MPEG Surround – the ISO/MPEG Standard for Efficient and Compatible Multi-Channel Audio Coding

Total Page:16

File Type:pdf, Size:1020Kb

MPEG Surround – the ISO/MPEG Standard for Efficient and Compatible Multi-Channel Audio Coding AES Audio Engineering Society Convention Paper Presented at the 122nd Convention 2007 May 5–8 Vienna, Austria The papers at this Convention have been selected on the basis of a submitted abstract and extended precis that have been peer reviewed by at least two qualified anonymous reviewers. This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the Journal of the Audio Engineering Society. MPEG Surround – The ISO/MPEG Standard for Efficient and Compatible Multi-Channel Audio Coding Jürgen Herre1, Kristofer Kjörling2, Jeroen Breebaart3, Christof Faller4, Sascha Disch1, Heiko Purnhagen2, Jeroen Koppens5, Johannes Hilpert1, Jonas Rödén2, Werner Oomen5, Karsten Linzmeier1, and Kok Seng Chong6 1 Fraunhofer Institute for Integrated Circuits, Am Wolfsmantel 33, 91058 Erlangen, Germany 2 Coding Technologies, 113 30 Stockholm, Sweden 3 Philips Research, 5656 AE Eindhoven, The Netherlands 4 Agere Systems, Allentown, PA 18109, USA 5 Philips Applied Technologies, 5616 LW, Eindhoven, The Netherlands 6 Panasonic Singapore Laboratories Pte. Ltd., Singapore ABSTRACT In 2004, the ISO/MPEG Audio standardization group started a new work item on efficient and backward compatible coding of high-quality multi-channel sound using parametric coding techniques. Finalized in the fall of 2006, the resulting MPEG Surround specification allows the transmission of surround sound at bitrates that have been commonly used for coding of mono or stereo sound. This paper summarizes the results of the standardization process by describing the underlying ideas and providing an overview of the MPEG Surround technology. The performance of the scheme is characterized by the results of the recent verification tests. These tests include several operation modes as they would be used in typical application scenarios to introduce multi-channel audio into existing audio services. level/intensity differences and measures of correlation/coherence between the audio channels and 1. INTRODUCTION can be represented in an extremely compact way. At the same time, a monophonic or two-channel downmix In 2004, the ISO/MPEG Audio standardization group signal of the sound material is created and transmitted to started a new work item on efficient and backward the decoder together with the spatial cue information. compatible coding of high-quality multi-channel sound The downmix can be conveyed to the receiver using using parametric coding techniques. Specifically, the known audio coders for monophonic or stereophonic technology to be developed should be based on the signals. On the decoding side, the transmitted downmix Spatial Audio Coding (SAC) approach that extends signal is expanded into a high quality multi-channel traditional approaches for coding of two or more output based on the spatial parameters. channels in a way that provides several significant advantages, both in terms of compression efficiency and Due to the reduced number of audio channels to be features. Firstly, it allows the transmission of multi- transmitted (e.g. just one channel for a monophonic channel audio at bitrates, which so far only allowed for downmix signal), the Spatial Audio Coding approach the transmission of monophonic audio. Secondly, by its provides an extremely efficient representation of multi- underlying structure, the multi-channel audio signal is channel audio signals. Furthermore, it is backward transmitted in a backward compatible way. As such, the compatible on the level of the downmix signal: A technology can be used to upgrade existing distribution receiver device without a spatial audio decoder will infrastructures for stereo or mono audio content (radio simply present the downmix signal. channels, Internet streaming, music downloads etc.) towards the delivery of multi-channel audio while Conceptually, this approach can be seen as an retaining full compatibility with existing receivers. enhancement of several known techniques, such as an After an intense development process, the resulting advanced method for joint stereo coding of multi- MPEG Surround specification was finalized in the channel signals [4], a generalization of Parametric second half of 2006 [30]. Stereo [5] [6] to multi-channel application, and an extension of the Binaural Cue Coding (BCC) scheme This paper summarizes the results of the standardization [7] [8] towards using more than one transmitted process by describing the underlying ideas and downmix channel [9]. From a different viewing angle, providing an overview of the MPEG Surround the Spatial Audio Coding approach may also be technology. Special attention is given to the results of considered an extension of well-known matrix surround the recent MPEG Surround verification tests that assess schemes (Dolby Surround/Prologic, Logic 7, Circle the technology’s performance in several operation Surround etc.) [10] [11] by transmission of dedicated modes as they would be used in typical application (spatial cue) side information to guide the multi-channel scenarios introducing multi-channel audio into existing reconstruction process and thus achieve improved audio services. subjective audio quality [1]. Sections 2 and 3 illustrate the basic approach and the MPEG standardization process that was executed to develop the MPEG Surround specification. The core of the MPEG Surround architecture and its further extensions are described in Sections 4 and 5. Finally, system performance and applications are discussed. 