Proprotein Convertases and Serine Protease Inhibitors: Developing Novel Indirect-Acting Antiviral Strategies Against Hepatitis C Virus

Total Page:16

File Type:pdf, Size:1020Kb

Proprotein Convertases and Serine Protease Inhibitors: Developing Novel Indirect-Acting Antiviral Strategies Against Hepatitis C Virus PROPROTEIN CONVERTASES AND SERINE PROTEASE INHIBITORS: DEVELOPING NOVEL INDIRECT-ACTING ANTIVIRAL STRATEGIES AGAINST HEPATITIS C VIRUS by Andrea D. Olmstead B.Sc., The University of Saskatchewan, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Microbiology and Immunology) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) December 2011 © Andrea D. Olmstead, 2011 Abstract Hepatitis C virus (HCV) utilizes host lipids for every stage of its lifecycle. HCV hijacks host lipid droplets (LDs) to coordinate assembly through the host lipoprotein assembly pathway; this facilitates uptake into hepatocytes through the low density lipoprotein receptor (LDLR). Induction of host lipid metabolism by HCV supports chronic infection and leads to steatosis, exacerbating liver dysfunction in infected patients. One pathway activated by HCV is the sterol regulatory element binding protein (SREBP) pathway which controls lipid metabolism gene expression. To activate genes in the nucleus, SREBPs must first be cleaved by host subtilisin kexin isozyme-1/site-1 protease (SKI-1/S1P). Proprotein convertase subtilisin/kexin type 9 (PCSK9) is one SREBP-regulated protein that post-translationally decreases LDLR expression in the liver. The overall aim of this thesis was to determine the potential application of these two important regulators of host lipid homeostasis, PCSK9 and SKI-1/S1P, as targets for inhibiting HCV infection. The first hypothesis tested was that inhibiting SKI-1/S1P would block HCV hijacking of the SREBP pathway and limit sequestration of host lipids by HCV, blocking virus propagation. To inhibit SKI-1/S1P function, an engineered serine protease inhibitor (serpin) and a small molecule inhibitor were employed. Both inhibitors were shown to block SKI-1/S1P cleavage of SREBPs, reduce LD accumulation in hepatoma cells and inhibit HCV infection. The next hypothesis explored was that amplifying PCSK9 expression or function in hepatoma cells would increase their resistance to HCV infection through downregulation of LDLR. It was confirmed, using overexpression of wild-type PCSK9 or treating cells with gain-of-function PCSK9, that PCSK9 can be used to prevent HCV entry into hepatoma cells. Finally, studies are presented detailing the discovery and characterization of a non-inhibitory serpin variant with potent antiviral activity against HCV infection. It is hypothesized that inhibition may be related to antiviral functions exhibited by other human serpins or serpin-derived peptides possessing diverse regulatory properties. Host lipid metabolism is a critical component of the lifecycle of HCV and many other viruses. These studies confirm that lipid metabolism pathways can be rationally targeted to inhibit viral infection and may lead to the development of novel, indirect-acting therapies against HCV and related viruses. ii Preface A version of the research presented in Chapter 2 has been conditionally accepted pending minor revisions to the journal PLoS Pathogens (Olmstead, A.D., Knecht, W., Lazarov, I., Dixit, S. B., Jean, F. (2011) Human subtilisin kexin isozyme-1/site-1 protease (SKI-1/S1P) is a key host factor for robust HCV infection). In the last year of my PhD, I supervised a co-op student, Ina Lazarov who provided technical assistance for Figure 2.3 C and D and performed the western blots for Figure 2.4 E. The serpin model presented in Figure 1.6, Figure 2.1 and Figure 4.1 was generated with the program pyMOL by Dr. Surjit Dixit (Zymeworks Inc., Vancouver, BC, Canada). Dr. Wolfgang Knecht (Lead Generation - Target Production, AstraZeneca R&D, Mölndal, Sweden) contributed to this work by generating and purifying the recombinant protein SKI-1/S1P used in Figure 2.2 and Figure 4.2. A fellow PhD graduate student, Steven McArthur, performed curve fitting analysis presented in Figure 2.7 A and Figure 3.6 A and stick models generated in pyMOL which are presented in Figure 4.8. All reagents provided by external research groups are indicated in the materials and methods. I designed all the experiments described in this thesis together with my supervisor Dr. François Jean. I conducted all of the research, analyzed the data, and wrote the first drafts of the manuscripts presented in Chapters 2, which was then revised together with Dr. Jean. This work was funded by a CIHR operating grant (F. Jean). Graduate student funding was also provided by the Canadian Institute for Health Research (CIHR-UBC translational research in infectious diseases scholarship and CIHR masters award) and the Michael Smith Foundation for Health Research (MSFHR junior graduate student award). iii Table of Contents Abstract ........................................................................................................................................... ii Preface............................................................................................................................................ iii Table of Contents ........................................................................................................................... iv List of Tables ............................................................................................................................... viii List of Figures ................................................................................................................................ ix List of Abbreviations ..................................................................................................................... xi Acknowledgements ...................................................................................................................... xiv Dedication ..................................................................................................................................... xv Chapter 1: Introduction .................................................................................................................. 