Fruit Fly (Diptera: Tephritidae) Host Status Determination: Critical Conceptual, Methodological, and Regulatory Considerations∗

Total Page:16

File Type:pdf, Size:1020Kb

Fruit Fly (Diptera: Tephritidae) Host Status Determination: Critical Conceptual, Methodological, and Regulatory Considerations∗ ANRV330-EN53-24 ARI 2 November 2007 18:52 Fruit Fly (Diptera: Tephritidae) Host Status Determination: Critical Conceptual, Methodological, and Regulatory Considerations∗ Martın´ Aluja1 and Robert L. Mangan2 1Instituto de Ecologıa,´ A.C., Xalapa, Veracruz, Mexico;´ email: [email protected] 2Kika de la Garza ARC, USDA-ARS, Weslaco, Texas; email: [email protected] Annu. Rev. Entomol. 2008. 53:473–502 Key Words First published online as a Review in Advance on host plant, oviposition behavior, host range evolution, quarantine September 17, 2007 pest, risk analysis, systems approach The Annual Review of Entomology is online at ento.annualreviews.org Abstract This article’s doi: Although fruit fly host status determination/designation lies at the 10.1146/annurev.ento.53.103106.093350 heart of strategic decisions on national and international trade of Copyright c 2008 by Annual Reviews. fruit and vegetables, all attempts thus far to define host plant sta- All rights reserved tus have been contentious and as a result long-standing disputes 0066-4170/08/0107-0473$20.00 between commercial partners throughout the world have lingered ∗ by U.S. Department of Agriculture on 04/23/08. For personal use only. The U.S. Government has the right to retain a over decades. Part of the problem is that too little effort has been nonexclusive, royalty-free license in and to any devoted to understanding the underlying mechanisms involved in copyright covering this paper. host plant use by fruit flies and that instead economic and political Annu. Rev. Entomol. 2008.53:473-502. Downloaded from arjournals.annualreviews.org interests usually prevail. Here we review the most important evolu- tionary, biological, ecological, physiological, and behavioral aspects that drive host use by fruit flies, and then construct a flow diagram rooted in these fundamentals that outlines a series of steps and def- initions to determine if a particular fruit or vegetable (and cultivars thereof) is a natural host, or a conditional (potential, artificial) host, or a nonhost. Along the way, we incorporate risk analysis considera- tions and propose that the underlying complexity determining host plant utilization by fruit flies requires a flexible systems approach ca- pable of realistically dealing with fly/host/environment/geographic variability on a case-by-case basis. 473 ANRV330-EN53-24 ARI 2 November 2007 18:52 INTRODUCTION lined system designed to reach science-based decisions on fruit fly host designations. Fruit flies (Diptera: Tephritidae) are among Systems approach: the most important pests worldwide because integration of pre- of their direct economic impact (i.e., fe- EVOLUTIONARY and postharvest male oviposition and larval feeding render CONSIDERATIONS OF HOST practices, from the fruit/vegetables unmarketable) and the strict USE BY TEPHRITID FLIES production of a quarantine restrictions imposed by many commodity to its Overview of Broad Patterns Involved distribution and countries to curtail their entry (1, 31, 64). commercialization, A critical component when trying to assess The evolutionary pathway leading to special- that cumulatively the risk of introductions into a country or ized herbivory is a complex one and the fac- meet predetermined an entire region is the status of a given tors shaping host plant use are highly diverse, requirements for quarantine security fruit/vegetable species (and cultivars thereof ) with patterns spanning from extreme conser- as a host of a particular fruit fly species (3, vatism (175, 182, and references therein) to Natural host: fruit or vegetable 82). Given the underlying biological complex- extreme plasticity (57, 58). Tephritid conser- unequivocally found ity/conditionality of fruit fly host use and the vatism is exemplified by the large subfamily infested under totally economic and political impact of the issue of Tephritinae, which is almost exclusively asso- natural field host plant status determination/designation ciated with plants within the Asteraceae (52). conditions (i.e., at the international level, there is an urgent But there is also evidence for rapid host range nothing is manipulated) need for a solid conceptual