2. SPATIAL AUDIO CODING BASICS Figure 1: Principle of Spatial Audio Coding In a nutshell, the general underlying concept of Spatial Audio Coding can be outlined as follows: Rather than Due to the combination of bitrate-efficiency and performing a discrete coding of the individual audio backward compatibility, SAC technology can be used to input channels, a system based on Spatial Audio Coding enhance a large number of existing mono or stereo captures the spatial image of a multi-channel audio services from stereophonic (or monophonic) to multi- signal into a compact set of parameters that can be used channel transmission in a compatible fashion. To this to synthesize a high quality multi-channel representation aim, the existing audio transmission channel carries the from a transmitted downmix signal. Figure 1 illustrates downmix signal, and the spatial parameter information this concept. During the encoding process, the spatial is conveyed in a side chain (e.g. the ancillary data parameters (cues) are extracted from the multi-channel portion of an audio bitstream). In this way, multi- input signal. These parameters typically include channel capability can be achieved for existing audio Herre et al. MPEG Surround distribution services for a minimal increase in bitrate, 4.1. Filterbank and Top-Level Structure e.g. between 3 to 32kbit/s. In the human auditory system, the processing of 3. MPEG SURROUND DEVELOPMENT binaural cues is performed on a non-uniform frequency PROCESS scale [15] [16]. Hence, in order to estimate spatial parameters from a given input signal, it is important to transform its time-domain representation to a In March of 2004, the ISO/MPEG standardization group representation that resembles this non-uniform scale by started a new work item on SAC by issuing a “Call for using an appropriate filterbank. Proposals” (CfP) on Spatial Audio Coding [12]. Four submissions were received in response to this CfP and For applications including low bitrate audio coding, the evaluated with respect to a number of performance MPEG Surround decoder is typically applied as a post- aspects including the subjective quality of the decoded processor to a low bitrate (mono or stereo) decoder. In multi-channel audio signal, the subjective quality of the order to minimize computational complexity, it would downmix signals generated, the spatial parameter bitrate be beneficial if the MPEG Surround system could and other parameters (additional functionality, directly make use of the spectral representation of the computational complexity etc.). audio material provided by the audio decoder. In practice, however, spectral representations for the As a result of these extensive evaluations, MPEG purpose of audio coding are typically obtained by means decided that the basis for the subsequent standardization of critically sampled filterbanks (for example using a process, called Reference Model 0 (RM0), would be a Modified Discrete Cosine Transform (MDCT) [17]) and system combining the submissions of Fraunhofer are not suitable for signal manipulation as this would IIS/Agere Systems and Coding Technologies/Philips. interfere with the aliasing cancellation properties These systems outperformed the other submissions and, associated with critically sampled filterbanks. The at the same time, showed complementary performance Spectral Band Replication (SBR) algorithm [18] is an in terms of other parameters (e.g. per-item quality, important exception in this respect. Similar to the bitrate) [13]. The merged RM0 technology (now called Spatial Audio Coding / MPEG Surround approach, the MPEG Surround) combines the best features of both SBR algorithm is
Recommended publications
  • DVB DASH Webinar 13 June 2018 DVB DASH: an Overview Simon Waller (Samsung) DVB Codecs and DVB DASH Chris Poole (BBC) DVB DASH in the Wild Martin Schmalohr (IRT)