1 1.1 Hepatitis C virus ........................................................................................................... 1 1.1.1 Emergence and characterization ............................................................................ 1 1.1.2 HCV pathogenesis ................................................................................................. 2 1.1.3 Current antiviral strategies .................................................................................... 3 1.2 The liver and host lipid metabolism ............................................................................. 4 1.2.1 Lipoproteins .......................................................................................................... 4 1.2.2 Low density lipoprotein receptor .......................................................................... 5 1.2.3 Sterol regulatory element binding protein pathway .............................................. 6 1.3 Hepatitis C virus molecular biology ............................................................................. 6 1.3.1 HCV proteins......................................................................................................... 7 1.3.2 The HCV lifecycle ................................................................................................ 8 1.3.3 HCV and host lipid metabolism ............................................................................ 9 1.3.4 HCV hijacking of the SREBP pathway............................................................... 10 1.4 Proprotein convertases regulating lipid homeostasis .................................................. 10 1.4.1 Subtilisin kexin isozyme-1/site-1 protease .......................................................... 11 1.4.2 Proprotein convertase subtilisin/kexin type 9 ..................................................... 11 1.4.3 Host proprotein convertases as antiviral targets .................................................. 12 1.5 Serine protease inhibitors (serpins) ............................................................................ 13 1.5.1 Serpin structure ................................................................................................... 14 1.5.2 Mechanism of action ........................................................................................... 14 iv 1.5.3 Carboxy-terminal serpin activities ...................................................................... 15 1.5.4 The Drosophila melanogaster secretory pathway serpin, Spn4A....................... 17 1.6 Research hypothesis and rationale .............................................................................. 17 1.6.1 Aim 1 ................................................................................................................... 18 1.6.2 Aim 2 ................................................................................................................... 19 1.6.3 Aim 3 ................................................................................................................... 19 Chapter 2: Identification and characterization of the human subtilisin kexin isozyme-1/site-1 protease as a key host factor for hepatitis C virus infection ......................................................... 32 2.1 Introduction ................................................................................................................ 32 2.2 Materials and methods ...............................................................................................
Recommended publications
  • Antiviral Chemistry & Chemotherapy's Current Antiviral Agents Factfile 2006
    RNA_title_sheet 22/8/06 10:13 Page 1 Antiviral Chemistry & Chemotherapy’s current antiviral agents FactFile 2006 (1st edition) The RNA viruses RNA_title_sheet 22/8/06 10:13 Page 2 RNA 22/8/06 09:31 Page 129 Antiviral Chemistry & Chemotherapy 17.3 FactFiille:: RNA viiruses Symmetrel, Mantadix Amantadine Adamantan-1-amine hydrochloride, l-adamantanamine, aman- tadine hydrochloride. Novartis References: 1,64,65 Principal target virus: Influenza A virus. Other activities: HCV. H Mode of action: M2 ion channel inhibitor. Clinical stage: Licensed. Adamantine (cyclic primary amine) derivative used for the treatment and prophylaxis of influenza A virus infections. Rapid emergence of resistence has limited it use. Sometimes used to treat HCV infection in combination with interferon and ribavirin. NH2.HCI H H Ciluprevir (1S,4R,6S,14S,18R)-7Z-14-Cyclopentyloxycarbonylamino-18-[2-(2- isopropylamino-thiazol-4-yl)-7-methoxy-quinolin-4-yloxy]-2,15 Boehringer Ingelheim (Canada) Ltd. R&D dioxo-3,16-diazatricyclo[14.3.0.04,6]nonadec-7-ene-4-carboxylic acid, BILN 2061. References: 66,67,68,69 OMe Principal target virus: HCV Mode of action: PI Development of ciluprevir has been discontinued. Ciluprevir is a novel small molecule anti-hepatitis C compound. It is N the first in a new class of investigational antiviral drugs, HCV PIs. N H O N CH S 3 O H C H 3 O N N OH O O N O H Tamiflu Oseltamivir Ethyl ester of (3R,4R,5S)-4-acetamido-5-amino-3-(1-ethyl- propoxy)-1-cyclohexane-1-carboxylic acid, GS4104, Ro-64-0796.