and methodolog- evolution, with related insects attacking a wide ical framework that can aid scientists, regula- range of unrelated plants (7, 154). tory officials, policy makers, politicians, and In broad terms, two principal driving stakeholders throughout the world in solving forces guide host range evolution: phyto- current and future disputes over the status of chemical coevolution between plants and her- particular plants as fruit fly hosts. bivores (47) and selective pressure by gen- Here we analyze the causes of confusion eralist natural enemies (19, 22, 87, 158). and complexity involving fruit fly host de- Which selective forces played a more impor- termination and ultimately agricultural risk, tant role in the case of tephritid flies is open including, among others, (a) the evolution to debate. Ancestral tephritids most proba- of fruit fly/host plant relationships and the bly evolved from a saprophagous to a phy- behavioral mechanisms related to host find- tophagous lifestyle (43). Currently, most fruit ing and utilization; (b) conditional infestation flies specialize in flowers and fruit structures based on the physiological (motivational) state that frequently lack the plants’ characteristic of the fly; and (c) conditional infestation based secondary chemistry (112). Furthermore, it by U.S. Department of Agriculture on 04/23/08. For personal use only. on the state of the host. We propose that the has been argued that domesticated fruit were underlying complexity/conditionality that de- selected on the basis of their low toxicity to Annu. Rev. Entomol. 2008.53:473-502. Downloaded from arjournals.annualreviews.org termines host ranges requires a flexible sys- vertebrates (84) and that artificial selection tems approach capable of realistically dealing for increased human palatability also low- with fly/host/environment/geographic vari- ered the levels of chemical defenses in com- ability on a case-by-case basis. We construct mercially grown fruit (80). Additionally, Fitt a flow diagram (Figure 1) that proposes a (58) pointed out that as fruit ripen, defen- series of steps and definitions to determine sive compounds disappear. Conversely, some if a particular fruit or vegetable (and culti- fruit fly species feed on seed tissue that may vars thereof ) is a natural host, or alternatively be more toxic than the pulp, and in the case (non-natural host), if it should be considered a of pulp, there is evidence that some fruit re- conditional (potential, artificial) host or a non- main highly toxic to larvae (see below). For host. We finish by outlining promising areas example, in the case of flies within Anastrepha, of research that could help solidify a stream- primitive species such as A. cordata, A. hamata, 474 Aluja · Mangan ANRV330-EN53-24 ARI 2 November 2007 18:52 Monophagous Evolutionary background, Stenophagous life history, ecology, behavior, Oligophagous physiology, and biogeography Polyphagous Univoltine Multivoltine Monitoring of adult populations and extensive field sampling to gather evidence of natural field infestation Poor Natural host Non-natural host Good Bioassays under Field cages with entire fruit-bearing trees forced artificial Enclosed fruit-bearing branches Additional Risk analysis Quarantine conditions Laboratory cages field and systems treatment research approach Inability to Life cycle completion complete life cycle Natural factors Conditional host (potential or artificial) Nonhost Monitoring/risk analysis factors Manipulated conditions Economic/political/regulatory No quarantine Additional Risk analysis Economic, Quarantine implications action needed, field and systems political, treatment but screening research approach and Research events to detect regulatory mutations concerns Trade restrictions recommended No fertile adult development Figure 1 Flow chart indicating proposed steps for fruit fly host status determination/designation. The entire approach is rooted in the fundamentals of the system, i.e., the evolutionary background of host plant by U.S. Department of Agriculture on 04/23/08. For personal use only. associations, life-history parameters, ecology, physiology, and most importantly behavior. When quarantine systems are based on a systems approach, the entire system should be continuously evaluated by resampling and reanalyzing the components to improve security. Annu. Rev. Entomol. 