    DVB DASH webinar 13 June 2018 DVB DASH: An overview Simon Waller (Samsung) DVB codecs and DVB DASH Chris Poole (BBC) DVB DASH in the wild Martin Schmalohr (IRT) 1 DVB DASH: An overview • Quick ABR refresher • Why DVB DASH? • What does DVB DASH include? • Relationship with HbbTV • Where next? 2 ABR refresher and DASH nomenclature Bitrate 1 Representation … Segment Segment Segment … MPD AdaptationSet Bitrate 2 Representation Encoder … Segment Segment Segment … Bitrate 3 Representation … Segment Segment Segment … 3 MPEG DASH vs DVB DASH • MPEG DASH is a large complicated specification • DVB has defined a profile of MPEG DASH to help make services and players interoperable – This profile includes constraints, requirements, limitations, additions (e.g. A/V codec profiles) etc 4 What does DVB DASH cover 5 MPD and content constraints • Profiles to identify features for players (DVB 2014 URN and the new DVB 2017 URN) – New 2017 profile required for some of the latest features • MPD construction – Required elements and attributes – Maximum number of some elements • Segment construction – E.g. Min and max segment durations • Live vs On Demand 6 Profiled A/V codecs • Video codecs: – AVC – HEVC • Audio codecs: – AC-3, AC-4 parts 1 and 2 – AAC (including HE-AAC, HE-AACv2 and AAC-LC) – MPEG-H – MPEG Surround – DTS, DTS-HD, DTS-LBR 7 Subtitles • DVB DASH defines the carriage of XML based subtitles, as per EBU-TT-D • Downloadable fonts are supported – Particularly useful for non-Latin based languages 8 Content protection • DVB does not specify a DRM but does reference MPEG Common Encryption which defines how content is encrypted and how license metadata can be carried.
    [Show full text]
  • Overview of Technologies for Immersive Visual Experiences: Capture, Processing, Compression, Standardization and Display
    Overview of technologies for immersive visual experiences: capture, processing, compression, standardization and display Marek Domański Poznań University of Technology Chair of Multimedia Telecommunications and Microelectronics Poznań, Poland 1 Immersive visual experiences • Arbitrary direction of viewing System : 3DoF • Arbitrary location of viewer - virtual navigation - free-viewpoint television • Both System : 6DoF Virtual viewer 2 Immersive video content Computer-generated Natural content Multiple camera around a scene also depth cameras, light-field cameras Camera(s) located in a center of a scene 360-degree cameras Mixed e.g.: wearable cameras 3 Video capture Common technical problems • Synchronization of cameras Camera hardware needs to enable synchronization Shutter release error < Exposition interval • Frame rate High frame rate needed – Head Mounted Devices 4 Common task for immersive video capture: Calibration Camera parameter estimation: • Intrinsic – the parameters of individual cameras – remain unchanged by camera motion • Extrinsic – related to camera locations in real word – do change by camera motion (even slight !) Out of scope of standardization • Improved methods developed 5 Depth estimation • By video analysis – from at least 2 video sequences – Computationally heavy – Huge progress recently • By depth cameras – diverse products – Infrared illuminate of the scene – Limited resolution mostly Out of scope of standardization 6 MPEG Test video sequences • Large collection of video sequences with depth information
    [Show full text]
  • Communications/Information
    Communications/Information Volume 7 — November 2008 Issue date: November 7, 2008 Info Update is published by the Canadian Standards Association (CSA) eight times a year. It contains important information about new and existing standards, e.g., recently published standards, and withdrawn standards. It also gives you highlights of other activities and services. CSA offers a free online service called Keep Me Informed that will notify registered users when each new issue of Info Update is published. To register go to http://www.csa-intl.org/onlinestore/KeepMeInformed/PleaseIdentifyYourself.asp?Language=EN. To view the complete issue of Info Update visit http://standardsactivities.csa.ca/standardsactivities/default.asp?language=en. y Completed Projects / Projets terminés New Standards — New Editions — Special Publications Please note: The following standards were developed by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC), and have been adopted by the Canadian Standards Association. These standards are available in Portable Document Format (PDF) only. CAN/CSA-ISO/IEC 7812-2:08, 2nd edition Identification cards — Identification of issuers — Part 2: Application and registration procedures (Adopted ISO/IEC 7812-2:2007).................................................................. $110 CAN/CSA-ISO/IEC 7816-2:08, 1st edition Identification cards — Integrated circuit cards — Part 2: Cards with contacts — Dimensions and location of the contacts (Adopted ISO/IEC 7816-2:2007) ......................... $60 CAN/CSA-ISO/IEC 7816-13:08, 1st edition Identification cards — Integrated circuit cards — Part 13: Commands for application management in a multi-application environment (Adopted ISO/IEC 7816-13:2007)....... $110 CAN/CSA-ISO/IEC 8484:08, 1st edition Information technology — Magnetic stripes on savingsbooks (Adopted ISO/IEC 8484:2007) ......................................................................................
