Crystal Structure of Pistol, a Class of Self-Cleaving Ribozyme

Total Page:16

File Type:pdf, Size:1020Kb

Crystal Structure of Pistol, a Class of Self-Cleaving Ribozyme Crystal structure of Pistol, a class of self-cleaving ribozyme Laura A. Nguyena, Jimin Wanga,1, and Thomas A. Steitza,b,c,1 aDepartment of Molecular Biochemistry and Biophysics, Yale University, New Haven, CT 06520; bHoward Hughes Medical Institute, Yale University, New Haven, CT 06520; and cDepartment of Chemistry, Yale University, New Haven, CT 06520-8107 Edited by Jennifer A. Doudna, University of California, Berkeley, CA, and approved December 19, 2016 (received for review July 8, 2016) Small self-cleaving ribozymes have been discovered in all evolution- can enhance the rates of the internal transesterification reaction by ary domains of life. They can catalyze site-specific RNA cleavage, and using catalytic strategies, such as deprotonation of the 2′-hydroxyl as a result, they have relevance in gene regulation. Comparative group and neutralizing the negative charge on the nonbridging genomic analysis has led to the discovery of a new class of small self- oxygen of the scissile phosphate or 5′-oxygen of the cleaved sub- cleaving ribozymes named Pistol. We report the crystal structure of strate (10, 13–15). Pistol at 2.97-Å resolution. Our results suggest that the Pistol ribo- We report the crystal structure of Pistol at 2.97-Å resolution. Our zyme self-cleavage mechanism likely uses a guanine base in the ac- structure reveals the nucleobases that are likely to be involved in the tive site pocket to carry out the phosphoester transfer reaction. The internal transesterification reaction of Pistol. The structure validates guanine G40 is in close proximity to serve as the general base for prior biochemical results of the Pistol self-cleavage mechanism and activating the nucleophile by deprotonating the 2′-hydroxyl to ini- further elucidates additional mechanistic details that cannot be easily tiate the reaction (phosphoester transfer). Furthermore, G40 can also addressed with biochemical analysis (10). The structure shows that establish hydrogen bonding interactions with the nonbridging oxy- Pistol adopts an overall compact fold stabilized by the A-minor motif gen of the scissile phosphate. The proximity of G32 to the O5′ leav- commonly found in many RNA structures, which explains the high ing group suggests that G32 may putatively serve as the general sequence conservation for the stretch of adenines found in Pistol. acid. The RNA structure of Pistol also contains A-minor interactions, The overall fold and cleavage mechanism of Pistol shares similar which seem to be important to maintain its tertiary structure and features with other self-cleaving ribozymes, such as the presence of a compact fold. Our findings expand the repertoire of ribozyme struc- pseudoknot fold and the proposed use of guanosine as a general tures and highlight the conserved evolutionary mechanism used by base, highlighting their conserved evolutionary mechanism. ribozymes for catalysis. Results and Discussion X-ray crystallography | ribozyme | self-cleavage | Structure Determination. The Pistol RNA construct used for crys- internal transesterification | A-minor interaction tallization was derived from an extensive comparative genomic analysis of the previously identified environmental sample 27, he “RNA world” hypothesis speculates that RNA carried likely of bacterial origin (3, 16). The bimolecular Pistol RNA Tout the majority of biochemical reactions before the evo- construct contains two RNA strands annealed together: one being lution of complex protein enzymes (1, 2). Ribozymes are non- the enzyme strand and the other being a substrate strand (Fig. 1) coding RNA that carry out catalytic activities. Unlike protein (3). The substrate strand contains the Pistol self-cleavage site, enzymes, only a handful of ribozymes have known biological which is positioned between guanosine 10 (G10) and uridine 11 B functions. Their biological functions range from regulating gene (U11) (Fig. 1 ). To trap the Pistol ribozyme in its precatalytic expression (e.g., riboswitches) and performing peptidyl-transfer state for crystallization, we generated a Pistol RNA substrate reactions (e.g., ribosome) to removing intron sequences in genes (e.g., self-splicing Group I intron ribozymes) (2–9). The biological Significance BIOPHYSICS AND functions and mechanism of these ribozymes have been discovered COMPUTATIONAL BIOLOGY through structural and biochemical studies. Basedonthe“RNA world” theory, ribozymes likely carried out Currently, the classes of self-cleaving ribozymes consist of Ham- biochemical reactions long before organisms evolved to use merhead, Hairpin, Hepatitis Delta Virus ribozyme (HDV), Varkud protein enzymes as biocatalysts. The continued discovery of new Satellite (VS), glmS ribozyme, Twister, Twister sister, Hatchet, and structures for small self-cleaving ribozymes has shed light on Pistol (10). These classes differ based on their size, structure, and conserved mechanisms in evolution, such as