    [Show full text]
  • Novel HCV Inhibitors
    The UseNovel of Antivirals HCV toInhibitors Rapidly Contain Outbreaks of the Classical Swine Fever Virus Johan Neyts Rega Institute, KULeuven, Leuven Belgium Presented at the 9th Eu. Workshop on HIV & Hepatitis – 25 – 27 March 2011, Paphos, Cyprus Selective Inhibitors of HCV Replication that Target NS Proteins Presented at the 9th Eu. Workshop on HIV & Hepatitis – 25 – 27 March 2011, Paphos, Cyprus The NS2 cysteine protease NS2/3 cleavage is essential for replication and assembly N N C C Active Site 1 Active Site 2 Lorenz et al. Nature (2006) 442: 831-5 Presented at the 9th Eu. Workshop on HIV & Hepatitis – 25 – 27 March 2011, Paphos, Cyprus The HCV NS3 serine protease N-terminal domain : a serine protease in the presence of the NS4A cofactor protein C-terminal domain : RNA helicase De Francesco et al. 2001 Presented at the 9th Eu. Workshop on HIV & Hepatitis – 25 – 27 March 2011, Paphos, Cyprus NS3 protease product based inhibitors carboxy-terminal hexapeptide products as an active-site affinity anchor BILN-2061 Presented at the 9th Eu. Workshop on HIV & Hepatitis – 25 – 27 March 2011, Paphos, Cyprus Proof of concept with BILN-2061 (Ciluprevir) Lamarre et al., Nature. (2003) 426:186-9. Presented at the 9th Eu. Workshop on HIV & Hepatitis – 25 – 27 March 2011, Paphos, Cyprus Telaprevir monotherapy placebo 1250 mg q12h 450 mg q8h 750 mg q8h Reesink et al., Hepatology (2005) 42 : 234A Presented at the 9th Eu. Workshop on HIV & Hepatitis – 25 – 27 March 2011, Paphos, Cyprus The Major VX-950 and BILN2061 Resistance Mutations Do Not Cause Cross-resistance ITMN-191 Ciluprevir Lin, C.
    [Show full text]
  • Efficacy and Safety of the MC4R Agonist Setmelanotide in POMC Deficiency Obesity: a Phase 3 Trial
    Efficacy and Safety of the MC4R Agonist Setmelanotide in POMC Deficiency Obesity: A Phase 3 Trial Karine Clément,1,2 Jesús Argente,3 Allison Bahm,4 Hillori Connors,5 Kathleen De Waele,6 Sadaf Farooqi,7 Greg Gordon,5 James Swain,8 Guojun Yuan,5 Peter Kühnen9 1Sorbonne Université, INSERM, Nutrition and Obesities Research Unit, Paris, France; 2Assistance Publique Hôpitaux de Paris, Pitié- Salpêtrière Hospital, Nutrition Department, Paris, France; 3Department of Pediatrics & Pediatric Endocrinology Universidad Autónoma de Madrid University, Madrid, Spain; 4Peel Memorial Hospital, Toronto, Canada; 5Rhythm Pharmaceuticals, Inc., Boston, MA; 6Ghent University Hospital, Ghent, Belgium; 7Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom; 8HonorHealth Bariatric Center, Scottsdale, AZ; 9Institute for Experimental Pediatric Endocrinology Charité Universitätsmedizin Berlin, Berlin, Germany Melanocortin Signaling Is Crucial for Regulation of Body Weight1,2 • Body weight is regulated by the hypothalamic central melanocortin pathway • In response to leptin signaling, POMC is produced in POMC neurons and is cleaved by protein convertase subtilisin/kexin type 1 into α-MSH and β-MSH • α-MSH and β-MSH bind to the MC4R, which decreases food intake and increases energy expenditure, thereby promoting a reduction in body weight Hypothalamus AgRP/NPY Neuron LEPR Hunger AgRP Food Intake ADIPOSE Weight TISSUE MC4R- Energy Expressing Expenditure MC4R Neuron LEPTIN PCSK1 BLOOD-BRAIN BARRIER POMC α-MSH LEPR POMC Neuron AgRP, agouti-related protein; LEPR, leptin receptor; MC4R, melanocortin 4 receptor; MSH, melanocyte-stimulating hormone; NPY, neuropeptide Y; PCSK1, proprotein convertase subtilisin/kexin type 1; POMC, proopiomelanocortin. 2 1. Yazdi et al.
