Laboratory and Field Effects of the Insect Growth Regulator Diflubenzuron on the European Corn Borer Abdel Rahman Abdel Fattah Faragalla Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Laboratory and Field Effects of the Insect Growth Regulator Diflubenzuron on the European Corn Borer Abdel Rahman Abdel Fattah Faragalla Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1979 Laboratory and field effects of the insect growth regulator diflubenzuron on the European corn borer Abdel Rahman Abdel Fattah Faragalla Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Entomology Commons Recommended Citation Faragalla, Abdel Rahman Abdel Fattah, "Laboratory and field effects of the insect growth regulator diflubenzuron on the European corn borer " (1979). Retrospective Theses and Dissertations. 7207. https://lib.dr.iastate.edu/rtd/7207 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photo­ graphed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete. 4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department. 5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy. Univer^ Microfilms international 300 N. ZEEB ROAD, ANN ARBOR, Ml 48106 18 BEDFORD ROW, LONDON WCIR 4EJ, ENGLAND 800013Z FARAGALLA, ABDEL RAHMAN ABDEL FATTAJi LABORATORY AND FIELD EFFECTS OF THE IMSeCT GROWTH REGULATOR DIFLUBEMZURDN ON THE EUROPEAN CORN BORER. IOWA STATE UNIVERSITY, PH.D., 1979 Universi^ Mk^lms International soon, zees road, ann arbor, mi 48io6 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark . 1. Glossy photographs \/^ 2. Colored illustrations 3. Photographs with dark background l/ '4. Illustrations are poor copy 5. Print shows through as there is text on both sides of page 6. Indistinct, broken or small print on several pages throughout 7. Tightly bound copy with print lost in spine 8. Computer printout pages with indistinct print 9. Page(s) lacking when material received, and not available from school or author 10. Page(s) seem to be missing in numbering only as text follows n. Poor carbon copy 12. Not original copy, several pages with blurred type 13. Appendix pages are poor copy 14. Original copy with light type 15. Curling and wrinkled pages 16. Other Univers^ MiCTOTlms Internaticnai 300 N 2==B AD.. ANN 4RS0A. MI "8106 '313) 761-4700 Laboratory and field effects of the insect growth regulator diflubenzuron on the European corn borer by Abdel Rahman Abdel Fattah Faragalla A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major: Entomology Approved; Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. For the Major Department Signature was redacted for privacy. For the uate College Iowa State University Ames, Iowa 1979 ii TABLE OF CONTENTS Page INTRODUCTION 1 LITERATURE REVIEW 5 FIELD STUDIES 21 Evaluation of Diflubenzuron Activity on the European Corn Borer 21 First generation 21 Methods and materials 21 Results and discussion 23 Second generation 29 Methods and materials 29 Results and discussion 30 LABORATORY STUDIES 32 Toxicity of Diflubenzuron Against the European Corn Borer 32 Experiment I 32 Methods and materials 32 Results and discussion 33 Experiment II 33 Methods and materials 36 Results and discussion 36 Experiment III 38 Methods and materials 38 Results and discussion 39 Experiment IV 39 Methods and materials 41 Results and discussion 43 Conclusions 55 Ovicidal Activity of Diflubenzuron on European Corn Borer Eggs 75 Experiment V 75 Methods and materials 75 Results and discussion 76 Conclusions 82 iii Page Chemosterilization of European Corn Borer Adults by Diflubenzuron (Topically Applied on the Larval Diet) 83 Experiment VI 83 Methods and materials 84 Results and discussion 87 CONCLUSIONS 97 LITERATURE CITED 98 ACKNOWLEDGEMENTS 108 APPENDIX 110 1 INTRODUCTION The integument is a characteristic feature of arthropods and to a large extent is responsible for the success of insects as terrestrial animals. The integument determines some characteristics of insects in a more profound way than the outer covering of other animals; it is the skin, the skeleton and the food reserve (Locke, 1964). The integument affords support and protection