acid–base catalysis cleavage mechanism. Known for their site-specific cleavage, ribo- for self-cleavage reaction. Here, we present the crystal structure zymes with defined biological function include the Hammerhead, of a newly discovered class of self-cleaving ribozymes called VS, and HDV, which all participate in rolling circle replication, Pistol and how it likely uses the phosphoester transfer mecha- whereas the glmS ribozyme functions in controlling gene expression nism for self-cleavage. The results presented here suggest that (11, 12). However, the biological function of a vast majority of the Pistol uses an evolutionarily conserved cleavage mechanism that different self-cleaving ribozymes remains to be explored. is like other self-cleaving ribozymes, such as Twister, Hammer- Through comparative genome analysis, there have been three head, Hairpin, and Hepatitis Delta Virus ribozymes. newly identified classes of self-cleaving ribozymes called Twister sister, Hatchet, and Pistol (3). Biochemical analysis reveals that Author contributions: L.A.N. designed research; L.A.N. performed research; T.A.S. contrib- uted new reagents/analytic tools; L.A.N., J.W., and T.A.S. analyzed data; and L.A.N. and J.W. Pistol can use a variety of divalent metal ions to carry out a com- wrote the paper. plete site-specific, self-cleaving reaction, whereas utilization of The authors declare no conflict of interest. monovalent cations results in modest cleavage rates (3, 10). The − This article is a PNAS Direct Submission. rate of Pistol self-cleavage has been estimated to be >10 min 1 > −1 Data deposition: The crystallography, atomic coordinates, and structure factors have been under physiological conditions and 100 min under optimal deposited in the Protein Data Bank, www.wwpdb.org (PDB ID code 5KTJ). magnesium and pH conditions (10). Pistol self-cleavage is via an 1To whom correspondence may be addressed. Email: [email protected] or thomas. internal transesterification reaction, in which the substrate RNA of [email protected]. ′ Pistol G10 2 -hydroxyl on the ribose makes a nucleophillic attack on This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. the adjacent 3′-phosphate (Fig. 1B) (3, 10). Self-cleaving ribozymes 1073/pnas.1611191114/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1611191114 PNAS | January 31, 2017 | vol. 114 | no. 5 | 1021–1026 Downloaded by guest on September 28, 2021 fold of Pistol necessary to form the active site (Figs. 1A and 2A). In agreement with the biochemistry results, our findings illuminate how two previously described mutations of nucleotides C2 and U3 in the P1 stem of Pistol (Fig. 1B) yielded a ribozyme with reduced cleavage efficiency (10). Based on our structure, we report features of Pistol that were not originally observed in prior secondary structural predictions. One feature is that the P1 and P2 stems are comprised of 5 Watson–- Crick bp instead of 4 bp (Fig. 1B) (10). The P2 stem has an additional U-U wobble base pair between U29 of the enzyme strand and the U11 cleavage site on the substrate strand. The presence of this wobble U-U base pair may help to properly orient the scissile phosphate for the cleavage reaction and could also provide additional stabilization of the U11 base after the cleavage reaction (Fig. 1B). Fig. 1. Overview of the Pistol ribozyme structure. (A) A standard view of Another feature observed in our structure is that Loop 1 con- the Pistol ribozyme is shown in the ribbon diagram. The structural domains tains three highly conserved adenosine nucleobases that form an are colored as follows: P1 is in green, P2 is in blue, P3 is in gray, pseudoknot is A A in magenta, and three loops are in orange. The arrows indicate the 5′ to 3′ A-minor interaction with the P1 stem (Figs. 1 and 4 ). We found direction. (B) A secondary structure of Pistol describes the interaction be- that these three adenosine nucleobases fix the P2 stem in the tween the enzyme strand from nucleotides 1–51 and the substrate strand proper spatial geometry for the active site formation. The P2 stem nucleotides 1–15. The cleavage site of Pistol is between G10 and U11 as in- is after Loop 1 and followed by Loop 2, which flanks the pseu- dicated by the arrow. Our substrate strand contains a noncleavable modified doknot along with Loop 3. Together, Loops 2 and 3 form the active dG base not depicted in this secondary structure. The base numberings are site of Pistol (Fig. 2A), which explains the high sequence conser- in black. vation of nucleotides found in these loops. After the active site, the P3 stem forms 9 Watson–Crick bp and is positioned adjacent to the P2 stem and Loop 3. Finally, the sharp turn in the substrate strand strand with a single-nucleotide mutation at the site of cleavage between the P2 and P3 stems exposes the scissile phosphate on the [from a guanosine to a deoxyguanosine (dG)]. With the loss of its substrate strand (Fig. 1A). 2′-hydroxyl, G10 can no longer serve as a nucleophile for Pistol to carry out its phosphoester transfer reaction. Active Site of Pistol and Catalytic Mechanism.
