Truncated Skew-Normal Distributions: Moments, Estimation by Weighted Moments and Application to Climatic Data

Total Page:16

File Type:pdf, Size:1020Kb

Truncated Skew-Normal Distributions: Moments, Estimation by Weighted Moments and Application to Climatic Data Truncated skew-normal distributions: moments, estimation by weighted moments and application to climatic data by C. Flecher1;2, D. Allard1 and P. Naveau2 1 Biostatistics and Spatial Processes, INRA, Agroparc 84914 Avignon, France 2 Laboratoire des Sciences du Climat et de l'Environnement, CNRS Gif-sur-Yvette, France Running title: Truncated skew-normal distributions Abstract In this paper we derive an expression of the mth order moments and some weighted mo- ments of truncated skew-normal distributions. We link these formulas to previous results for trun- cated distributions and non truncated skew-normal distributions. Methods to estimate skew-normal parameters using weighted moments are proposed and compared to other classical techniques. In a second step we propose to model the distribution of relative humidity with a truncated skew-normal distribution. Key words: Truncated skew-normal distributions, inference methods, classical moments, weighted moments, relative humidity. 1 1 Introduction In many applications, the probability distribution function (pdf) of some observed variables can be simultaneously skewed and restricted to a xed interval. For example, variables such as pH, grades, and humidity in environmental studies, have upper and lower physical bounds and their pdfs are not necessarily symmetric within these bounds. To illustrate such behaviors, Figure 1 shows the histograms per season and the estimated pdfs of daily relative humidity measurements made in Toulouse (France) from 1972 to 1999. Dec−Jan−Feb Mar−Apr−May Jun−Jul−Aug Sep−Oct−Nov 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 Density Density Density Density 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 H (%) H (%) H (%) H (%) Figure 1: Histograms and estimated densities of daily relative humidity measurements made in Toulouse (France) from 1972 to 1999. Each panel corresponds to a season. All observations belong to the interval [0; 100] and skewness is apparent, especially during the Spring and Fall seasons. There are many strategies available to model such skewed and bounded data. In this paper our approach is to conceptually view such observations as truncated measurements originating from a exible skewed distribution. More precisely we assume that the truncation bounds are known and we focus on the following skew-normal pdf dened by Azzalini (1985) 2 x − µ x − µ f (x) = φ Φ λ ; (1) µ,σ,λ σ σ σ where µ 2 R, σ > 0 and λ 2 R represent the location, scale and shape parameters, respectively. The notations φ and Φ correspond to the pdf and the cumulative distribution function (cdf) of the standard normal distribution, respectively. The skew-normal distribution (1) can be obtained from a bivariate Gaussian random vector, by conditioning one component on the second one being above (or below) a given threshold (Azzalini, 1985). The notation X ∼ SN(µ, σ; λ) represents a random variable, X, following (1) and Fµ,σ,λ denotes its cdf. The particular case λ = 0 corresponds to the classical normal distribution with mean µ and variance σ2. In the following, the pdf and the cdf of a SN(0; 1; λ) are simply denoted fλ and Fλ. In this context our main objective is to propose and study a novel method-of-moments approach for estimating the parameters of (1) in presence of truncation. 