphan,1 and Tawat Chanadee 1,2 1Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University (PSU), Hat Yai, Songkhla 90110, &ailand 2Ceramic and Composite Materials Engineering Research Group (CMERG), Center of Excellence in Materials Engineering (CEME), Prince of Songkla University (PSU), Hat Yai, Songkhla 90110, &ailand Correspondence should be addressed to Tawat Chanadee; [email protected] Received 31 August 2018; Revised 20 December 2018; Accepted 3 January 2019; Published 12 February 2019 Academic Editor: Andres Sotelo Copyright © 2019 Siriluk Cherdchom et al. )is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Calcium titanate (CaTiO3) was combustion synthesized from a calcium source of waste duck eggshell, anatase titanium dioxide (A-TiO2), and magnesium (Mg). )e eggshell and A-TiO2 were milled for 30 min in either a high-energy planetary mill or a conventional ball mill. )ese powders were then separately mixed with Mg in a ball mill. After synthesis, the combustion products were leached and then sintered to produce CaTiO3 ceramic. Analytical characterization of the as-leached combustion products revealed that the product of the combustion synthesis of duck eggshell + A-TiO2 that had been high-energy-milled for 30 min before synthesis comprised a single perovskite phase of CaTiO3.
    [Show full text]
  • CRYSTAL SRUKTUR of CALCIUM TITANATE (Catio3) PHOSPHOR DOPED with PRASEODYMIUM and ALUMINIUM IONS
    CRYSTAL SRUKTUR OF CALCIUM TITANATE (CaTiO3) PHOSPHOR DOPED WITH PRASEODYMIUM AND ALUMINIUM IONS STRUKTUR KRISTAL FOSFOR KALSIUM TITANIA DIDOPKAN DENGAN ION PRASEODYMIUM DAN ALUMINIUM IONS Siti Aishah Ahmad Fuzi1* and Rosli Hussin2 1 Material Technology Group, Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia. 2 Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor 1*[email protected], [email protected] Abstract The past three decades have witnessed rapid growth in research and development of luminescence phenomenon because of their diversity in applications. In this paper, Calcium Titanate (CaTiO3) was studied to find a new host material with desirable structural properties for luminescence-based applications. Solid state reactions o 3+ methods were used to synthesis CaTiO3 at 1000 C for 6 hours. Crystal structure of CaTiO3 co-doped with Pr 3+ and Al were investigated using X-Ray Diffraction (XRD) method. Optimum percentage to synthesis CaTiO3 was 3+ obtained at 40 mol%CaO-60 mol%TiO2 with a single doping of 1 mol%Pr . However, a crystal structure of 4 mol% of Al3+ co-doped with Pr3+ was determined as an optimum parameter which suitable for display imaging. Keywords: calcium titanate, anatase, rutile Abstrak Semenjak tiga dekad yang lalu telah menunjukkan peningkatan yang ketara bagi kajian dan pembangunan dalam bidang fotolumiscen. Peningkatan ini berkembang dengan meluas disebabkan oleh kebolehannya untuk diaplikasikan dalam pelbagai kegunaan harian. Dalam manuskrip ini, kalsium titania (CaTiO3) telah dikaji untuk mencari bahan perumah dengan sifat struktur yang bersesuaian bagi aplikasi luminescen. Tindak balas keadaan o pepejal telah digunakan bagi mensintesis CaTiO3 pada suhu 1000 C selama 6 jam.