Recommended publications
  • Biophysical and Biochemical Investigations of RNA Catalysis in the Hammerhead Ribozyme
    UC Santa Cruz UC Santa Cruz Previously Published Works Title Biophysical and biochemical investigations of RNA catalysis in the hammerhead ribozyme. Permalink https://escholarship.org/uc/item/366835vs Journal Quarterly reviews of biophysics, 32(3) ISSN 0033-5835 Author Scott, WG Publication Date 1999-08-01 DOI 10.1017/s003358350000353x Peer reviewed eScholarship.org Powered by the California Digital Library University of California Quarterly Reviews of Biophysics 32, 3 (1999), pp. 241–284 Printed in the United Kingdom 241 # 1999 Cambridge University Press Biophysical and biochemical investigations of RNA catalysis in the hammerhead ribozyme William G. Scott The Center for the Molecular Biology of RNA and the Department of Chemistry and Biochemistry, Sinsheimer Laboratories, University of California at Santa Cruz, Santa Cruz, California 95064, USA 1. How do ribozymes work? 241 2. The hammerhead RNA as a prototype ribozyme 242 2.1 RNA enzymes 242 2.2 Satellite self-cleaving RNAs 242 2.3 Hammerhead RNAs and hammerhead ribozymes 244 3. The chemical mechanism of hammerhead RNA self-cleavage 246 3.1 Phosphodiester isomerization via an SN2(P) reaction 247 3.2 The canonical role of divalent metal ions in the hammerhead ribozyme reaction 251 3.3 The hammerhead ribozyme does not actually require metal ions for catalysis 254 3.4 Hammerhead RNA enzyme kinetics 257 4. Sequence requirements for hammerhead RNA self-cleavage 260 4.1 The conserved core, mutagenesis and functional group modifications 260 4.2 Ground-state vs. transition-state effects 261
    [Show full text]
  • Active State of the Twister Ribozyme in Solution Predicted from Molecular Simulation Colin S
    Article pubs.acs.org/JACS Ribozyme Catalysis with a Twist: Active State of the Twister Ribozyme in Solution Predicted from Molecular Simulation Colin S. Gaines and Darrin M. York* Center for Integrative Proteomics Research and Department of Chemistry & Chemical Biology, Rutgers University, 174 Frelinghuysen Road, Piscataway, New Jersey 08854-8076, United States *S Supporting Information ABSTRACT: We present results from molecular dynamics simulations and free energy calculations of the twister ribozyme at different stages along the reaction path to gain insight into its mechanism. The results, together with recent biochemical experiments, provide support for a mechanism involving general-acid catalysis by a conserved adenine residue in the active site. Although adenine has been previously implicated as a general acid acting through the N1 position in other ribozymes such as the hairpin and VS ribozymes, in the twister ribozyme there may be a twist. Biochemical experiments suggest that general acid catalysis may occur through the N3 position, which has never before been implicated in this role; however, currently, there is a lack of a detailed structural model for the active state of the twister ribozyme in solution that is consistent with these and other experiments. Simulations in a crystalline environment reported here are consistent with X-ray crystallographic data, and suggest that crystal packing contacts trap the RNA in an inactive conformation with U-1 in an extruded state that is incompatible with an in-line attack to the scissile phosphate. Simulations in solution, on the other hand, reveal this region to be dynamic and able to adopt a conformation where U-1 is stacked with G33.