2 Among others, Martinez et al. (2008) recently studied the moments of the skew-normal dened by (1). Dhrymes (2005) provided a recursive relationship among the r-order moments of a standard normal distribution, say Z, truncated at a and b r−1 b [z φ(z)]a for (2) mr(a; b) = (r − 1)mr−2(a; b) − b ; r = 1; 2;:::; [Φ(z)]a where r with , b denotes , and mr(a; b) = E[Z j a < Z ≤ b] a < b [Φ(x)]a Φ(b) − Φ(a) m0(a; b) = 1 m−1(a; b) can be any nite value. In Section 2 we combine the results of Martinez et al. (2008) with the approach of Dhrymes (2005) in order to derive the moments of a truncated skew-normal distribution. Following the work of Flecher et al. (2009a), we also compute a special type of weighted moments of truncated skew-normal distributions. In Section 3, these theoretical expressions of moments allow us to propose a new method-of-moments approach to estimate the parameters of such truncated distributions. In Section 4, this estimation method is compared to the classical method-of-moments and maximum likelihood method (Mills, 1955) using simulated data. Daily air relative humidity measurements are also analyzed in this section. All proofs are relegated to the Appendix to improve readability of the paper. 2 Moments of truncated skew-normal variables Lemma 1 presents an explicit, though cumbersome, solution to (2). Lemma 1. Let Z be a standard Gaussian random variable and −∞ ≤ a < b ≤ +1. Let us denote r th mr(a; b) = E(Z j a < Z ≤ b) the r moment of the truncated Z. Then, k ! X 1 [z2i−1φ(z)]b m (a; b) = (2k − 1)!! 1 − a ; for k = 1; 2;:::; 2k (2i − 1)!! [Φ(z)]b i=1 a k X (2k)!! [z2iφ(z)]b m (a; b) = − a ; for k = 0; 1;:::; (3) 2k+1 (2i)!! [Φ(z)]b i=0 a where n!! denotes the double factorial dened by Arfken (1985) as 8 <1; if n = −1; n = 0 or n = 1; n!! = :n × (n − 2)!! if n ≥ 2: As (a; b) ! (−∞; 1), the moments m2k(a; b) and m2k+1(a; b) tend to (2k − 1)!! and zero, respec- tively. The latter two values correspond to the classical Gaussian moments. 3 We now introduce the truncated skew-normal distribution as a truncation of the skew-normal dis- tribution in 1. Its pdf is 8 1 if < b fµ,σ,λ(x); a < x ≤ b; [Fµ,σ,λ(x)]a fµ,σ,λ(x j a < X ≤ b) = (4) :0 otherwise, where X ∼ SN(µ, σ; λ) and −∞ ≤ a < b ≤ +1 represents the range of the truncation. Let us consider the simple case (µ, σ) = (0; 1). r Proposition 1. Let X be a SN(0; 1; λ). Let us denote sλ,r(u; v) = E[X j u < X ≤ v] with u < v the rth moment of the truncated variable. The following recursive relationship holds, sλ,r(u; v) = (r − 1)sλ,r−2(u; v) + rλ,r(u; v); for r = 1; 2;:::; (5) where sλ,0(u; v) = 1 and sλ,−1 can be any nite value, [xr−1f (x)]v 2 λ [Φ(λ x)]v λ u p ∗ u rλ,r(u; v) = − v + r v mr−1(λ∗u; λ∗v); [Fλ(x)]u 2π λ∗ [Fλ(x)]u 2 1=2 where λ∗ = (1 + λ ) . From (5), we can derive p X (2p − 1)!! s (u; v) = (2p − 1)!! + r (u; v); with p = 1; 2;:::; (6) λ,2p (2k − 1)!! λ,2k k=1 p X (2p)!! s (u; v) = r (u; v); with p = 0; 1;:::: (7) λ,2p+1 (2k)!! λ,2k+1 k=0 Martinez's et al. (2008) results can be viewed as limiting cases of (6) and (7) lim sλ,2p(u; v) = (2p − 1)!!; with p = 0; 1;:::; (u;v)!(−∞;+1) p 2 X (2p)!! λ lim sλ,2p+1(u; v) = p (2k − 1)!! ; with p = 0; 1;:::: (u;v)!(−∞;+1) 2π (2k)!! (1 + λ2)k+1=2 k=0 Equalities (6) and (7) tell us that odd (respectively even) moments of truncated skew-normal distri- butions can be interpreted as linear combinations of even (respectively odd) moments of the normal distribution truncated at λ∗u and λ∗v. If λ = 0, Equation (5) and Proposition 1 are equivalent to the recursive equation provided in Dhrymes (2005) and Lemma 1, respectively. The restricting condition (µ, σ) = (0; 1) can be easily removed and leads to the following proposition. Proposition 2. Let X ∼ SN(µ, σ; λ). Then, we have m m X r m−r r (8) E[X j a < X ≤ b] = Cmµ σ sλ,r(u; v): r=0 ! m where , , r is a binomial coecient and is dened u = (a − µ)/σ v = (b − µ)/σ Cm = sλ,r(u; v) r in Proposition 1. 4 Proposition 2 provides moments of any order and consequently the rst three moments can be used to implement a classical method-of-moment. Besides the complexity of deriving the explicit expression of the third moment, its estimation is usually tainted with a large variance because X3 can take large values. An alternative route is to derive other types of moments. Following the work of Hosking et al. (1985) and Diebolt et al. (2008), Flecher et al. (2009a) introduced and studied probability weighted moments for skew-normal distributions. The basic idea is to compute moments s r of the type E[X Φ (X)], where s and r are small integers. Here we concentrate on the case s = 0 and r = 1. We obtain the following proposition. Proposition 3. Let X ∼ SN(µ, σ; λ) and a < b. Then, b 2 t [F+(x)]a (9) E[Φ(X) j a < X ≤ b] = 2Φ2(0; ν+; I2 + σ D+D+) b = '(µ, σ; λ); [Fµ,σ,λ(x)]a 2 where F+ is the cumulative distribution function of a closed skew-normal variable CSN1;2(µ, σ ; D+; ν+; I2), t t I2 is the identity matrix of size two, D+ = (1; λ/σ) and ν+ = (−µ, 0) : The denition and some properties of closed skew-normal distributions can be found in the book edited by Genton (2004), see in particular Chapter 2 written by González-Farías et al.