    [Show full text]
  • Steroid-Dependent Regulation of the Oviduct: a Cross-Species Transcriptomal Analysis
    University of Kentucky UKnowledge Theses and Dissertations--Animal and Food Sciences Animal and Food Sciences 2015 Steroid-dependent regulation of the oviduct: A cross-species transcriptomal analysis Katheryn L. Cerny University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Cerny, Katheryn L., "Steroid-dependent regulation of the oviduct: A cross-species transcriptomal analysis" (2015). Theses and Dissertations--Animal and Food Sciences. 49. https://uknowledge.uky.edu/animalsci_etds/49 This Doctoral Dissertation is brought to you for free and open access by the Animal and Food Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Animal and Food Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Design and Synthesis of Hepatitis C Virus NS3 Protease Inhibitors
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 197 Design and Synthesis of Hepatitis C Virus NS3 Protease Inhibitors Targeting Different Genotypes and Drug-Resistant Variants ANNA KARIN BELFRAGE ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6192 ISBN 978-91-554-9166-6 UPPSALA urn:nbn:se:uu:diva-243317 2015 Dissertation presented at Uppsala University to be publicly examined in B41 BMC, Husargatan 3, Uppsala, Friday, 27 March 2015 at 09:15 for the degree of Doctor of Philosophy (Faculty of Pharmacy). The examination will be conducted in Swedish. Faculty examiner: Ulf Ellervik (Lunds tekniska högskola). Abstract Belfrage, A. K. 2015. Design and Synthesis of Hepatitis C Virus NS3 Protease Inhibitors. Targeting Different Genotypes and Drug-Resistant Variants. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 197. 108 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9166-6. Since the first approved hepatitis C virus (HCV) NS3 protease inhibitors in 2011, numerous direct acting antivirals (DAAs) have reached late stages of clinical trials. Today, several combination therapies, based on different DAAs, with or without the need of pegylated interferon-α injection, are available for chronic HCV infections. The chemical foundation of the approved and late-stage HCV NS3 protease inhibitors is markedly similar. This could partly explain the cross-resistance that have emerged under the pressure of NS3 protease inhibitors. The first-generation NS3 protease inhibitors were developed to efficiently inhibit genotype 1 of the virus and were less potent against other genotypes. The main focus in this thesis was to design and synthesize a new class of 2(1H)-pyrazinone based HCV NS3 protease inhibitors, structurally dissimilar to the inhibitors evaluated in clinical trials or approved, potentially with a unique resistance profile and with a broad genotypic coverage.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Development of Novel Antiviral Therapies for Hepatitis C Virus Kai Lin** (Novartis Institutes for Biomedical Research, Inc
    VIROLOGICA SINICA, August 2010, 25 (4):246-266 DOI 10.1007/s12250-010-3140-2 © Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2010 Development of Novel Antiviral Therapies for Hepatitis C Virus Kai Lin** (Novartis Institutes for BioMedical Research, Inc. Cambridge, Massachusetts 02139, USA) Abstract: Over 170 million people worldwide are infected with hepatitis C virus (HCV), a major cause of liver diseases. Current interferon-based therapy is of limited efficacy and has significant side effects and more effective and better tolerated therapies are urgently needed. HCV is a positive, single-stranded RNA virus with a 9.6 kb genome that encodes ten viral proteins. Among them, the NS3 protease and the NS5B polymerase are essential for viral replication and have been the main focus of drug discovery efforts. Aided by structure-based drug design, potent and specific inhibitors of NS3 and NS5B have been identified, some of which are in late stage clinical trials and may significantly improve current HCV treatment. Inhibitors of other viral targets such as NS5A are also being pursued. However, HCV is an RNA virus characterized by high replication and mutation rates and consequently, resistance emerges quickly in patients treated with specific antivirals as monotherapy. A complementary approach is to target host factors such as cyclophilins that are also essential for viral replication and may present a higher genetic barrier to resistance. Combinations of these inhibitors of different mechanism are likely to become the essential components of future HCV therapies in order to maximize antiviral efficacy and prevent the emergence of resistance.