    [Show full text]
  • Role of SLV in SLI Substrate Recognition by the Neurospora VS Ribozyme
    JOBNAME: RNA 14#4 2008 PAGE: 1 OUTPUT: Monday March 10 16:45:34 2008 csh/RNA/152278/rna8243 Downloaded from rnajournal.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Role of SLV in SLI substrate recognition by the Neurospora VS ribozyme PATRICIA BOUCHARD,1,4 JULIE LACROIX-LABONTE´,1,4 GENEVIE`VE DESJARDINS,1 PHILIPE LAMPRON,1 VE´RONIQUE LISI,3 SE´BASTIEN LEMIEUX,2,3 FRANCxOIS MAJOR,2,3 and PASCALE LEGAULT1 1De´partement de Biochimie, Universite´ de Montre´al, Montre´al, H3C 3J7 Canada 2De´partement d’Informatique et de Recherche Ope´rationnelle, Universite´ de Montre´al, Montre´al, H3C 3J7 Canada 3Institut de Recherche en Immunologie et en Cance´rologie, Universite´ de Montre´al, Montre´al, H3C 3J7 Canada ABSTRACT Substrate recognition by the VS ribozyme involves a magnesium-dependent loop/loop interaction between the SLI substrate and the SLV hairpin from the catalytic domain. Recent NMR studies of SLV demonstrated that magnesium ions stabilize a U-turn loop structure and trigger a conformational change for the extruded loop residue U700, suggesting a role for U700 in SLI recognition. Here, we kinetically characterized VS ribozyme mutants to evaluate the contribution of U700 and other SLV loop residues to SLI recognition. To help interpret the kinetic data, we structurally characterized the SLV mutants by NMR spectroscopy and generated a three-dimensional model of the SLI/SLV complex by homology modeling with MC-Sym. We demonstrated that the mutation of U700 by A, C, or G does not significantly affect ribozyme activity, whereas deletion of U700 dramatically impairs this activity.
    [Show full text]
  • Twister Ribozymes As Highly Versatile Expression Platforms for Artificial Riboswitches
    ARTICLE Received 18 Feb 2016 | Accepted 5 Aug 2016 | Published 27 Sep 2016 DOI: 10.1038/ncomms12834 OPEN Twister ribozymes as highly versatile expression platforms for artificial riboswitches Michele Felletti1,2, Julia Stifel1,2, Lena A. Wurmthaler1,2, Sophie Geiger1 &Jo¨rg S. Hartig1,2 The utilization of ribozyme-based synthetic switches in biotechnology has many advantages such as an increased robustness due to in cis regulation, small coding space and a high degree of modularity. The report of small endonucleolytic twister ribozymes provides new oppor- tunities for the development of advanced tools for engineering synthetic genetic switches. Here we show that the twister ribozyme is distinguished as an outstandingly flexible expression platform, which in conjugation with three different aptamer domains, enables the construction of many different one- and two-input regulators of gene expression in both bacteria and yeast. Besides important implications in biotechnology and synthetic biology, the observed versatility in artificial genetic control set-ups hints at possible natural roles of this widespread ribozyme class. 1 Department of Chemistry, University of Konstanz, Universita¨tsstrae 10, 78457 Konstanz, Germany. 2 Konstanz Research School Chemical Biology (Kors-CB), University of Konstanz, Universita¨tsstrae 10, 78457 Konstanz, Germany. Correspondence and requests for materials should be addressed to J.S.H. (email: [email protected]). NATURE COMMUNICATIONS | 7:12834 | DOI: 10.1038/ncomms12834 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12834 he family of small endonucleolytic ribozymes is composed organization suggests regulatory functions for the variable of RNA motifs of 50–150 nucleotides (nt) length with domains observed in positions P1 and P5 in several naturally Tintrinsic RNA cleavage activity1.