2008.53:473-502. Downloaded from arjournals.annualreviews.org A. crebra, and their closely related relatives The other argument, that host ranges evolve (flies in the sister group Toxotrypana) spe- because of the selective advantages of mov- cialize on seeds or associated tissue of and ing to hosts that provide shelter from natu- attack latex-producing plants (e.g., Apocy- ral enemies, has not been formally tested, al- naceae, Asclepiadaceae, and Sapotaceae). In though Feder (53) provided evidence that, at contrast, some derived species (e.g., fratercu- least in the case of the apple maggot (Rhago- lus group) feed almost exclusively on fruit pulp letis pomonella), a shift from native hawthorns and are highly polyphagous (7, 9). Species to introduced apples did allow the frugivore such as A. ludens (also within the highly de- to gain enemy-free space. rived fraterculus group) have retained the abil- According to Zwolfer¨ (182) fruit flies arose ity to feed on both types of substrates (9). in the
Recommended publications
  • Daños Y Desarrollo De Anastrepha Fraterculus (Diptera: Tephritidae) En
    42 Agrociencia Uruguay - Volumen 19 2:42-48 - julio/diciembre 2015 Agrociencia Uruguay Damage and Development of Anastrepha fraterculus (Diptera: Tephritidae) in Fruits of Two Pear Cultivars Nunes Marcelo Z1, Boff Mari Inês C1, dos Santos Régis SS2, Franco Cláudio R1, Wille Paulo E1, da Rosa Joatan M1, do Amarante Cassandro VT1 1Departamento de Agronomia do Centro de Ciências Agroveterinárias da Universidade do Estado de Santa Catarina, UDESC.Universidade do Estado de Santa Catarina, Centro de Ciências Agroveterinárias, Av. Luiz de Camões 2090, Conta Dinheiro, 88.520-00, Lages - SC, Brasil. E-mail: [email protected] 2Embrapa Uva e Vinho, Estação Experimental de Fruticultura de Clima Temperado. BR 285, km 115, Caixa Postal 1513, 95.200-000, Vacaria - RS, Brasil Recibido: 13/10/14 Aceptado: 7/7/15 Summary Anastrepha fraterculus is the main horticultural pest for food crops in southern Brazil. This study aimed to identify the damage caused by this species, evaluate its development, and correlate its infestation rate with physical and chemical characteristics of Packhams and Williams pear fruit cultivars at five different stages of development. In the field, cages were installed on branches of the pear plants in which two couples of A. fraterculus were released for a period of 48 hours. The damage resulting from oviposition was evaluated at fifteen-day intervals from the day the insects were released until harvest. The evaluation of damage consisted of visual observation of decayed and deformed fruits and the presence of larvae. In the laboratory, two couples were individualized with one fruit in a 750 mL pot for 48 hours.
    [Show full text]
  • 9. Sterile Fly Release Densities
    56 Guidance for packing, shipping, holding and release of sterile flies in area-wide fruit fly control programmes 9. Sterile fly release densities STEP V OF PROCESS IN FLOW CHART IN APPENDIX 2 9.1 FACTORS TO CONSIDER FOR ESTABLISHMENT OF STERILE FLY DENSITY (FROM HENDRICHS ET AL. 2005) 9.1.1 Pest aggregation Aside from the absolute population density, the degree of population aggregation or dispersion is important. Sterile insects are often released by aircraft, and are thus distributed fairly homogeneously over the target area, irrespective of whether the target pest is distributed evenly or clumped. Pest insects with a clumped distribution require higher release rates (Barclay 2005) as compared with a homogeneous pest distribution, to obtain the required sterile to wild male ratios (Vreysen 2005), and thus pest aggregation also affects strategy selection and its cost. Only if the released insects can find the same aggregation sites and aggregate in a similar manner as wild insects, so that adequate sterile to wild male over-flooding ratios are obtained in those sites, is there no need to increase release rates to compensate for such clumping. 9.1.2 Sterile male longevity The density of the sterile male population in the field, which fluctuates in relation to the release frequency and the sterile male mortality rate, should not decrease below that needed to maintain the critical overflooding ratio (Figure 9.1, upper graph) (Barclay 2005; Kean et al. 2005). Therefore, the frequency of release and number of sterile males released has to be carefully assessed in relation to the average longevity or survival of the sterile males, to effectively avoid periods when insufficient sterile males are present in the field (Figure 9.1, lower graph).