    [Show full text]
  • CDH12 Cadherin 12, Type 2 N-Cadherin 2 RPL5 Ribosomal
    5 6 6 5 . 4 2 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 A A A A A A A A A A A A A A A A A A A A C C C C C C C C C C C C C C C C C C C C R R R R R R R R R R R R R R R R R R R R B , B B B B B B B B B B B B B B B B B B B , 9 , , , , 4 , , 3 0 , , , , , , , , 6 2 , , 5 , 0 8 6 4 , 7 5 7 0 2 8 9 1 3 3 3 1 1 7 5 0 4 1 4 0 7 1 0 2 0 6 7 8 0 2 5 7 8 0 3 8 5 4 9 0 1 0 8 8 3 5 6 7 4 7 9 5 2 1 1 8 2 2 1 7 9 6 2 1 7 1 1 0 4 5 3 5 8 9 1 0 0 4 2 5 0 8 1 4 1 6 9 0 0 6 3 6 9 1 0 9 0 3 8 1 3 5 6 3 6 0 4 2 6 1 0 1 2 1 9 9 7 9 5 7 1 5 8 9 8 8 2 1 9 9 1 1 1 9 6 9 8 9 7 8 4 5 8 8 6 4 8 1 1 2 8 6 2 7 9 8 3 5 4 3 2 1 7 9 5 3 1 3 2 1 2 9 5 1 1 1 1 1 1 5 9 5 3 2 6 3 4 1 3 1 1 4 1 4 1 7 1 3 4 3 2 7 6 4 2 7 2 1 2 1 5 1 6 3 5 6 1 3 6 4 7 1 6 5 1 1 4 1 6 1 7 6 4 7 e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m
    [Show full text]
  • Reviews in Basic and Clinical Gastroenterology
    GASTROENTEROLOGY 2010;138:447–462 REVIEWS IN BASIC AND CLINICAL GASTROENTEROLOGY REVIEWS IN BASIC AND CLINICAL John P. Lynch and David C. Metz, Section Editors GASTROENTEROLOGY Resistance to Direct Antiviral Agents in Patients With Hepatitis C Virus Infection CHRISTOPH SARRAZIN and STEFAN ZEUZEM J. W. Goethe-University Hospital, Medizinische Klinik 1, Frankfurt am Main, Germany Chronic hepatitis C virus (HCV) infection is one of agents that are also named specific, targeted antiviral the major causes of cirrhosis, hepatocellular carci- therapies (STAT-C) for HCV infection are in phase 1–3 noma, and liver failure that leads to transplantation. trials. We review resistance to DAA agents, focusing on The current standard treatment, a combination of compounds in development such as reagents that target pegylated interferon alfa and ribavirin, eradicates the the HCV nonstructural (NS)3 protease, the NS5A pro- virus in only about 50% of patients. Directly acting tein, and the RNA-dependent RNA polymerase NS5B. We antiviral (DAA) agents, which inhibit HCV replica- also discuss indirect inhibitors or compounds that in- tion, are in phase 1, 2, and 3 trials; these include hibit HCV replication by not yet completely resolved reagents that target the nonstructural (NS)3 protease, mechanisms, such as cyclophilin inhibitors, nitazox- the NS5A protein, the RNA-dependent RNA-polymer- anide, and silibinin (Table 1, Figure 1). ase NS5B, as well as compounds that directly inhibit HCV replication through interaction with host cell Parameters That Affect Resistance proteins. Because of the high genetic heterogeneity of Heterogeneity of HCV HCV and its rapid replication, monotherapy with HCV has a high rate of turnover; its half-life was DAA agents poses a high risk for selection of resistant estimated to be only 2–5 hours, with the production and variants.
    [Show full text]
  • WO 2012/158271 Al 22 November 2012 (22.11.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/158271 Al 22 November 2012 (22.11.2012) P O P C T (51) International Patent Classification: (74) Agent: PINO, Mark, J.; Connolly Bove Lodge & Hutz C07D 417/04 (2006.01) A61K 31/542 (2006.01) LLP, 1875 Eye Street, Nw, Suite 1100, Washington, DC C07D 513/04 (2006.01) A61P 31/14 (2006.01) 20006 (US). A61K 31/5415 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/US20 12/032297 AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (22) International Filing Date: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, 5 April 2012 (05.04.2012) HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (25) Filing Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (26) Publication Language: English OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, (30) Priority Data: SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/472,286 6 April 201 1 (06.04.201 1) US TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicant (for all designated States except US) : ANADYS (84) Designated States (unless otherwise indicated, for every PHARMACEUTICALS, INC.