    [Show full text]
  • Light-Controlled Twister Ribozyme with Single-Molecule Detection Resolves RNA Function in Time and Space
    Light-controlled twister ribozyme with single-molecule detection resolves RNA function in time and space Arthur Kormana,1,2, Huabing Sunb,1,3, Boyang Huac, Haozhe Yangb, Joseph N. Capilatob, Rakesh Paulb,4, Subrata Panjad,5, Taekjip Hac,e,f, Marc M. Greenbergb,6, and Sarah A. Woodsond,6 aCell, Molecular, Developmental Biology and Biophysics Program, Johns Hopkins University, Baltimore, MD 21218; bDepartment of Chemistry, Johns Hopkins University, Baltimore, MD 21218; cDepartment of Biophysics and Biochemistry, Johns Hopkins University, Baltimore, MD 21205-2185; dT. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218; eDepartment of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218; and fHoward Hughes Medical Institute, Johns Hopkins University, Baltimore, MD 21205 Edited by Michael F. Summers, University of Maryland, Baltimore County, Baltimore, MD, and approved April 3, 2020 (received for review February 22, 2020) Small ribozymes such as Oryza sativa twister spontaneously cleave which limits their use in dynamics experiments (13). Photosolvolysis their own RNA when the ribozyme folds into its active conforma- reactions, such as those involving p-hydroxyphenacyl protecting tion. The coupling between twister folding and self-cleavage has groups (e.g., ref. 1 and Fig. 1A), release their cargo in less than one been difficult to study, however, because the active ribozyme rap- microsecond (13) and should be useful for probing processes oc- idly converts to product. Here, we describe the synthesis of a pho- curring on the submillisecond timescale. We previously employed tocaged nucleotide that releases guanosine within microseconds a UV-activated variant of 1 to temporally modulate RNA base upon photosolvolysis with blue light.
    [Show full text]
  • Coupling Between Conformational Dynamics and Catalytic Function at the Active Site of the Lead-Dependent Ribozyme
    Downloaded from rnajournal.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Coupling between conformational dynamics and catalytic function at the active site of the lead-dependent ribozyme NEIL A. WHITE,1,3 MINAKO SUMITA,1,4 VICTOR E. MARQUEZ,2 and CHARLES G. HOOGSTRATEN1 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA 2Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702, USA ABSTRACT In common with other self-cleaving RNAs, the lead-dependent ribozyme (leadzyme) undergoes dynamic fluctuations to a chemically activated conformation. We explored the connection between conformational dynamics and self-cleavage func- tion in the leadzyme using a combination of NMR spin-relaxation analysis of ribose groups and conformational restriction via chemical modification. The functional studies were performed with a North-methanocarbacytidine modification that prevents fluctuations to C2′′′′′-endo conformations while maintaining an intact 2′′′′′-hydroxyl nucleophile. Spin-relaxation data demonstrate that the active-site Cyt-6 undergoes conformational exchange attributed to sampling of a minor C2′′′′′- endo state with an exchange lifetime on the order of microseconds to tens of microseconds. A conformationally restricted species in which the fluctuations to the minor species are interrupted shows a drastic decrease in self-cleavage activity. Taken together, these data indicate that dynamic sampling of a minor species at the active site of this ribozyme, and likely of related naturally occurring motifs, is strongly coupled to catalytic function. The combination of NMR dynamics analysis with functional probing via conformational restriction is a general methodology for dissecting dynamics-function relation- ships in RNA.
    [Show full text]
  • Detecting Rna Folding and Dynamics of the Twister Ribozyme and The
    DETECTING RNA FOLDING AND DYNAMICS OF THE TWISTER RIBOZYME AND THE 16S RIBOSOMAL RNA by Arthur Korman A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland October 2019 © 2019 Arthur Korman All Rights Reserved Abstract Ribozymes are ribonucleic acid (RNA) enzymes capable of catalyzing chemical reactions. Their ability to catalyze reactions is dependent on the formation of proper secondary and tertiary folds. RNA folding begins as the nascent RNA is being synthesized. Structures that are formed early by the 5′ RNA will rearrange, allowing for more mature folds to take hold once the full-length RNA is synthesized. The final fold is the result of constant shifts in RNA structure as the RNA travels through its rugged folding pathway, until the full RNA has been synthesized and the RNA has reached its thermodynamically stable structure. In this dissertation, the folding dynamics of two RNAs, the bacterial 16S ribosomal RNA (rRNA) and the twister ribozyme, are studied. The 16S rRNA undergoes many conformational changes during 30S ribosome assembly, including a critical structural rearrangement during late stage of 30S subunit biogenesis between two competing structures, helix 1 and a hypothesized alternative helix 1. Using biochemical and analytical techniques, helix switching that occurs between the competing helical structures during 30S subunit reconstitution is examined. Unlike the large 16S rRNA, the Twister ribozyme is a small RNA that undergoes dynamic structural changes required for self-scission. The folding dynamics of twister RNA were measured in real time using single molecule Förster resonance energy transfer (smFRET).