    [Show full text]
  • DIVERSIDADE DE Anastrepha Schiner, 1868 (DIPTERA: TEPHRITIDAE) NO PARQUE NACIONAL DA SERRA DA BODOQUENA-MS, BRASIL
    Universidade Federal da Grande Dourados - UFGD Faculdade de Ciências Biológicas e Ambientais - FCBA Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade - PPGECB DIVERSIDADE DE Anastrepha Schiner, 1868 (DIPTERA: TEPHRITIDAE) NO PARQUE NACIONAL DA SERRA DA BODOQUENA-MS, BRASIL Mariana Palachini de Oliveira Dourados-MS Abril/2018 Universidade Federal da Grande Dourados Faculdade de Ciências Biológicas e Ambientais Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade Mariana Palachini de Oliveira DIVERSIDADE DE Anastrepha Schiner, 1868 (DIPTERA: TEPHRITIDAE) NO PARQUE NACIONAL DA SERRA DA BODOQUENA-MS, BRASIL Dissertação apresentada à Universidade Federal da Grande Dourados (UFGD), como parte dos requisitos exigidos para obtenção do título de MESTRE EM ENTOMOLOGIA E CONSERVAÇÃO DA BIODIVERSIDADE. Área de Concentração: Biodiversidade e Conservação. Orientador: Prof. Dr. Manoel Araécio Uchoa-Fernandes Dourados-MS Abril/2018 Dados Internacionais de Catalogação na Publicação (CIP). O48d Oliveira, Mariana Palachini De Diversidade de Anastrepha Schiner, 1868 (Diptera: Tephritidae) no Parque Nacional da Serra da Bodoquena-MS, Brasil/ Mariana Palachini De Oliveira -- Dourados: UFGD, 2018. 82f. : il. ; 30 cm. Orientador: Manoel Araécio Uchoa-Fernandes Dissertação (Mestrado em Entomologia e Conservação da Biodiversidade) - Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados. Inclui bibliografia 1. Unidade de Conservação. 2. inventário. 3. Insecta. 4. Trypetinae. I. Título. Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a). ©Direitos reservados. Permitido a reprodução parcial desde que citada a fonte. Biografia da Acadêmica Mariana Palachini de Oliveira nasceu em Guararapes, estado de São Paulo, no dia 23 de setembro de 1994, filha de Donizete de Oliveira e Celma Cristina Palachini de Oliveira.
    [Show full text]
  • Fruit Fly (Diptera: Tephritidae)
    Fruit Fly (Diptera: Tephritidae) Community in Guava Orchards and Adjacent Fragments of Native Vegetation in Brazil Author(s): Ranyse Barbosa Querino, Jader Braga Maia, Gleidyane Novais Lopes, Clarice Diniz Alvarenga and Roberto Antonio Zucchi Source: Florida Entomologist, 97(2):778-786. 2014. Published By: Florida Entomological Society DOI: http://dx.doi.org/10.1653/024.097.0260 URL: http://www.bioone.org/doi/full/10.1653/024.097.0260 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. 778 Florida Entomologist 97(2) June 2014 FRUIT FLY (DIPTERA: TEPHRITIDAE) COMMUNITY IN GUAVA ORCHARDS AND ADJACENT FRAGMENTS OF NATIVE VEGETATION IN BRAZIL RANYSE BARBOSA
    [Show full text]
  • Parasitoids of Queensland Fruit Fly Bactrocera Tryoni in Australia and Prospects for Improved Biological Control
    Insects 2012, 3, 1056-1083; doi:10.3390/insects3041056 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Review Parasitoids of Queensland Fruit Fly Bactrocera tryoni in Australia and Prospects for Improved Biological Control Ashley L. Zamek 1,, Jennifer E. Spinner 2 Jessica L. Micallef 1, Geoff M. Gurr 3 and Olivia L. Reynolds 4,* 1 Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Woodbridge Road, Menangle, NSW 2568, Australia; E-Mails: [email protected] (A.L.Z.); [email protected] (J.L.M) 2 EH Graham Centre for Agricultural Innovation, NSW Department of Primary Industries and Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; E-Mail: [email protected] 3 EH Graham Centre for Agricultural Innovation, NSW Department of Primary Industries and Charles Sturt University, Charles Sturt University, P.O. Box 883, Orange, NSW 2800, Australia; E-Mail: [email protected] 4 EH Graham Centre for Agricultural Innovation, NSW Department of Primary Industries and Charles Sturt University, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW 2568, Australia Present address: Level 1, 1 Phipps Close DEAKIN ACT 2600 Australia. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-0-2-4640-6426; Fax: +61-0-2-4640-6300. Received: 3 September 2012; in revised form: 4 October 2012 / Accepted: 10 October 2012 / Published: 22 October 2012 Abstract: This review draws together available information on the biology, methods for study, and culturing of hymenopteran parasitoids of the Queensland fruit fly, Bactrocera tryoni, and assesses prospects for improving biological control of this serious pest.