    [Show full text]
  • Determinants of Plasma Cholesterol Responsiveness to Diet by MARGARET M
    Downloaded from British Journcil of Nutrition (1 994) 71, 21 1-282 27 1 https://www.cambridge.org/core Determinants of plasma cholesterol responsiveness to diet BY MARGARET M. COBB AND HOWARD TEITLEBAUM Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, 1230 York Avenue, New York, New York 100214399, USA . IP address: (Received 6 February 1992 - Revised 16 February 1993 - Accepted I April 1993) 170.106.33.14 Plasma cholesterol change, or ‘responsiveness’, to dietary saturated fat modification has long been acknowledged. The present study sought to determine the specific, predicted response of each cholesterol snbfraction to known dietary manipulations. Two metabolically controlled diets, one with a low po1yunsatnrated:satnrated fat (low P:S) ratio, and one with a high P:S ratio were fed in a crossover , on design to sixty-seven normolipidaemic subjects pooled from six foregoing metabolic studies. A series of 28 Sep 2021 at 03:21:41 statistical analyses was performed to identify the lipids and snbfractions independently affected by the diet crossover. Multivariate analysis of variance revealed that the changes in total cholesterol (ATC), low-density-lipoprotein-cholesterol (ALDL-C), and high-density-lipoprotein-cholesterol (AHDL-C) were the only statistically significant diet-specific ‘responsive ’ lipids. Multiple regression was performed to identify the independent predictors of ATC, ALDL-C and AHDL-C. It was found that age (years), extent of change in dietary saturated fat, and baseline LDL-C (mg/l) levels determine LDL-C change, , subject to the Cambridge Core terms of use, available at while extent of change in saturated and polyunsaturated fat, and baseline HDL-C (mg/l) levels can predict HDL-C change.
    [Show full text]
  • HCV Eradication with Direct Acting Antivirals (Daas)?
    HCV eradication with direct acting antivirals (DAAs)? Emilie Estrabaud Service d’Hépatologie et INSERM UMR1149, AP-HP Hôpital Beaujon, Paris, France. [email protected] HCV eradication with direct acting antivirals (DAAs)? HCV replication HCV genome and DAAs targets NS3 inhibitors NS5A inhibitors NS5B inhibitors Take home messages HCV viral cycle Asselah et al. Liver Int. 2015;35 S1:56-64. Direct acting antivirals 5’NTR Structural proteins Nonstructural proteins 3’NTR Metalloprotease Envelope Serine protease Glycoproteins RNA Capsid RNA helicase Cofactors Polymerase C E1 E2 NS1 NS2 NS3 NS4A NS4B NS5A NS5B Protease Inhibitors NS5A Inhibitors Polymerase Inhibitors Telaprevir Daclatasvir Nucs Non-Nucs Boceprevir Ledipasvir Simeprevir ABT-267 Sofosbuvir ABT-333 Faldaprevir GS-5816 VX-135 Deleobuvir Asunaprevir Direct Acting Antivirals: 2015 Asselah et al. Liver Int. 2015;35 S1:56-64. Genetic barrier for HCV direct acting antivirals High Nucleos(t)ide 1 mutation= high cost to Analog Inhibitors fitness, 2-3 additional mutations to increase fitness 2 st generation Protease Inhibitors n Non Nucleos(t)ide Analog Inhibitors : NS5 A Inhibitors 1 st generation Protease Inhibitors 1 mutation= low cost to fitness Low Halfon et al. J Hepatol 2011. Vol 55(1):192-206. HCV protease inhibitors (PI) Inhibit NS3/NS4A serine protease responsible for the processing of the polyprotein 1st generation 1st generation, 2nd wave 2nd generation Resistance low low high barrier Genotype activity 1: 1 a< 1b All except 3 all Drug drug Important Less Less interaction Drugs Boceprevir Simeprevir (Janssen) MK-5172 Telaprevir Faldaprevir (BI) ACH-2684 Paritaprevir (ABT-450)/r (AbbVie) Vedroprevir (Gilead) Vaniprevir (Merck) Sovaprevir (Achillion) Asunaprevir (BMS) NS3/NS4A structure Repositioning of helicase domain Self cleavage Lipid Bilayer Inactive Insertion of the Active carboxy-terminal tail Bartenschlager et al.
    [Show full text]