through its rigidity and hard­ ness and is of primary importance in restricting water loss from the body surface. One of the major limitations of the insect exoskeleton is its inability to undergo extensive expansion. Increase in size of an insect usually requires the periodic shedding and renewal of the integument through the complementary processes of apolysis (separation of the old cuticle from the epidermis) and ecdysis (shedding of the old cuticle). Since insects and other arthropods mature through a series of molting, there appears to be opportunities to interfere and interrupt these processes with chemicals specific to arthropods which have low hazards to other species in the environment. Locke (.1976) reported that, "The idea that insects may be especially vulnerable during very brief periods in their life history has not yet been exploited. Potential insecticides may have been overlooked because they 2 have only been tested for their effects during relatively nonvulnerable stages. Biocides might be 100% effective at molting but have an unimpressive I'D-q if tested on insects that are between molts.'" The major constituent of the insect cuticle is chitin, a polyacetyl glucosamine, which is the characteristic struc­ tural carbohydrate of arthropods. Locke (1975) reported that, "despite the fact that it comprises a clearly distinctive arthropod feature, the integument appears to have been largely neglected as a potentially selective insecticide target. If there are uniquely vulnerable targets for our chemicals to make them insecticides and not biocides, we may hope that an understanding of the cuticular properties can help us find them." Recently an insecticide, DU 19111, has been introduced which appears to block chitin synthesis; it emerged as a result of a program by the Dutch firm, Philips-Duphar, during their investigation of new derivatives of the herbicide dichlobenil. Diflubenzuron is a structural analogue of DU 19111. The discovery of 1-(2,6-disubstituted benzoyl)-3- phenylureas group which includes diflubenzuron is, therefore, of considerable potential importance since these represent the first group of insecticides that act upon or react with the insect integument. Since then, a lot of interest has 3 been generated and new frontiers in the cuticle chemistry have been initiated. Several compounds of this type have been evaluated to date, but only diflubenzuron (TH 6040) (l-(4- chlorophenyl)-3-(2,6-difluorobenzoyl)-urea), has been selected for commercial development. This group is considered as a new class of chemicals, having a novel mode of action and since then, a great amount of research has been conducted on chemicals that interfere with the normal insect growth processes. These compounds are called molting inhibitors and they differ from insect development inhibitors (IDI) (Schaefer and Wilder, 1972). Although chitin inhibitors exert their effect similar to juvenile hormones, they are structurally different from them. The mode of action is another difference since molting inhibitors are absorbed through the gut; none of the juvenile hormone mimics are known to be absorbed. A more common term for the Insect Growth Regulators (ICRs) is "third generation insecticides" and chitin inhibi­ tors are included in this assemblage. These are not, in the usual sense, toxic to insects. Instead of killing directly, they interfere in the normal mechanisms of developing and cause the insects to die before reaching the adult stage. Insect larvae that have ingested diflubenzuron remained seemingly unaffected until they had entered the apolytic 4 stage preceding the actual shedding of their exuviae. But the molting process stagnated somewhere on the way. Larvae treated long enough before ecdysis showed that the formation of endo- cuticle is disturbed and the newly formed cuticle consists only of epicuticular and exocuticular tissues which are not properly attached to the epidermis (Mulder and Gijswijt, 1973). Hence the newly formed cuticle is a very delicate one and cannot resist muscular traction and increased turgor during eclosion and molting.