    [Show full text]
  • First Record of Anastrepha Obliqua(Diptera
    ACTA AMAZONICA http://dx.doi.org/10.1590/1809-4392202002961 SHORT COMMUNICATION First record of Anastrepha obliqua (Diptera: Tephritidae) and a tritrophic relation with parasitoids in a citrus orchard in Pará state, Brazil Marlon Gonçalves RODRIGUES1, Maria Gisely CAMARGOS²* , Clarice Diniz ALVARENGA², Rosana Cardoso Rodrigues da SILVA1, Álvaro Remígio AYRES1 1 Instituto Federal do Pará, BR 316, Km 61, Saudade II, PA, Brazil 2 Universidade Estadual de Montes Claros, Department of Agricultural Sciences, Rua Reinaldo Viana 2630, 39440-000 Janaúba, MG, Brazil *Corresponding author: [email protected]; https://orcid.org/0000-0002-8897-0604 ABSTRACT Citriculture is a growing industry in Pará state, Brazil, but information regarding fruit flies and their associated parasitoids in this region is lacking. To address this gap in knowledge, we collected oranges (Citrus sinensis), lime oranges (C. sinensis), common sweet limes (C. limettioides), citrons (C. medica) and mandarins (C. reticulata). We recorded field infestation by Anastrepha obliqua in C. sinensis under natural conditions for the first time in the study region, and a tritrophic relationship between C. sinensis, A. obliqua, and the parasitoids Opius bellus and Asobara anastrephae was identified. KEYWORDS: Citrus sinensis, Braconidae, eastern Amazon Primeiro registro de Anastrepha obliqua (Diptera: Tephritidae) e de uma relação tritrófica com parasitoides em um pomar de citros no estado do Pará, Brasil RESUMO A citricultura está crescendo no Estado do Pará, Brasil, mas faltam informações sobre as pragas conhecidas como moscas-das- frutas e os parasitoides associados na região. Visando abordar esta lacuna no conhecimento, foram coletados frutos de laranja (Citrus sinensis), laranja var. lima (C. sinensis), lima-da-pérsia (C.
    [Show full text]
  • Bactrocera Tryoni: Host Crops and Other Plants
    Bactrocera tryoni: Host Crops and Other Plants This list has been compiled from several online sources: http://www.agric.wa.gov.au/objtwr/imported_assets/content/pw/ins/pp/hort/fs04300.pdf http://www.pestfreearea.com.au/host-list-of-banned-poduce.html http://www.spc.int/Pacifly http://www.bugsforbugs.com.au/pdf/cms/QldFruitFlyHostList.pdf abiu (Pouteria caimito) Indian plum (Flacourtia jangomas) acerola (Malpighia emarginata) jaboticaba (Plinia caluiflora) apple (Malus) jackfruit (Artocarpus heterophyllus) apricot (Prunus armeniaca) jew plum (golden apple, Spondias cytherea) Australian desert lime (Eremocitrus glauca) ju jube (Ziziphus mauritiana) avocado (Persea americana) kangaroo apple (Solanum laciniatum) babaco (Carica pentagoona) kei apple (Dovyalis caffra) banana (Musa sp.) kiwi fruit (Actinidia sp.) black mulberry (Morus nigra) kumquat (Fortunella japonica) black sapote (Diospyros digyna) lemon (Citrus limon) blackberry (Rubus fruticosus) lime (Citrus sp.) blueberry (Vaccinium sp.) loganberry (Rubus × loganobaccus) Brazil cherry (pitanga, Surinam cherry, or cayenne cherry, longan(Dimocarpus longan) Eugenia uniflora) loquat (Eriobotrya japonica) breadfruit (Artocarpus altilis) lychee (Litchi chinensis) caimito (star apple, Chrysophyllum cainito) mandarin (Citrus reticulate) California berry (Rubus ursinus) mango (Mangifera indica) Cape gooseberry (Physalis peruviana) mangosteen (Garcinia mangostana) capsicum (Capsicum sp.) medlar (Mespilus germanica) carambola (star fruit, Averrhoa carambola) miracle fruit (Synsepalum dulcificum)
    [Show full text]
  • Tropical Insect Chemical Ecology - Edi A
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Tropical Insect Chemical Ecology - Edi A. Malo TROPICAL INSECT CHEMICAL ECOLOGY Edi A. Malo Departamento de Entomología Tropical, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, C.P. 30700. México. Keywords: Insects, Semiochemicals, Pheromones, Kairomones, Monitoring, Mass Trapping, Mating Disrupting. Contents 1. Introduction 2. Semiochemicals 2.1. Use of Semiochemicals 3. Pheromones 3.1. Lepidoptera Pheromones 3.2. Coleoptera Pheromones 3.3. Diptera Pheromones 3.4. Pheromones of Insects of Medical Importance 4. Kairomones 4.1. Coleoptera Kairomones 4.2. Diptera Kairomones 5. Synthesis 6. Concluding Remarks Acknowledgments Glossary Bibliography Biographical Sketch Summary In this chapter we describe the current state of tropical insect chemical ecology in Latin America with the aim of stimulating the use of this important tool for future generations of technicians and professionals workers in insect pest management. Sex pheromones of tropical insectsUNESCO that have been identified to– date EOLSS are mainly used for detection and population monitoring. Another strategy termed mating disruption, has been used in the control of the tomato pinworm, Keiferia lycopersicella, and the Guatemalan potato moth, Tecia solanivora. Research into other semiochemicals such as kairomones in tropical insects SAMPLErevealed evidence of their presence CHAPTERS in coleopterans. However, additional studies are necessary in order to confirm these laboratory results. In fruit flies, the isolation of potential attractants (kairomone) from Spondias mombin for Anastrepha obliqua was reported recently. The use of semiochemicals to control insect pests is advantageous in that it is safe for humans and the environment. The extensive use of these kinds of technologies could be very important in reducing the use of pesticides with the consequent reduction in the level of contamination caused by these products around the world.