    [Show full text]
  • Studying Trends of Non-Coding RNA Function and Evolution
    Studying trends of non-coding RNA function and evolution By Jeremy J. Widmann B.A. MCDB, University of Colorado, Boulder, 2004 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Chemistry and Biochemistry 2012 This thesis entitled: Studying trends of non-coding RNA function and evolution written by Jeremy J. Widmann has been approved for the Department of Chemistry and Biochemistry Rob Knight Robert Batey Michael Yarus Tom Cech Jim Goodrich Date Y The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii Abstract Widmann, Jeremy J (Ph. D., Biochemistry, University of Colorado, Boulder) Studying trends of non-coding RNA function and evolution. Thesis directed by Professor Rob Knight RNA is a special type of molecule in the sense that it is an information carrier, and is also able to catalyze chemical reactions. It is consequently believed that RNA predated protein and DNA as a catalyst and information carrier in an “RNA World”. A greater understanding of evolutionary and functional features of non-coding RNA is not only fundamental to elucidating the evolutionary mechanisms that give rise to RNA function, perhaps giving insight into the origin of life in an RNA World, but is necessary for the advancement of RNA biotechnology and RNA based therapeutics. Recent advancements in high-throughput sequencing technologies have provided the ability to study the function of non-coding RNAs at an unprecedented depth, producing millions to billions of sequences from a single experiment.
    [Show full text]
  • Untranslated Region of Mrnas As a Site for Ribozyme Cleavage-Dependent Processing and Control in Bacteria
    Erschienen in: RNA Biology ; 14 (2017), 11. - S. 1522-1533 https://dx.doi.org/10.1080/15476286.2016.1240141 RESEARCH PAPER The 30-untranslated region of mRNAs as a site for ribozyme cleavage-dependent processing and control in bacteria Michele Fellettia,b, Anna Biebera, and Jorg€ S. Hartiga,b aDepartment of Chemistry, University of Konstanz, Konstanz, Germany; bKonstanz Research School Chemical Biology (Kors-CB), University of Konstanz, Konstanz, Germany ABSTRACT Besides its primary informational role, the sequence of the mRNA (mRNA) including its 50-and30- untranslated regions (UTRs), contains important features that are relevant for post-transcriptional and translational regulation of gene expression. In this work a number of bacterial twister motifs are characterized both in vitro and in vivo. The analysis of their genetic contexts shows that these motifs have the potential of being transcribed as part of KEYWORDS polycistronic mRNAs, thus we suggest the involvement of bacterial twister motifs in the processing of mRNA. 0 Aptazyme; bacteria; Our data show that the ribozyme-mediated cleavage of the bacterial 3 -UTR has major effects on gene hammerhead ribozyme; expression. While the observed effects correlate weakly with the kinetic parameters of the ribozymes, they polyadenylation; riboswitch; show dependence on motif-specific structural features and on mRNA stabilization properties of the secondary RNase; RNA decay; secondary structures that remain on the 30-UTR after ribozyme cleavage. Using these principles, novel artificial twister- structure; twister ribozyme based riboswitches are developed that exert their activity via ligand-dependent cleavage of the 30-UTR and the removal of the protective intrinsic terminator. Our results provide insights into possible biological functions of these recently discovered and widespread catalytic RNA motifs and offer new tools for applications in biotechnology, synthetic biology and metabolic engineering.