Recommended publications
  • US EPA, Pesticide Product Label, SVP8, 12/17/2010
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION Joseph A. Conti Summit VetPharm 301 Route 17 North Rutherford, New Jersey 07070 DEC 1 7 Subject: Notification: Alternate Brand Names SVP8 EPA Reg. No. 83399-9 Date Submitted: December 1, 2010 Alternate Brand Names: SimpleGuard for Cats SimpleGuard for Cats and Kittens Dear Mr. Conti: The Agency is in receipt of your Application for Pesticide Notification under Pesticide Registration Notice (PRN) 98-10 dated December 1, 2010 for the product referenced above. The Registration Division (RD) has conducted a review of this request for its applicability under PRN 98-10 and finds that the action requested falls within the scope of PRN 98-10. The label submitted with the application has been stamped "Notification" and will be placed in our records. If you have any questions, please contact me at (703) 306-0415 or [email protected]. Sincerely, Kable Bo Davis Entomologist Insecticide-Rodenticide Branch Office of Pesticide Programs Print Form ^S£je_ntd_[ngtn/ctipru on revent form. Form Approved. OMB No. 2070-O060 United Statoe Registration OPP Identifier Number v>EPA ntal Protection Agency X Amendment 'oflliinoton, DC 20460 X Other Application for Pesticide - Section 1. Company/Product Number 2. EPA Product Manager 3. Proposed Classification 83399-9 J. Hebert 1 Restricted 4. Company/Product (Name) PM* SVP8 7 5. Name and Addroos of Applicant (Include ZIP Code) 6. Expedited Review. In accordance with FIFRA Section 3(c)(3) SummitVetPharm (b)(i), my product Is similar or identical In composition and labeling 301 Route 17 North to: Rutherford, New Jersey 07070 EPA Reg.
    [Show full text]
  • Japanese Maple Scale in the Nursery
    College of Agriculture, Human and Natural Science Cooperative Extension Japanese Maple Scale in the Nursery Karla Addesso and Adam Blalock ANR-ENT-01-2015 Scale insects are serious and damaging pests to trees, shrubs and herbaceous plants. A scale infestation will reduce plant growth, vigor, and yields. There are hundreds of different species of scale and scale-like insects, but only a fraction of them are of economic concern. Some species of scale secrete a waterproof waxy shell that protects them from the environment and water based insecticides, making them difficult to control. In Tennessee nurseries, landscapes, and orchards, there are many different species of scale that you may encounter, but one of the most common and problematic is the Japanese maple scale (Lopholeucaspis japonica). Japanese Maple Scale: Japanese maple scale (JMS) is an armored scale that was first introduced to the eastern United States in the early part of the 20th century. Since then, it has spread to many areas of the country, including Tennessee. The reproductive potential of JMS is enormous. In three years, at two generations per year, a single male and female scale have the potential to spawn millions of new scales. Under Image 1 (top). The individual Japanese maple natural conditions, scale predators, parasites, disease scales are oyster-shaped, 1-2 mm long, and and sub-optimal environmental conditions prevent off-white in color. scale numbers from reaching these levels. Nursery production fields and container yards often provide Image 2 (bottom). If left, un-treated, better habitat for scales due to a lack of natural Japanese maple scale populations can increase predators from generic wide spectrum pesticide exponentially to where nearly the entire sprays, and close proximity of suitable hosts.
    [Show full text]
  • Insect Growth Regulator KEEP out of REACH of CHILDREN. CAUTION
    SPECIMEN LABEL Archer® 1 PRECAUTIONARY STATEMENTS Hazards to Humans and Domestic Animals CAUTION Harmful if swallowed or absorbed through skin. Do not breathe vapor or spray mist. Avoid contact with skin or eyes. In case of contact, flush with plenty of water. Wash with soap and warm water after use. Obtain medical attention if irritation persists. Avoid contamination of food or feedstuffs. Environmental Hazards This product is toxic to fish and aquatic invertebrates. Do not apply directly to bodies of water, or to areas where surface water is present, or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing Insect Growth Regulator of equipment wash water. An insect growth regulator (IGR) for use in homes, apartments, Physical or Chemical Hazards schools, warehouses, offices, and other private, commercial or Do not use or store near heat or open flame. public buildings, in non-food preparation areas of food handling and processing establishments, in transport vehicles, animal CONDITIONS OF SALE AND LIMITATION OF housing facilities, and outdoor perimeter treatments on and adjacent to buildings and structures, and in pet areas WARRANTY AND LIABILITY A c t i v e I ngr edien t : NOTICE: Read the entire Directions for Use and Conditions 2- [ 1- m et hy l- 2- ( 4- p he no x y 1 phen.... ox1 .3y% ) et hoxof Sale y ] and py Limitation r i dine of Warranty and Liability before buying Other Ingredients* 98.7% or using this product. If the terms are not acceptable, return the product at once, unopened, and the purchase price will be Tot al: 100.