Recommended publications
  • A Skew Extension of the T-Distribution, with Applications
    J. R. Statist. Soc. B (2003) 65, Part 1, pp. 159–174 A skew extension of the t-distribution, with applications M. C. Jones The Open University, Milton Keynes, UK and M. J. Faddy University of Birmingham, UK [Received March 2000. Final revision July 2002] Summary. A tractable skew t-distribution on the real line is proposed.This includes as a special case the symmetric t-distribution, and otherwise provides skew extensions thereof.The distribu- tion is potentially useful both for modelling data and in robustness studies. Properties of the new distribution are presented. Likelihood inference for the parameters of this skew t-distribution is developed. Application is made to two data modelling examples. Keywords: Beta distribution; Likelihood inference; Robustness; Skewness; Student’s t-distribution 1. Introduction Student’s t-distribution occurs frequently in statistics. Its usual derivation and use is as the sam- pling distribution of certain test statistics under normality, but increasingly the t-distribution is being used in both frequentist and Bayesian statistics as a heavy-tailed alternative to the nor- mal distribution when robustness to possible outliers is a concern. See Lange et al. (1989) and Gelman et al. (1995) and references therein. It will often be useful to consider a further alternative to the normal or t-distribution which is both heavy tailed and skew. To this end, we propose a family of distributions which includes the symmetric t-distributions as special cases, and also includes extensions of the t-distribution, still taking values on the whole real line, with non-zero skewness. Let a>0 and b>0be parameters.
    [Show full text]
  • On Moments of Folded and Truncated Multivariate Normal Distributions
    On Moments of Folded and Truncated Multivariate Normal Distributions Raymond Kan Rotman School of Management, University of Toronto 105 St. George Street, Toronto, Ontario M5S 3E6, Canada (E-mail: [email protected]) and Cesare Robotti Terry College of Business, University of Georgia 310 Herty Drive, Athens, Georgia 30602, USA (E-mail: [email protected]) April 3, 2017 Abstract Recurrence relations for integrals that involve the density of multivariate normal distributions are developed. These recursions allow fast computation of the moments of folded and truncated multivariate normal distributions. Besides being numerically efficient, the proposed recursions also allow us to obtain explicit expressions of low order moments of folded and truncated multivariate normal distributions. Keywords: Multivariate normal distribution; Folded normal distribution; Truncated normal distribution. 1 Introduction T Suppose X = (X1;:::;Xn) follows a multivariate normal distribution with mean µ and k kn positive definite covariance matrix Σ. We are interested in computing E(jX1j 1 · · · jXnj ) k1 kn and E(X1 ··· Xn j ai < Xi < bi; i = 1; : : : ; n) for nonnegative integer values ki = 0; 1; 2;:::. The first expression is the moment of a folded multivariate normal distribution T jXj = (jX1j;:::; jXnj) . The second expression is the moment of a truncated multivariate normal distribution, with Xi truncated at the lower limit ai and upper limit bi. In the second expression, some of the ai's can be −∞ and some of the bi's can be 1. When all the bi's are 1, the distribution is called the lower truncated multivariate normal, and when all the ai's are −∞, the distribution is called the upper truncated multivariate normal.