    [Show full text]
  • MPEG Surround Audio Coding on TI Floating-Point Dsps
    MPEG Surround Audio Coding on TI Floating-Point DSPs Matthias Neusinger Fraunhofer IIS [email protected] Agenda • The Fraunhofer Institute for Integrated Circuits • The MPEG Surround Coding Algorithm • Audio Coding for TI Floating-Point Processors • Conclusions The “Fraunhofer Gesellschaft“ - FhG Itzehoe • Largest private research Rostock organization in Europe Bremen • Non-profit organization, Hannover Berlin founded in 1949 Braunschweig Golm Oberhausen Magdeburg • 56 Institutes in 40 locations DuisburgDortmund in Germany Aachen Schmallenberg St. Augustin Dresden Euskirchen Jena • Offices in Europe, USA and Ilmenau Chemnitz Asia Darmstadt Würzburg Kaiserslautern St. Ingbert Erlangen • Permanent staff 12,500, Saarbrücken Nuremberg Karlsruhe mainly scientists and engineers Pfinztal Stuttgart Freising München Freiburg Holzkirchen Fraunhofer IIS Institute for Integrated Circuits • Founded in 1985, “Home staff ~450 in 4 locations of mp3” • Audio and Multimedia Cluster: – More than 100 engineers in Erlangen – MPEG Audio encoders and decoders – MPEG-4 Advanced Audio Coding (AAC, HE-AAC v2) – MPEG Layer-3 (mp3) – MPEG-4 Video Coding, AV Streaming, Virtual Acoustics – Digital Rights Management Agenda • The Fraunhofer Institute for Integrated Circuits • The MPEG Surround Coding Algorithm • Audio Coding for TI Floating-Point Processors • Conclusions The MPEG Surround Coding Algorithm •Overview • MPEG Standardization • Applications • Technical Description • Features and Modes • Profiles and Levels • Summary MPEG Surround Overview • Efficient
    [Show full text]
  • Audio Coding for Digital Broadcasting
    Recommendation ITU-R BS.1196-7 (01/2019) Audio coding for digital broadcasting BS Series Broadcasting service (sound) ii Rec. ITU-R BS.1196-7 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Recommendations (Also available online at http://www.itu.int/publ/R-REC/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management SNG Satellite news gathering TF Time signals and frequency standards emissions V Vocabulary and related subjects Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • (L3) - Audio/Picture Coding
    Committee: (L3) - Audio/Picture Coding National Designation Title (Click here to purchase standards) ISO/IEC Document L3 INCITS/ISO/IEC 9281-1:1990:[R2013] Information technology - Picture Coding Methods - Part 1: Identification IS 9281-1:1990 INCITS/ISO/IEC 9281-2:1990:[R2013] Information technology - Picture Coding Methods - Part 2: Procedure for Registration IS 9281-2:1990 INCITS/ISO/IEC 9282-1:1988:[R2013] Information technology - Coded Representation of Computer Graphics Images - Part IS 9282-1:1988 1: Encoding principles for picture representation in a 7-bit or 8-bit environment :[] Information technology - Coding of Multimedia and Hypermedia Information - Part 7: IS 13522-7:2001 Interoperability and conformance testing for ISO/IEC 13522-5 (MHEG-7) :[] Information technology - Coding of Multimedia and Hypermedia Information - Part 5: IS 13522-5:1997 Support for Base-Level Interactive Applications (MHEG-5) :[] Information technology - Coding of Multimedia and Hypermedia Information - Part 3: IS 13522-3:1997 MHEG script interchange representation (MHEG-3) :[] Information technology - Coding of Multimedia and Hypermedia Information - Part 6: IS 13522-6:1998 Support for enhanced interactive applications (MHEG-6) :[] Information technology - Coding of Multimedia and Hypermedia Information - Part 8: IS 13522-8:2001 XML notation for ISO/IEC 13522-5 (MHEG-8) Created: 11/16/2014 Page 1 of 44 Committee: (L3) - Audio/Picture Coding National Designation Title (Click here to purchase standards) ISO/IEC Document :[] Information technology - Coding
    [Show full text]
  • MPEG Surround Audio Research Labs Schuyler Quackenbush Bridging the Gap Between Stereo