    [Show full text]
  • APPENDIX G3 Diflubenzuron Rejected by OPP and ECOTOX
    APPENDIX G3 Diflubenzuron Rejected by OPP and ECOTOX Rejected Abgrall, J. F. (1999). Short and Medium Term Impact of Aerial Application of Insecticide Against the Winter Moth (Operophtera Brumata L.). Revue forestiere francaise (nancy) 50: 395-404. Chem Codes: Chemical of Concern: DFZ Rejection Code: NON-ENGLISH. Aguirre-Uribe, L. A., Lozoya-Saldana, A., Luis-Jauregui, A., Quinones-Luna, S., and Juarez-Ramos, F. (1991(1992)). Field Evaluation for the Population Control of Musca Domestica (Diptera: Muscidae) in Chicken Manure With Diflubenzuron. Folia entomol mex 0: 143-151. Chem Codes: Chemical of Concern: DFZ Rejection Code: NON-ENGLISH. Akanbi, M. O. and Ashiru, M. O. (1991). Towards Integrated Pest Management of Forest Defoliators the Nigerian Situation. Xviii international congress of entomology, vancouver, british columbia, canada, 1988. For ecol manage 39: 81-86. Chem Codes: Chemical of Concern: DFZ Rejection Code: REVIEW,CHEM METHODS. Akiyama, Y., Yoshioka, N., Yano, M., Mitsuhashi, T., Takeda, N., Tsuji, M., and Matsushita, S. (1997). Pesticide Residues in Agricultural Products (F.y. 1994-1996). J.Food Hyg.Soc.Jpn. 38: 381-389 (JPN) . Chem Codes: Chemical of Concern: FNT,ACP,DZ,DDVP,MTM,CYP,EFX,FNV,FVL,PMR,MOM,BFZ,IPD,TFZ,CYF,TFY,MLN,BPH,ILL,T BA,DPHP,ES,DM,BTN,FRM,IPD,MYC,TDF,TDM Rejection Code: NON-ENGLISH. Alho, C. Jr and Vieira, L. M. (1997). Fish and Wildlife Resources in the Pantanal Wetlands of Brazil and Potential Disturbances From the Release of Environmental Contaminants. Environmental toxicology and chemistry 16: 71-74. Chem Codes: Chemical of Concern: DFZ Rejection Code: REVIEW. Ali, A.
    [Show full text]
  • Cockroach Control Manual
    COCKROACHCOCKROACH CONTROLCONTROL MANUALMANUAL (Photo by J. Kalisch) Barb Ogg, Extension Educator, Lancaster County Clyde Ogg, Extension Educator, Pesticide Safety Education Program Dennis Ferraro, Extension Educator, Douglas & Sarpy Counties Extension is a Division of the Institute of Agriculture and Natural Resources at the University of Nebraska–Lincoln cooperating with the Counties and the United States Department of Agriculture. ® University of Nebraska–Lincoln Extension’s educational programs abide with the nondiscrimination policies of the University of Nebraska–Lincoln and the United States Department of Agriculture. Table of Contents 1 Chapter 1: Introduction 5 Chapter 2: Know Your Enemy 9 Chapter 3: Cockroach Biology 15 Chapter 4: Locate Problem Areas 23 Chapter 5: Primary Control Strategies: Modify Resources 31 Chapter 6: Low-Risk Control Strategies 37 Chapter 7: Insecticide Basics 45 Chapter 8: Insecticides and Your Health 53 Chapter 9: Insecticide Applications 59 Chapter 10: Putting a Management Plan Together i Cockroach Control Manual Preface It has been more than 10 years since the first edition of the Cockroach Control Manual was completed. While the basic steps for effective and safe cockroach control are still the same, there are more types of control products available than there were 10 years ago. This means you have even more choices in your arsenal to help fight roaches. The Cockroach Control Manual is a practical reference for persons who have had little or no training in insect identification, biology or control methods. We know most people want low toxic methods used inside their homes so we are emphasizing low-risk strategies even more than in the original edition.