    [Show full text]
  • Mass-Production of Anastrepha Obliqua at the Moscafrut Fruit Fly Facility, Mexico
    Proceedings of 6th International Fruit Fly Symposium 6–10 May 2002, Stellenbosch, South Africa pp. 389–392 Mass-production of Anastrepha obliqua at the Moscafrut Fruit Fly Facility, Mexico T. Artiaga-López1*, E. Hernández1, J. Domínguez-Gordillo1, D.S. Moreno2 & D. Orozco-Dávila3 1Mexican National Campaign Against the Fruit Fly SAGARPA-IICA, Central Poniente No. 14. CP 30700, Tapachula, Chiapas, Mexico 2Subtropical Agricultural Research Center – USDA-ARS, Weslaco, TX 78596, U.S.A. 3Program MOSCAMED-SAGARPA The West Indian fruit fly, Anastrepha obliqua, is a serious pest which can be controlled using the sterile insect technique. From 1993 to 1995 several studies were conducted to optimize a mass- rearing system for A. obliqua. This article describes the rearing procedure and quality control parameters at the production facility. INTRODUCTION a bubbling system, which was achieved by inject- The West Indian fruit fly, Anastrepha obliqua ing air through the egg solution with an (Macquart), is a serious economic and quarantine aquarium pump (Schwarz et al. 1985). After three pest of mango, Mangifera indica L. and guava, days of incubation,2 ml of eggs and newly-eclosed Psidium guajava L. It is the second most impor- larvae were placed on the surface of 6 kg of larval tant species of economic significance in Mexico diet in a tray. The larval diet used was a modified (Aluja et al. 1987). This species is a target pest formulation of Zucoloto et al. (1979) and Moreno that can be controlled through the utilization of et al. (1997), which consisted of (by weight): 15% the sterile insect technique (SIT) (Rull Gabayet corn cob fractions, 5.83% Torula yeast, 8% corn et al.
    [Show full text]
  • Diptera: Tephritidae) Research in Latin America: Myths, Realities and Dreams
    Dezembro, 1999 An. Soc. Entomol. Brasil 28(4) 565 FORUM Fruit Fly (Diptera: Tephritidae) Research in Latin America: Myths, Realities and Dreams MARTÍN ALUJA Instituto de Ecología, A.C., Apartado Postal 63, C.P. 91000, Xalapa, Veracruz, Mexico This article is dedicated to J.S. Morgante, R.A. Zucchi, A. Malavasi, F.S. Zucoloto, A.S. Nascimento, S. Bressan, L.A.B. Salles, and A. Kovaleski who have greatly contributed to our knowledge on fruit flies and their parasitoids in Latin America An. Soc. Entomol. Brasil 28(4): 565-594 (1999) A Pesquisa com Moscas-das-Frutas (Diptera: Tephritidae) na América Latina: Mitos, Realidade e Perspectivas RESUMO – Apresento uma avaliação crítica da pesquisa com moscas-das-frutas na América Latina baseada na noção de que muitos mitos e mal-entendidos são transmitidos a estudantes, jovens pesquisadores ou administrações oficiais. Pondero que depois de um esclarecedor início de século, durante o qual muitas descobertas significativas foram feitas sobre a história natural desses insetos, pouco progresso tem sido observado em muitas áreas de pesquisas e manejo de moscas-das-frutas na América Latina durante os últimos 50 anos. Isso tem sido causado em parte pela escassez de estudos sob condições naturais, bem com pela abordagem reducionista utilizada no estudo desses insetos maravilhosos, considerando as espécies individualmente, ou apenas as espécies-praga. Para interromper esse círculo vicioso, proponho que demos mais atenção à história natural das espécies, independente de sua importância econômica, ampliemos o escopo e o período de tempo de nossos estudos, fortaleçamos os fundamentos teóricos e ecológicos das pesquisas com moscas-das-frutas na América Latina e enfatizemos o enfoque comparativo sempre que possível.