    MPEG Surround Bridging the gap between stereo and multi-channel Schuyler Quackenbush Audio Research Labs ARL audio research labs MPEG Audio Standards • Family of MPEG Audio standards – 1997 MPEG-2 Advanced Audio Coding (AAC) – 2003 MPEG-4 High Efficiency AAC (HE-AAC) – 2006 MPEG-D MPEG Surround (MPS) • Each builds upon the previous – MPEG Surround 5.1-channel coding – HE-AAC 2-channel MPEG Surround core coder – AAC 2-channel HE-AAC core coder ARL audio research labs Exploiting “Dimensions” of Perception •SNR AAC – Perceptually shaped quantization noise • Frequency HE-AAC – Perceptually coded spectrum replication • Space MPEG Surround – Perceptual soundstage coding ARL audio research labs Spatial Perception of Sound • ILD – level difference – Due to head shadowing differences • ITD – time difference reverberation – rθ + sin( r θ ) direct path – Due to distance differences • ICC – coherence reverberation – Due to reverberation differences ARL audio research labs Example Soundstage ARL audio research labs Time/Frequency Decomposition 14000.00 12000.00 10000.00 8000.00 6000.00 Frequency 4000.00 2000.00 0.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Time ARL audio research labs MPEG surround principle • Compatible extension of existing stereo services to multi-channel • Can be combined with any core coder – AAC, HE-AAC • Spatial parameters are a fraction of overall bit rate – 40 kb/s HE-AAC core + 8 kb/s spatial side information ARL audio research labs HE-AAC Core Coder ARL audio research labs Spatial Encoder Block Diagram ARL audio research labs
    [Show full text]
  • Release 1 Specification, Volume 2
    Open IPTV Forum Release 1 Specification Volume 2 – Media Formats [V1.2] – [2012-08-27] Reformatted 2012-09-21 Volume 2 - Media Formats Copyright 2012 © Open IPTV Forum e.V. Page 2 (23) Open IPTV Forum Postal address Open IPTV Forum support office 650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 43 83 Fax: +33 4 92 38 52 90 Internet http://www.oipf.tv Disclaimer The Open IPTV Forum accepts no liability whatsoever for any use of this document. This specification provides multiple options for some features. The Open IPTV Forum Profiles specification complements the Release 1 specifications by defining the Open IPTV Forum implementation and deployment profiles. Any implementation based on Open IPTV Forum specifications that does not follow the Profiles specification cannot claim Open IPTV Forum compliance. Copyright Notification No part may be reproduced except as authorized by written permission. Any form of reproduction and/or distribution of these works is prohibited. Copyright 2012 © Open IPTV Forum e.V. All rights reserved. Volume 2 - Media Formats Copyright 2012 © Open IPTV Forum e.V. Page 3 (23) Contents FOREWORD ......................................................................................................................................................................5 INTRODUCTION ..............................................................................................................................................................6 1 REFERENCES............................................................................................................................................................7
    [Show full text]
  • Recommendation Itu-R Bt.1833-2*, **
    Recommendation ITU-R BT.1833-2 (08/2012) Broadcasting of multimedia and data applications for mobile reception by handheld receivers BT Series Broadcasting service (television) ii Rec. ITU-R BT.1833-2 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Recommendations (Also available online at http://www.itu.int/publ/R-REC/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management SNG Satellite news gathering TF Time signals and frequency standards emissions V Vocabulary and related subjects Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • Standards News Late December 2014 Volume 18, Number 24 Table of Contents PLASA Public Review: ANSI E1.23 up for Reaffirmation
    PLASA Standards News Late December 2014 Volume 18, Number 24 Table of Contents PLASA Public Review: ANSI E1.23 Up for Reaffirmation..................................................................................1 ’Tis the Season to Celebrate Standards!..........................................................................................................1 Comments Sought on Standard for Fire Training Structures, Props, and Equipment.......................................1 WTO Technical Barrier to Trade Notifications...................................................................................................2 Canada Notification: CAN/434...................................................................................................................... 2 ANSI Public Review Announcements...............................................................................................................3 Due 11 January 2015.................................................................................................................................... 3 Due 26 January 2015.................................................................................................................................... 3 Due 18 January 2015.................................................................................................................................... 4 Due 2 February 2015.................................................................................................................................... 4 CSA Public Review Announcements................................................................................................................6