    [Show full text]
  • Proposed Interim Registration Review Decision for Imidacloprid
    Docket Number EPA-HQ-OPP-2008-0844 www.regulations.gov Imidacloprid Proposed Interim Registration Review Decision Case Number 7605 January 2020 Approved by: Elissa Reaves, Ph.D. Acting Director Pesticide Re-evaluation Division Date: __ 1-22-2020 __ Docket Number EPA-HQ-OPP-2008-0844 www.regulations.gov Table of Contents I. INTRODUCTION .................................................................................................................. 4 A. Summary of Imidacloprid Registration Review............................................................... 5 B. Summary of Public Comments on the Draft Risk Assessments and Agency Responses 7 II. USE AND USAGE ............................................................................................................... 14 III. SCIENTIFIC ASSESSMENTS ......................................................................................... 15 A. Human Health Risks....................................................................................................... 15 1. Risk Summary and Characterization .......................................................................... 15 2. Human Incidents and Epidemiology .......................................................................... 17 3. Tolerances ................................................................................................................... 18 4. Human Health Data Needs ......................................................................................... 18 B. Ecological Risks ............................................................................................................
    [Show full text]
  • Laboratory Evaluation of Insect Growth Regulators Against Several Species of Anopheline Mosquitoes
    [~pn.J. Sanit. 2001. Vo1. 44 No. 4 p. 349-353 19931 Laboratory evaluation of insect growth regulators against several species of anopheline mosquitoes Hitoshi KAWADA,*Yoshinori SHONO,*Takaaki ITO* and Yasuo ABE* Agricultural Science Research Center, Takarazuka Research Center, Sumitomo Chemical Co., Ltd., Takarazuka 665, Japan (Received: May 27, 1993) Key words: insecticide, insect growth regulator, pyriproxyfen, methoprene, diflubenzuron, Anopheles, vector. -- - Abstract : Larvicide efficacy of insect growth regulators (pyriproxyfen, metho- prene and diflubenzuron), in comparison with the larvicidal and adulticidal efficacy of conventional insecticides, against several species of Anopheline mosquitoes includ- ing several insecticide resistant; strains were evaluated in laboratory conditions. In all species, no cross resistance between IGRs and the other kinds of insecticides, such as organophosphate, organochlorine, carbamate and pyrethroid, was observed. Relative effectiveness of pyriproxyfen to methoprene ranged from several to 40 times and that to diflubenzuron ranged from 19.5 times to more than 400 times. In this respect, IGRs (insect growth regu- lators) seem to be useful insecticides. Pyri- proxyfen, a juvenile hormone mimic, had Anopheline mosquito is one of the most high activities to mosquitoes in the field important vectors of tropical diseases. Re- (Kawada et al., 1988; Suzuki et al., 1989; sidual spray on the wall surface and treat- Okazawa et al., 1991). In this study, we ment of breeding areas with chemicals, such evaluated the larvicide efficacy of pyriproxy- as organochlorine, organophosphate and car- fen against several species of Anopheline bamate insecticides, have been employed as mosquitoes in laboratory conditions, compar- the best and appropriate ways of controlling ing with other insecticides, and discuss the these mosquitoes.
    [Show full text]
  • Insecticide and Growth Regulator Effects on the Leafminer, Liriomyza Trifolii (Diptera: Agromyzidae), in Celery and Observations on Parasitism
    The Great Lakes Entomologist Volume 21 Number 2 - Summer 1988 Number 2 - Summer Article 1 1988 June 1988 Insecticide and Growth Regulator Effects on the Leafminer, Liriomyza Trifolii (Diptera: Agromyzidae), in Celery and Observations on Parasitism E. Grafius Michigan State University J. Hayden Michigan State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Grafius, E. and Hayden, J. 1988. "Insecticide and Growth Regulator Effects on the Leafminer, Liriomyza Trifolii (Diptera: Agromyzidae), in Celery and Observations on Parasitism," The Great Lakes Entomologist, vol 21 (2) Available at: https://scholar.valpo.edu/tgle/vol21/iss2/1 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Grafius and Hayden: Insecticide and Growth Regulator Effects on the Leafminer, <i>Lir 1988 THE GREAT LAKES ENTOMOLOGIST 49 INSECTICIDE AND GROWTH REGULATOR EFFECTS ON THE LEAFMINER, LIRIOMYZA TRIFOLII (DIPTERA: AGROMYZIDAE), IN CELERY AND OBSERVATIONS ON PARASITISM E. Grafius and 1. Haydenl ABSTRACT The effects of different insecticides were compared on survival and development of the leafminer, L. trifolii, in celery in Michigan and parasitism was assessed in this non­ resident population. Avermectin, thiocyclam, and cyromazine effectively controlled L. trifolii larvae or prevented successful emergence as adults. Moderate to high levels of resistance to permethrin and chlorpyrifos were present. Avermectin caused high mortality of all larval stages and no adults successfully emerged.