    [Show full text]
  • The Titanium Industry: a Case Study in Oligopoly and Public Policy
    THE TITANIUM INDUSTRY: A CASE STUDY IN OLIGOPOLY AND PUBLIC POLICY DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy In the Graduate School of the Ohio State University by FRANCIS GEORGE MASSON, B.A., M.A. The Ohio State University 1 9 5 k Content* L £MR I. INTRODUCTION............................................................................................... 1 II. THE PRODUCT AND ITS APPLICATIONS...................................... 9 Consumption and Uses ................................. 9 Properties ........................................................ ...... 16 III. INDUSTRY STRUCTURE................................................................................ 28 Definition of the I n d u s t r y ............................................ 28 Financial Structure. ..••••••.••. 32 Alloys and Carbide Branch. ........................... 3 k Pigment Branch .............................................................................. 35 Primary Metal Branch ................................. 1*0 Fabrication Branch ................................. $0 IT. INDUSTRY STRUCTURE - CONTINUED............................................. $2 Introduction ................................ $2 World Production and Resources ................................. $3 Nature of the Demand for Ram Materials . $8 Ores and Concentrates Branch. ••••••• 65 Summary.................................................................. 70 V. TAXATION. ANTITRUST AND TARIFF POLICY............................
    [Show full text]
  • 4Utpo3so UM-P-88/125
    4utpo3So UM-P-88/125 The Incorporation of Transuranic Elements in Titanatc Nuclear Waste Ceramics by Hj. Matzke1, B.W. Seatonberry2, I.L.F. Ray1, H. Thiele1, H. Trisoglio1, C.T. Walker1, and T.J. White3'4'5 1 Commission of the European Communities, Joint Research Centre, i Karlsruhe Establishment, ' \ 'I European Institute for Transuranium Elements, Postfach 2340, D-7500 Karlsruhe, Federal Republic of Germany. 2 Advanced Materials Program, Australian Nuclear Science and Technology Organization, Private Mail Bag No. 1, Menai, N.S.W., 2234, Australia. 3 National Advanced Materials Analytical Centre, School of Physics, The University of Melbourne, Parkville, Vic, 3052, Australia. Supported by the Australian Natio-al Energy Research, Development and Demonstration Programme. 4 Member, The American Ceramic Society 5 Author to whom correspondence whould oe addressed 2 The incorporation of actinide elements and their rare earth element analogues in titanatc nuclear waste forms are reviewed. New partitioning data are presented for three waste forms contining Purex waste simulant in combination with either NpC^, PuC>2 or An^Oo. The greater proportion of transuranics partition between perovskitc and ztrconoiite, while some americium may enter loveringite. Autoradiography revealed clusters of plutonium atoms which have been interpreted as unrcacted dioxide or scsquioxide. It is concluded that the solid state behavior of transaranic elements in titanate waste forms is poorly understood; certainly inadequate to tailor a ceramic for the incorporation of fast breeder reactor wastes. A number of experiments are proposed that will provide an adequate, data base for the formulation and fabrication of transuranic-bearing jj [i waste forms. ' ' 1 ~> I.
    [Show full text]
  • Electrocatalytic Properties of Calcium Titanate, Strontium Titanate, and Strontium Calcium Titanate Powders Synthesized by Solution Combustion Technique
    Hindawi Advances in Materials Science and Engineering Volume 2019, Article ID 1612456, 7 pages https://doi.org/10.1155/2019/1612456 Research Article Electrocatalytic Properties of Calcium Titanate, Strontium Titanate, and Strontium Calcium Titanate Powders Synthesized by Solution Combustion Technique Oratai Jongprateep ,1,2 Nicha Sato ,1 Ratchatee Techapiesancharoenkij,1,2 and Krissada Surawathanawises1 1Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, !ailand 2Materials Innovation Center, Faculty of Engineering, Kasetsart University, Bangkok 10900, !ailand Correspondence should be addressed to Oratai Jongprateep; [email protected] Received 29 October 2018; Accepted 13 February 2019; Published 4 April 2019 Academic Editor: Alexander Kromka Copyright © 2019 Oratai Jongprateep et al. *is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Calcium titanate (CaTiO3), strontium titanate (SrTiO3), and strontium calcium titanate (SrxCa1−xTiO3) are widely recognized and utilized as dielectric materials. *eir electrocatalytic properties, however, have not been extensively examined. *e aim of this research is to explore the electrocatalytic performance of calcium titanate, strontium titanate, and strontium calcium titanate, as potential sensing materials. Experimental results revealed that CaTiO3, SrTiO3, and Sr0.5Ca0.5TiO3 powders synthesized by the solution combustion technique consisted of submicrometer-sized particles with 2 specific surface areas ranging from 4.19 to 5.98 m /g. Optical bandgap results indicated that while CaTiO3 and SrTiO3 had bandgap energies close to 3 eV, Sr0.5Ca0.5TiO3 yielded a lower bandgap energy of 2.6 eV. Cyclic voltammetry tests, measured in 0.1 M sodium nitrite, showed oxidation peaks occurring at 0.58 V applied voltage.