    [Show full text]
  • A Study of Non-Central Skew T Distributions and Their Applications in Data Analysis and Change Point Detection
    A STUDY OF NON-CENTRAL SKEW T DISTRIBUTIONS AND THEIR APPLICATIONS IN DATA ANALYSIS AND CHANGE POINT DETECTION Abeer M. Hasan A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2013 Committee: Arjun K. Gupta, Co-advisor Wei Ning, Advisor Mark Earley, Graduate Faculty Representative Junfeng Shang. Copyright c August 2013 Abeer M. Hasan All rights reserved iii ABSTRACT Arjun K. Gupta, Co-advisor Wei Ning, Advisor Over the past three decades there has been a growing interest in searching for distribution families that are suitable to analyze skewed data with excess kurtosis. The search started by numerous papers on the skew normal distribution. Multivariate t distributions started to catch attention shortly after the development of the multivariate skew normal distribution. Many researchers proposed alternative methods to generalize the univariate t distribution to the multivariate case. Recently, skew t distribution started to become popular in research. Skew t distributions provide more flexibility and better ability to accommodate long-tailed data than skew normal distributions. In this dissertation, a new non-central skew t distribution is studied and its theoretical properties are explored. Applications of the proposed non-central skew t distribution in data analysis and model comparisons are studied. An extension of our distribution to the multivariate case is presented and properties of the multivariate non-central skew t distri- bution are discussed. We also discuss the distribution of quadratic forms of the non-central skew t distribution. In the last chapter, the change point problem of the non-central skew t distribution is discussed under different settings.
    [Show full text]
  • 1 One Parameter Exponential Families
    1 One parameter exponential families The world of exponential families bridges the gap between the Gaussian family and general dis- tributions. Many properties of Gaussians carry through to exponential families in a fairly precise sense. • In the Gaussian world, there exact small sample distributional results (i.e. t, F , χ2). • In the exponential family world, there are approximate distributional results (i.e. deviance tests). • In the general setting, we can only appeal to asymptotics. A one-parameter exponential family, F is a one-parameter family of distributions of the form Pη(dx) = exp (η · t(x) − Λ(η)) P0(dx) for some probability measure P0. The parameter η is called the natural or canonical parameter and the function Λ is called the cumulant generating function, and is simply the normalization needed to make dPη fη(x) = (x) = exp (η · t(x) − Λ(η)) dP0 a proper probability density. The random variable t(X) is the sufficient statistic of the exponential family. Note that P0 does not have to be a distribution on R, but these are of course the simplest examples. 1.0.1 A first example: Gaussian with linear sufficient statistic Consider the standard normal distribution Z e−z2=2 P0(A) = p dz A 2π and let t(x) = x. Then, the exponential family is eη·x−x2=2 Pη(dx) / p 2π and we see that Λ(η) = η2=2: eta= np.linspace(-2,2,101) CGF= eta**2/2. plt.plot(eta, CGF) A= plt.gca() A.set_xlabel(r'$\eta$', size=20) A.set_ylabel(r'$\Lambda(\eta)$', size=20) f= plt.gcf() 1 Thus, the exponential family in this setting is the collection F = fN(η; 1) : η 2 Rg : d 1.0.2 Normal with quadratic sufficient statistic on R d As a second example, take P0 = N(0;Id×d), i.e.