    [Show full text]
  • Effect of Insect Growth Regulators on Citrus Mealybug
    HORTSCIENCE 38(7):1397–1399. 2003. a result of insecticide applications is referred to as “hormoligosis” (Luckey, 1968). Hor- moligosis has been implicated in the increase Effect of Insect Growth Regulators on of female fecundity in several insect species such as Scirtothrips citri(Moulton) (Morse and Citrus Mealybug [Planococcus citri Zareh, 1991), Callosobruchus maculatus (F.) (Lale 1991), Zabrotes subfasciatus(Boheman), (Homoptera: Pseudococcidae)] Egg andAcanthoscelides obtectus(Say) (Weaver et al., 1992). Low doses of conventional insecti- cides have been implicated in increasing the Production fecundity of certain pests, including Coccus Raymond A. Cloyd hesperidum (L.) (Hart et al., 1966). In addi- tion to increasing egg production, insecticides University of Illinois, Department of Natural Resources and Environmental may also alter insect sex ratios (Dittrich et Sciences, 384 National Soybean Research Laboratory, 1101 West Peabody al., 1974). Drive, Urbana, IL 61801 Some insect growth regulators that act as juvenile hormone mimics reduce reproduction Additional index words. coleus, insect growth regulators, kinoprene, pyriproxyfen, by sterilizing females (Hamlen, 1977). In fact, buprofezin, novaluron, azadirachtin, interiorscapes, mealybugs insect growth regulators have been shown to Abstract. Greenhouse trials were conducted in 2000–2001 to evaluate the indirect effects of drastically reduce the fecundity of beneficial insects such as the ladybird beetles, Adalia insect growth regulators, whether stimulatory or inhibitory, on the egg production of female bipunctata Coccinella septempunctata citrus mealybug [Planococcus citri(Risso)]. Green coleus [Solenostemon scutellarioides (L.) L. and Codd] were infested with 10 late third instar female citrus mealybugs. The insect growth L. (Olszak et al., 1994). Regardless, there is still regulators kinoprene, pyriproxyfen, azadirachtin, buprofezin, and novaluron were applied minimal information on the potential indirect to infested plants at both the high and low manufacturer recommended rates.
    [Show full text]
  • Grasshopper Control in Pastures, Rangeland, and Non-Crop Areas
    Grasshopper Control in Pastures, Rangeland, and Non-Crop Areas – 2002 James Robinson Extension Entomologist Texas A&M University Agricultural Research & Extension Center, Overton Grasshoppers may cause problems in Texas again this year. Pesticides labeled for hopper control in pasture, rangelands and non-crop areas are listed below. Note: the restrictions are for beef cattle only. If these products are used on a dairy, refer to the label for information on harvest and grazing. Insecticides Labeled for Grasshopper Control in Pastures or Rangeland Malathion 57 EC: Use 1 ½ to 2 pts per acre. There are no grazing or harvest restrictions. Malathion ULV: Use 8-12 fluid ounces per acre. This product is specifically designed for aircraft and ground equipment capable of applying ultra low volumes. There are no grazing or harvest restrictions. Carbaryl: Sevin 4F and Sevin XLR. Use ½ to 1 qt per acre. Restrictions: Rangeland: May be harvested or grazed the same day as application. Do not make more than one application per year. Pasture: Do not apply within 14 days of harvest or grazing. Do not exceed 3 3/4 pounds per acre per year. Up to two applications per year may be made but not more often than once every 14 days. Carbaryl: Sevin 4-Oil ULV. Use 3/8 to 1 qt per acre. For use only on rangeland. This product is not labeled for pastures. Restrictions: Do not make more than one application per year. May be harvested or grazed the same day as treatment. Do not apply more than one quart per acre per year.