    [Show full text]
  • The Investigation of E-Beam Deposited Titanium Dioxide and Calcium Titanate Thin Films
    ISSN 1392–1320 MATERIALS SCIENCE (MEDŽIAGOTYRA). Vol. 19, No. 3. 2013 The Investigation of E-beam Deposited Titanium Dioxide and Calcium Titanate Thin Films Kristina BOČKUTĖ 1 ∗, Giedrius LAUKAITIS 1, Darius VIRBUKAS 1, Darius MILČIUS 2 1 Physics Department, Kaunas University of Technology, Studentu str. 50, LT-51368 Kaunas, Lithuania 2 Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, Breslaujos 3, LT-44403 Kaunas, Lithuania http://dx.doi.org/10.5755/j01.ms.19.3.1805 Received 05 June 2012; accepted 05 January 2013 Thin titanium dioxide and calcium titanate films were deposited using electron beam evaporation technique. The substrate temperature during the deposition was changed from room temperature to 600 °C to test its influence on TiO2 film formation and optical properties. The properties of CaTiO3 were investigated also. For the evaluation of the structural properties the formed thin ceramic films were studied by X-ray diffraction (XRD), energy dispersive spectrometry (EDS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Optical properties of thin TiO2 ceramics were investigated using optical spectroscope and the experimental data were collected in the ultraviolet-visible and near-infrared ranges with a step width of 1 nm. Electrical properties were investigated by impedance spectroscopy.It was found that substrate temperature has influence on the formed thin films density. The density increased when the substrate temperature increased. Substrate temperature had influence on the crystallographic, structural and optical properties also. Keywords: electron beam evaporation, titanium oxide, calcium titanate, optical properties. 1. INTRODUCTION∗ based compounds as calcium titanates are thermally and chemically stable, and they are also known for their phase Titanium dioxide, also known as titania, is one the transitions, which strongly affect their physical and most investigated transition metal oxide due to its chemical properties.
    [Show full text]
  • Carbonatites of the World, Explored Deposits of Nb and REE—Database and Grade and Tonnage Models
    Carbonatites of the World, Explored Deposits of Nb and REE—Database and Grade and Tonnage Models By Vladimir I. Berger, Donald A. Singer, and Greta J. Orris Open-File Report 2009-1139 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2009 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod/ Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov/ Telephone: 1-888-ASK-USGS Suggested citation: Berger, V.I., Singer, D.A., and Orris, G.J., 2009, Carbonatites of the world, explored deposits of Nb and REE— database and grade and tonnage models: U.S. Geological Survey Open-File Report 2009-1139, 17 p. and database [http://pubs.usgs.gov/of/2009/1139/]. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. ii Contents Introduction 1 Rules Used 2 Data Fields 2 Preliminary analysis: —Grade and Tonnage Models 13 Acknowledgments 16 References 16 Figures Figure 1. Location of explored Nb– and REE–carbonatite deposits included in the database and grade and tonnage models 4 Figure 2. Cumulative frequency of ore tonnages of Nb– and REE–carbonatite deposits 14 Figure 3 Cumulative frequency of Nb2O5 grades of Nb– and REE–carbonatite deposits 15 Figure 4 Cumulative frequency of RE2O3 grades of Nb– and REE–carbonatite deposits 15 Figure 4 Cumulative frequency of P2O5 grades of Nb– and REE–carbonatite deposits 16 Tables Table 1.
    [Show full text]