    [Show full text]
  • Light-Controlled Twister Ribozyme with Single-Molecule Detection Resolves RNA Function in Time and Space
    Light-controlled twister ribozyme with single-molecule detection resolves RNA function in time and space Arthur Kormana,1,2, Huabing Sunb,1,3, Boyang Huac, Haozhe Yangb, Joseph N. Capilatob, Rakesh Paulb,4, Subrata Panjad,5, Taekjip Hac,e,f, Marc M. Greenbergb,6, and Sarah A. Woodsond,6 aCell, Molecular, Developmental Biology and Biophysics Program, Johns Hopkins University, Baltimore, MD 21218; bDepartment of Chemistry, Johns Hopkins University, Baltimore, MD 21218; cDepartment of Biophysics and Biochemistry, Johns Hopkins University, Baltimore, MD 21205-2185; dT. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218; eDepartment of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218; and fHoward Hughes Medical Institute, Johns Hopkins University, Baltimore, MD 21205 Edited by Michael F. Summers, University of Maryland, Baltimore County, Baltimore, MD, and approved April 3, 2020 (received for review February 22, 2020) Small ribozymes such as Oryza sativa twister spontaneously cleave which limits their use in dynamics experiments (13). Photosolvolysis their own RNA when the ribozyme folds into its active conforma- reactions, such as those involving p-hydroxyphenacyl protecting tion. The coupling between twister folding and self-cleavage has groups (e.g., ref. 1 and Fig. 1A), release their cargo in less than one been difficult to study, however, because the active ribozyme rap- microsecond (13) and should be useful for probing processes oc- idly converts to product. Here, we describe the synthesis of a pho- curring on the submillisecond timescale. We previously employed tocaged nucleotide that releases guanosine within microseconds a UV-activated variant of 1 to temporally modulate RNA base upon photosolvolysis with blue light.
    [Show full text]
  • Review Chemistry and Biology of Self-Cleaving Ribozymes Randi M
    TIBS 1181 No. of Pages 14 Review Chemistry and Biology of Self-Cleaving Ribozymes Randi M. Jimenez,1 Julio A. Polanco,1 and Andrej Lupták1,2,3,* Self-cleaving ribozymes were discovered 30 years ago, but their biological Trends fi distribution and catalytic mechanisms are only beginning to be de ned. Each Self-cleaving ribozymes are distributed ribozyme family is defined by a distinct structure, with unique active sites throughout all branches of life. Cur- accelerating the same transesterification reaction across the families. Biochem- rently, there are nine distinct structural motifs that promote self-scission in ical studies show that general acid-base catalysis is the most common mecha- nature. nism of self-cleavage, but metal ions and metabolites can be used as cofactors. The six self-cleaving ribozymes that Ribozymes have been discovered in highly diverse genomic contexts through- have been investigated mechanistically out nature, from viroids to vertebrates. Their biological roles include self- all appear to use a general acid-base scission during rolling-circle replication of RNA genomes, co-transcriptional mechanism for catalysis. Magnesium, or another divalent metal ion, is largely processing of retrotransposons, and metabolite-dependent gene expression used to stabilize the tertiary structures regulation in bacteria. Other examples, including highly conserved mammalian of these ribozymes. ribozymes, suggest that many new biological roles are yet to be discovered. The broad distribution of self-cleaving ribozymes suggests several biological Guiding Principles for Ribozyme Exploration roles. The known functions include RNA processing during rolling-circle Small nucleolytic ribozymes carry out site-specific phosphodiester scission without the need for replication of single-stranded subviral protein chaperones or enzymes.
    [Show full text]
  • KINETICS, THERMODYNAMICS, and DYNAMICS of RIBOZYMES By
    KINETICS, THERMODYNAMICS, AND DYNAMICS OF RIBOZYMES By Neil Andrew White A DISSERTATION Submitted to Michigan State University In partial fulfillment of requirements For the degree of Biochemistry and Molecular Biology—Doctor of Philosophy 2016 ABSTRACT KINETICS, THERMODYNAMICS, AND DYNAMICS OF RIBOZYMES By Neil Andrew White RNA transcribed from DNA can be divided into two groups: RNA that codes for protein and RNA that does not code for protein, or so-called non-coding RNA. Non-coding RNA can be further divided into several classes based on function. Non-coding RNAs perform a wide array of functions in living organisms, from gene regulation, to scaffolding, to catalysis. It is amazing that despite RNA having only four, chemically-similar monomers it can have such important, wide-ranging functions. Proteins which also perform wide-ranging functions in organisms have twenty common monomers that are vastly more diverse in terms of chemical or functional groups and structure. How non-coding RNA, specifically catalytic RNA or ribozymes, overcome this inherent lack of chemical and structural diversity to have impressive, intricate structures and function is the focus of this thesis. It is important to study how ribozymes are able to form intricate structure and execute function. They also have potential therapeutic applications, to control RNA viruses like HIV and oncogene transcripts, due to their ability to cleave RNA. Also, they provide a window back to a time described by the RNA World Hypothesis, a time before DNA and proteins, when RNA performed self-replication. Ribozymes overcomes its lack of diversity in monomers by being a dynamic polymer.
    [Show full text]