    [Show full text]
  • Fruit Fly (Diptera: Tephritidae) Host Status Determination: Critical Conceptual, Methodological, and Regulatory Considerations∗
    ANRV330-EN53-24 ARI 2 November 2007 18:52 Fruit Fly (Diptera: Tephritidae) Host Status Determination: Critical Conceptual, Methodological, and Regulatory Considerations∗ Martın´ Aluja1 and Robert L. Mangan2 1Instituto de Ecologıa,´ A.C., Xalapa, Veracruz, Mexico;´ email: [email protected] 2Kika de la Garza ARC, USDA-ARS, Weslaco, Texas; email: [email protected] Annu. Rev. Entomol. 2008. 53:473–502 Key Words First published online as a Review in Advance on host plant, oviposition behavior, host range evolution, quarantine September 17, 2007 pest, risk analysis, systems approach The Annual Review of Entomology is online at ento.annualreviews.org Abstract This article’s doi: Although fruit fly host status determination/designation lies at the 10.1146/annurev.ento.53.103106.093350 heart of strategic decisions on national and international trade of Copyright c 2008 by Annual Reviews. fruit and vegetables, all attempts thus far to define host plant sta- All rights reserved by Wageningen UR on 02/01/08. For personal use only. tus have been contentious and as a result long-standing disputes 0066-4170/08/0107-0473$20.00 between commercial partners throughout the world have lingered ∗ The U.S. Government has the right to retain a over decades. Part of the problem is that too little effort has been nonexclusive, royalty-free license in and to any devoted to understanding the underlying mechanisms involved in copyright covering this paper. host plant use by fruit flies and that instead economic and political Annu. Rev. Entomol. 2008.53:473-502. Downloaded from arjournals.annualreviews.org interests usually prevail.
    [Show full text]
  • White Pupae Genes in the Tephritids Ceratitis Capitata, Bactrocera Dorsalis and 2 Zeugodacus Cucurbitae: a Story of Parallel Mutations
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.076158; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 White pupae genes in the Tephritids Ceratitis capitata, Bactrocera dorsalis and 2 Zeugodacus cucurbitae: a story of parallel mutations 3 Short title: Genetic mutations causing white pupae phenotypes 4 Ward CMa,1, Aumann RAb,1, Whitehead MAc, Nikolouli Kd, Leveque G e,f, Gouvi Gd,g, Fung Eh, 5 Reiling SJe, Djambazian He, Hughes MAc, Whiteford Sc, Caceres-Barrios Cd, Nguyen TNMa,k, 6 Choo Aa, Crisp Pa,h, Sim Si, Geib Si, Marec Fj, Häcker Ib, Ragoussis Je, Darby ACc, Bourtzis 7 Kd,*, Baxter SWk,*, Schetelig MFb,* 8 9 a School of Biological Sciences, University of Adelaide, Australia, 5005 10 b Justus-Liebig-University Gießen, Institute for Insect Biotechnology, Department of Insect 11 Biotechnology in Plant Protection, Winchesterstr. 2, 35394 Gießen, Germany 12 c Centre for Genomic Research, Institute of Integrative Biology, The Biosciences Building, Crown Street, 13 Liverpool, L69 7ZB, United Kingdom 14 d Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and 15 Agriculture, Seibersdorf, A-1400 Vienna, Austria 16 e McGill University Genome Centre, McGill University, Montreal, Quebec, Canada 17 f Canadian Centre for Computational Genomics (C3G), McGill University, Montreal, Quebec, Canada 18 g Department of Environmental Engineering, University of Patras, 2 Seferi str., 30100 Agrinio, Greece 19 h South Australian Research and Development Institute, Waite Road, Urrbrae, South Australia 5064 20 i USDA-ARS Daniel K.
    [Show full text]