    [Show full text]
  • Management of Fall Armyworm (Spodoptera Frugiperda), With
    Management of Fall armyworm (Spodoptera frugiperda), with emphasis on Bt Transgenic Technology Galen Dively Emeritus Professor Department of Entomology University of Maryland [email protected] Outline FAW population distribution Identification, life cycle, and damage Biocontrol agents Cultural control options Biopesticides Conventional insecticides Host plant resistance with native genes Bt transgene-based resistance B.M. Prasanna, Joseph E. Huesing, Regina Eddy, Virginia M. Peschke (eds). 2018. Fall Armyworm in Africa: A Guide for Integrated Pest Management, First Edition. Mexico, CDMX: CIMMYT. Integrated management of the Fall Armyworm on maize A guide for Farmer Field Schools in Africa Food and Agriculture Organization of the United Nations, Rome, 2018 For fact sheets and management decision guides, visit:www.plantwise.org/fallarmyworm Why FAW is a serious pest in Africa: . high reproductive rate. feeds on many different crops. strong flyer, disperses long distances. continuous generations throughout the year. natural enemies do not act effectively enough to prevent crop injury. FAW Population Distribution Africa: 43 North America: 41 Central America: 28 South America: 32 Recently detected in India For countries with FAW, value at risk is over $13.3 billion and a major threat to food security. 30 – 40 days Inverted ‘Y’: 4 spots that form a square: Host plants: . Wider host range than African armyworm . Over 80 plants recorded, but prefers grasses Preferred food: . Sweet maize . Field maize . Sorghum . Bermuda grass . Grass weeds (crabgrass) Field crops: Vegetable crops: . Alfalfa . Rice . Sweet corn . Barley . Ryegrass . Sweet potato . Bermuda grass . Sorghum . Turnip Other crops: . Buckwheat . Sugarbeet . Spinach . Cotton . Sudangrass . Tomato . Apple . Clover . Soybean . Cabbage . Grape . Maize .
    [Show full text]
  • This Is a Specimen Label and May Be Inaccurate Or out of Date. It Is Intended As a Guide in Providing General Information Regarding Use of This Product
    This is a specimen label and may be inaccurate or out of date. It is intended as a guide in providing general information regarding use of this product. Always read and follow the EPA approved label on the product container. PHYSICAL AND CHEMICAL HAZARDS Do not use or store near heat or open flame. CONDITIONS OF SALE AND LIMITATION OF WARRANTY AND LIABILITY NOTICE: Read the entire Directions for Use and Conditions of Sale and An insect growth regulator (IGR) for use in homes, apartments, schools, Limitation of Warranty and Liability before buying or using this product. If warehouses, offices, and other private, commercial, or public buildings, in the terms are not acceptable, return the product at once, unopened, and nonfood preparation areas of food handling and processing establishments, the purchase price will be refunded. in transport vehicles, animal housing facilities, and barrier treatments on and The Directions for Use of this product should be followed carefully. It is adjacent to buildings and structures and in pet areas. impossible to eliminate all risks inherently associated with the use of this ACTIVE INGREDIENT product. Ineffectiveness or other unintended consequences may result 2-[1-Methyl-2-(4-phenoxyphenoxy) ethoxy] pyridine . .1.3% because of such factors as manner of use or application, weather, INERT INGREDIENTS* . .98.7% presence of other materials or other influencing factors in the use of the product, which are beyond the control of ZENECA or Seller. All such risks TOTAL . 100.0% shall be assumed by Buyer and User, and Buyer and User agree to hold *Contains petroleum distillates ZENECA and Seller harmless for any claims relating to such factors.
    [Show full text]