    [Show full text]
  • Basic Econometrics / Statistics Statistical Distributions: Normal, T, Chi-Sq, & F
    Basic Econometrics / Statistics Statistical Distributions: Normal, T, Chi-Sq, & F Course : Basic Econometrics : HC43 / Statistics B.A. Hons Economics, Semester IV/ Semester III Delhi University Course Instructor: Siddharth Rathore Assistant Professor Economics Department, Gargi College Siddharth Rathore guj75845_appC.qxd 4/16/09 12:41 PM Page 461 APPENDIX C SOME IMPORTANT PROBABILITY DISTRIBUTIONS In Appendix B we noted that a random variable (r.v.) can be described by a few characteristics, or moments, of its probability function (PDF or PMF), such as the expected value and variance. This, however, presumes that we know the PDF of that r.v., which is a tall order since there are all kinds of random variables. In practice, however, some random variables occur so frequently that statisticians have determined their PDFs and documented their properties. For our purpose, we will consider only those PDFs that are of direct interest to us. But keep in mind that there are several other PDFs that statisticians have studied which can be found in any standard statistics textbook. In this appendix we will discuss the following four probability distributions: 1. The normal distribution 2. The t distribution 3. The chi-square (␹2 ) distribution 4. The F distribution These probability distributions are important in their own right, but for our purposes they are especially important because they help us to find out the probability distributions of estimators (or statistics), such as the sample mean and sample variance. Recall that estimators are random variables. Equipped with that knowledge, we will be able to draw inferences about their true population values.
    [Show full text]
  • The Normal Moment Generating Function
    MSc. Econ: MATHEMATICAL STATISTICS, 1996 The Moment Generating Function of the Normal Distribution Recall that the probability density function of a normally distributed random variable x with a mean of E(x)=and a variance of V (x)=2 is 2 1 1 (x)2/2 (1) N(x; , )=p e 2 . (22) Our object is to nd the moment generating function which corresponds to this distribution. To begin, let us consider the case where = 0 and 2 =1. Then we have a standard normal, denoted by N(z;0,1), and the corresponding moment generating function is dened by Z zt zt 1 1 z2 Mz(t)=E(e )= e √ e 2 dz (2) 2 1 t2 = e 2 . To demonstate this result, the exponential terms may be gathered and rear- ranged to give exp zt exp 1 z2 = exp 1 z2 + zt (3) 2 2 1 2 1 2 = exp 2 (z t) exp 2 t . Then Z 1t2 1 1(zt)2 Mz(t)=e2 √ e 2 dz (4) 2 1 t2 = e 2 , where the nal equality follows from the fact that the expression under the integral is the N(z; = t, 2 = 1) probability density function which integrates to unity. Now consider the moment generating function of the Normal N(x; , 2) distribution when and 2 have arbitrary values. This is given by Z xt xt 1 1 (x)2/2 (5) Mx(t)=E(e )= e p e 2 dx (22) Dene x (6) z = , which implies x = z + . 1 MSc. Econ: MATHEMATICAL STATISTICS: BRIEF NOTES, 1996 Then, using the change-of-variable technique, we get Z 1 1 2 dx t zt p 2 z Mx(t)=e e e dz 2 dz Z (2 ) (7) t zt 1 1 z2 = e e √ e 2 dz 2 t 1 2t2 = e e 2 , Here, to establish the rst equality, we have used dx/dz = .