    [Show full text]
  • DAB+ / DAB Surround the Next Generation of Digital Radio Benefits
    FRAUNHOFER INSTITUTE FOR INTEGRATED CIRCUITS IIS DAB+ / DAB SURROUND THE NEXT GENERATION OF DIGITAL RADIO BENEFITS OFFER MORE HIGH-QUALITY PROGRAMS TO YOUR LISTENERS With DAB+, broadcasters can offer up to three times more programs compared to conventional DAB transmissions due to higher bandwidth efficiency. The underlying new audio coding technology ensures good quality audio even with poor reception conditions. SURROUND SOUND ADDS A NEW DIMENSION TO YOUR DAB SERVICE For the first time, broadcasters can transmit 5.1 surround sound over DAB at any bit-rate. There is no need for simulcast as the DAB Surround signal can be played back by all existing stereo devices. Future surround-enabled receivers will reproduce the same signal in high-quality surround sound. GET YOUR RECEIVERS ON THE MARKET QUICKLY DAB+ and DAB Surround optimized decoder implementations are available for multiple platforms, including PC, fixed- and floating-point processors. GET YOUR BROADCAST SERVICE ON AIR NOW DAB+ and DAB Surround are integrated into the Fraunhofer DAB/DMB ContentServerTM, an easy-to-use encoder system for the DAB/DMB broadcasting chain. MPEG- Sorround HD-AAC What are DAB+ and DAB Surround? The Fraunhofer DAB/DMB Content-Server™ is available as a versatile professional broadcast solution with full DAB+ support. DAB+ is a new ETSI standard that improves upon the DAB The ContentServer is an easy-to-use encoder system for the Digital Radio Standard by employing the MPEG-4 DAB/DMB broadcast chain. It features real-time audio and High Efficiency AAC v2 (HE-AAC v2) codec. As a result, DAB+ video encoding in DAB+, MPEG Audio Layer 2 and MPEG-4 provides significantly greater bandwidth efficiency than H.264 / AVC, and enables the generation and insertion of conventional DAB allowing up to three times the programs almost any data service in PAD and NPAD, such as Journaline®, per channel compared to traditional DAB.
    [Show full text]
  • A New Parametric Stereo and Multi Channel Extension for MPEG-4 Enhanced Low Delay AAC (AAC-ELD)
    A new parametric Stereo and Multi Channel Extension for MPEG-4 Enhanced Low Delay AAC (AAC-ELD) Mar´ıaLuis Valero1, Andreas H¨olzer3, Markus Schnell 1, Johannes Hilpert1, Manfred Lutzky 1, Jonas Engdeg˚ard2, Heiko Purnhagen2, Per Ekstrand2 and Kristofer Kj¨orling2 1Fraunhofer Institute for Integrated Circuits IIS, Am Wolfsmantel 33, 91058 Erlangen, Germany 2Dolby Sweden AB, G¨avlegatan 12A, 11330, Stockholm, Sweden 3DSP Solutions GmbH & Co. KG, Maximilianstraße 16, 93047 Regensburg, Germany Correspondence should be addressed to Manfred Lutzky ([email protected]) ABSTRACT ISO/MPEG standardizes two communication codecs with low delay: AAC-LD is a well established low delay codec for high quality communication applications such as video conferencing, tele-presence and Voice over IP. Its successor AAC-ELD offers enhanced bit rate efficiency being an ideal solution for broadcast audio gateway codecs. Many existing and upcoming communication applications benefit from the transmission of stereo or multi channel signals at low bit rates. With Low Delay MPEG Surround, ISO has recently standardized a low delay parametric extension for AAC-LD and AAC-ELD. It is based on MPEG Surround technology with specific adaption for low delay operation. This extension comes along with a significantly improved coding efficiency for transmission of stereo and multi channel signals. 1 INTRODUCTION uses a reduced frame length resulting in an algorith- mic delay of 20 ms rather than the 55 ms of AAC [2] In 1999, ISO/MPEG defined the audio codec for packet based transmission. The AAC-LD tech- Low Delay AAC (AAC-LD) [1], intended for bi- nology provides excellent sound quality for typical directional (low latency) communication.
    [Show full text]