    [Show full text]
  • A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess
    S S symmetry Article A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess Guillermo Martínez-Flórez 1, Víctor Leiva 2,* , Emilio Gómez-Déniz 3 and Carolina Marchant 4 1 Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 14014, Colombia; [email protected] 2 Escuela de Ingeniería Industrial, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile 3 Facultad de Economía, Empresa y Turismo, Universidad de Las Palmas de Gran Canaria and TIDES Institute, 35001 Canarias, Spain; [email protected] 4 Facultad de Ciencias Básicas, Universidad Católica del Maule, 3466706 Talca, Chile; [email protected] * Correspondence: [email protected] or [email protected] Received: 30 June 2020; Accepted: 19 August 2020; Published: 1 September 2020 Abstract: In this paper, we consider skew-normal distributions for constructing new a distribution which allows us to model proportions and rates with zero/one inflation as an alternative to the inflated beta distributions. The new distribution is a mixture between a Bernoulli distribution for explaining the zero/one excess and a censored skew-normal distribution for the continuous variable. The maximum likelihood method is used for parameter estimation. Observed and expected Fisher information matrices are derived to conduct likelihood-based inference in this new type skew-normal distribution. Given the flexibility of the new distributions, we are able to show, in real data scenarios, the good performance of our proposal. Keywords: beta distribution; centered skew-normal distribution; maximum-likelihood methods; Monte Carlo simulations; proportions; R software; rates; zero/one inflated data 1.
    [Show full text]
  • Volatility Modeling Using the Student's T Distribution
    Volatility Modeling Using the Student’s t Distribution Maria S. Heracleous Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Economics Aris Spanos, Chair Richard Ashley Raman Kumar Anya McGuirk Dennis Yang August 29, 2003 Blacksburg, Virginia Keywords: Student’s t Distribution, Multivariate GARCH, VAR, Exchange Rates Copyright 2003, Maria S. Heracleous Volatility Modeling Using the Student’s t Distribution Maria S. Heracleous (ABSTRACT) Over the last twenty years or so the Dynamic Volatility literature has produced a wealth of uni- variateandmultivariateGARCHtypemodels.Whiletheunivariatemodelshavebeenrelatively successful in empirical studies, they suffer from a number of weaknesses, such as unverifiable param- eter restrictions, existence of moment conditions and the retention of Normality. These problems are naturally more acute in the multivariate GARCH type models, which in addition have the problem of overparameterization. This dissertation uses the Student’s t distribution and follows the Probabilistic Reduction (PR) methodology to modify and extend the univariate and multivariate volatility models viewed as alternative to the GARCH models. Its most important advantage is that it gives rise to internally consistent statistical models that do not require ad hoc parameter restrictions unlike the GARCH formulations. Chapters 1 and 2 provide an overview of my dissertation and recent developments in the volatil- ity literature. In Chapter 3 we provide an empirical illustration of the PR approach for modeling univariate volatility. Estimation results suggest that the Student’s t AR model is a parsimonious and statistically adequate representation of exchange rate returns and Dow Jones returns data.
    [Show full text]
  • The Multivariate Normal Distribution=1See Last Slide For
    Moment-generating Functions Definition Properties χ2 and t distributions The Multivariate Normal Distribution1 STA 302 Fall 2017 1See last slide for copyright information. 1 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ2 and t distributions 2 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Joint moment-generating function Of a p-dimensional random vector x t0x Mx(t) = E e x t +x t +x t For example, M (t1; t2; t3) = E e 1 1 2 2 3 3 (x1;x2;x3) Just write M(t) if there is no ambiguity. Section 4.3 of Linear models in statistics has some material on moment-generating functions (optional). 3 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Uniqueness Proof omitted Joint moment-generating functions correspond uniquely to joint probability distributions. M(t) is a function of F (x). Step One: f(x) = @ ··· @ F (x). @x1 @xp @ @ R x2 R x1 For example, f(y1; y2) dy1dy2 @x1 @x2 −∞ −∞ 0 Step Two: M(t) = R ··· R et xf(x) dx Could write M(t) = g (F (x)). Uniqueness says the function g is one-to-one, so that F (x) = g−1 (M(t)). 4 / 40 Moment-generating Functions Definition Properties χ2 and t distributions g−1 (M(t)) = F (x) A two-variable example g−1 (M(t)) = F (x) −1 R 1 R 1 x1t1+x2t2 R x2 R x1 g −∞ −∞ e f(x1; x2) dx1dx2 = −∞ −∞ f(y1; y2) dy1dy2 5 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Theorem Two random vectors x1 and x2 are independent if and only if the moment-generating function of their joint distribution is the product of their moment-generating functions.
    [Show full text]
  • Approximating the Distribution of the Product of Two Normally Distributed Random Variables
    S S symmetry Article Approximating the Distribution of the Product of Two Normally Distributed Random Variables Antonio Seijas-Macías 1,2 , Amílcar Oliveira 2,3 , Teresa A. Oliveira 2,3 and Víctor Leiva 4,* 1 Departamento de Economía, Universidade da Coruña, 15071 A Coruña, Spain; [email protected] 2 CEAUL, Faculdade de Ciências, Universidade de Lisboa, 1649-014 Lisboa, Portugal; [email protected] (A.O.); [email protected] (T.A.O.) 3 Departamento de Ciências e Tecnologia, Universidade Aberta, 1269-001 Lisboa, Portugal 4 Escuela de Ingeniería Industrial, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile * Correspondence: [email protected] or [email protected] Received: 21 June 2020; Accepted: 18 July 2020; Published: 22 July 2020 Abstract: The distribution of the product of two normally distributed random variables has been an open problem from the early years in the XXth century. First approaches tried to determinate the mathematical and statistical properties of the distribution of such a product using different types of functions. Recently, an improvement in computational techniques has performed new approaches for calculating related integrals by using numerical integration. Another approach is to adopt any other distribution to approximate the probability density function of this product. The skew-normal distribution is a generalization of the normal distribution which considers skewness making it flexible. In this work, we approximate the distribution of the product of two normally distributed random variables using a type of skew-normal distribution. The influence of the parameters of the two normal distributions on the approximation is explored. When one of the normally distributed variables has an inverse coefficient of variation greater than one, our approximation performs better than when both normally distributed variables have inverse coefficients of variation less than one.
    [Show full text]
  • Random Variables and Applications
    Random Variables and Applications OPRE 6301 Random Variables. As noted earlier, variability is omnipresent in the busi- ness world. To model variability probabilistically, we need the concept of a random variable. A random variable is a numerically valued variable which takes on different values with given probabilities. Examples: The return on an investment in a one-year period The price of an equity The number of customers entering a store The sales volume of a store on a particular day The turnover rate at your organization next year 1 Types of Random Variables. Discrete Random Variable: — one that takes on a countable number of possible values, e.g., total of roll of two dice: 2, 3, ..., 12 • number of desktops sold: 0, 1, ... • customer count: 0, 1, ... • Continuous Random Variable: — one that takes on an uncountable number of possible values, e.g., interest rate: 3.25%, 6.125%, ... • task completion time: a nonnegative value • price of a stock: a nonnegative value • Basic Concept: Integer or rational numbers are discrete, while real numbers are continuous. 2 Probability Distributions. “Randomness” of a random variable is described by a probability distribution. Informally, the probability distribution specifies the probability or likelihood for a random variable to assume a particular value. Formally, let X be a random variable and let x be a possible value of X. Then, we have two cases. Discrete: the probability mass function of X specifies P (x) P (X = x) for all possible values of x. ≡ Continuous: the probability density function of X is a function f(x) that is such that f(x) h P (x < · ≈ X x + h) for small positive h.
    [Show full text]
  • Strategic Information Transmission and Stochastic Orders
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Szalay, Dezsö Working Paper Strategic information transmission and stochastic orders SFB/TR 15 Discussion Paper, No. 386 Provided in Cooperation with: Free University of Berlin, Humboldt University of Berlin, University of Bonn, University of Mannheim, University of Munich, Collaborative Research Center Transregio 15: Governance and the Efficiency of Economic Systems Suggested Citation: Szalay, Dezsö (2012) : Strategic information transmission and stochastic orders, SFB/TR 15 Discussion Paper, No. 386, Sonderforschungsbereich/Transregio 15 - Governance and the Efficiency of Economic Systems (GESY), München, http://nbn-resolving.de/urn:nbn:de:bvb:19-epub-14011-6 This Version is available at: http://hdl.handle.net/10419/93951 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence.
    [Show full text]