Novel Caudovirales Associated to Marine Group I Thaumarchaeota

Total Page:16

File Type:pdf, Size:1020Kb

Novel Caudovirales Associated to Marine Group I Thaumarchaeota Environmental Microbiology (2018) 00(00), 00–00 doi:10.1111/1462-2920.14462 Novel Caudovirales associated with Marine Group I Thaumarchaeota assembled from metagenomes Mario López-Pérez ,1†* Jose M. Haro-Moreno,1† Church et al., 2003). This abundance and the discovery José R. de la Torre2 and Francisco Rodriguez-Valera1 that members of this lineage derive energy from the oxi- 1Evolutionary Genomics Group, dation of ammonia (Könneke et al., 2005) and are able to División de Microbiología, Universidad Miguel Hernández, fix inorganic forms of carbon (Berg et al., 2010) argue Apartado 18, San Juan, Alicante, 03550, Spain. that the marine Thaumarchaeota are important players in 2Department of Biology, San Francisco State University, global Carbon (C) and Nitrogen (N) biogeochemical San Francisco, CA, 94132, USA. cycles. Recent studies have shown that these marine archaea are responsible for the majority of the aerobic fi Summary nitri cation measured in marine environments and may be a significant source of the greenhouse gas nitrous Marine Group I (MGI) Thaumarchaeota are some of the oxide (Santoro et al., 2011). The cultivation of numerous most abundant microorganisms in the deep ocean and strains, as well as sequences from environmental meta- responsible for much of the ammonia oxidation occur- genomes and single-cell genomes have provided invalu- ring in this environment. In this work, we present able information on the ecology and evolution of this 35 sequences assembled from metagenomic samples diverse lineage (Luo et al., 2014; Swan et al., 2014; of the first uncultivated Caudovirales viruses associ- Santoro et al., 2015). However, despite these efforts, ated with Thaumarchaeota, which we designated remarkably little is known about their viruses. The vast marthavirus. Most of the sequences were obtained majority of archaeal viruses that have been isolated so from cellular metagenomes confirming that they repre- far came from either hyperthermophilic or hyperhalophilic sent an important tool to study environmental viral environments, where Crenarchaeota or Euryarchaeota communities due to cells retrieved while undergoing dominate (Snyder et al., 2015). Conversely, in the case viral lysis. Metagenomic recruitment showed that this viral population is formed by very divergent entities of the mesophilic archaea, only the advent of high- with high intrapopulation homogeneity. However, meta- throughput sequencing has provided novel information of transcriptomic analyses revealed the same differential the unknown viruses infecting archaea (Vik et al., 2017; expression profile with the capsid as major transcript, Roux et al., 2016), expanding viral diversity far beyond indicative of viruses during the lytic cycle. The cobala- that established by traditional methods for virus isolation. mine biosynthesis gene cobS, an auxiliary metabolic The recently discovered Marine Group II Euryarchaeota gene, was also highly expressed during the infection. viruses (magrovirus) group from assembled sequences These analyses expand our understanding of the (Philosof et al., 2017), which infects the ubiquitous and global diversity of archaeal viruses. abundant but yet uncultured Marine Group II Euryarch- aeota, is an example of the benefits of metagenomics. Introduction However, to date no marine thaumarchaeal virus has yet been isolated probably because their host are also diffi- Marine Thaumarchaeota, initially discovered 26 years cult to obtain in pure culture. Only two putative viral ago by 16S rRNA gene surveys (Fuhrman and McCal- sequences have been retrieved by single-cell genomics lum, 1992; Delong, 1992), are some of the most abun- (Labonté et al., 2015) and fosmid libraries (Chow et al., dant microorganisms in the deep ocean, accounting for 2015). Additionally, a putative provirus has been found up to 40% of the bacterioplankton below the euphotic within the genome of Ca. Nitrosomarinus catalina zone (Karner et al., 2001; Fuhrman and Ouverney, 1998; SPOT01 (Ahlgren et al., 2017). Previous studies showed that viruses infecting Thaumarchaeota from the deep Received 19 September, 2018; revised 23 October, 2018; accepted ocean were more active than bacterial viruses, contribut- 24 October, 2018. *For correspondence. E-mail [email protected]; Tel. +34-965919313; Fax +34-965 919457. †These authors contributed ing to their cell lysis and, hence, modifying the biogeo- equally to this work. chemical cycles of N and C (Danovaro et al., 2016). © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd. 2 M. López-Pérez, J.M. Haro-Moreno, J.R. de la Torre and F. Rodriguez-Valera In this work, we present 35 sequences assembled from expeditions (Duarte, 2015) and datasets publicly avail- metagenomic samples of the first uncultivated viruses able at the Joint Genome Institute (JGI) database (https:// associated with marine Thaumarchaeota. Sequences of img.jgi.doe.gov/). In the end, we identified 35 putative this newly identified viral population are locally distributed viral contigs (Supporting Information Table S1) manually with low intra-population diversity. Metatranscriptomic curated to check for similarity to these reference proteins analyses showed that they were retrieved while undergo- and thaumarchaeal genes (see Material and Methods). ing viral lysis and apart from the capsid, the essential Most contigs with similarity to these proteins (#18) were structural component, expression of the cobalamine bio- found in our own dataset (Med-OCT2015-75m and Med- synthesis gene cobS, an auxiliary metabolic gene, was OCT2015-90m), 17 in the cellular and one in the viral also high during the infection. Our analyses provide fraction (MedVir-OCT2015-60m). Interestingly, another important insights into the genomic diversity of this new large batch (9 genomes) was found in viromes from the marine viral population, which remain uncultivated, Chesapeake Bay, an estuary where strong ammonia gra- expanding our understanding of the global diversity of dients are also found (Maresca et al., 2018). All had a archaeal viruses. GC content varying from 30% to 37%, as expected from the low-GC content of marine Thaumarchaeota genomes (Ahlgren et al., 2017; Supporting Information Table S1). Results and discussion Based on the presence of terminal inverted repeats >30 Recently, we characterized variations in the marine nucleotides only two viral genomes were complete. A microbiome at different depths within the photic zone dur- total of 1289 open reading frames were identified in all ing a period of strong thermal stratification of the water the sequences. However, only 14% showed significant column (Haro-Moreno et al., 2018). Results showed that homology to sequences present in the pVOGs marine Thaumarchaeota were only found below the deep (Prokaryotic Virus Orthologous Groups) database chlorophyll maximum (accounted for up to 10% of the (Grazziotin et al., 2017), as typical for novel viruses. community at 90 m), coinciding with the increase of avail- Clustering of the sequences based on similarity resulted able ammonia that is practically non-existent at shallower in 684 protein clusters, 11 of which formed the viral ‘soft’ depths. Analyses of the assembled contigs from these core (they were present in at least half of the sequences) samples showed the presence of a 69 kb contig that had (Supporting Information Table S2). Five of the ‘soft’ core hits to a few Thaumarchaeota genomes (the majority of protein clusters contained proteins involved in DNA these hits were to the genus Ca. Nitrosopumilus) but also metabolism (terminase, RadA, ATPase, PD-D/EXK to viral-related genes, including predicted major capsid nuclease and Ribonuclease H) and one sequence was proteins (MCP), portal proteins, tail tape measure pro- an auxiliary metabolic gene (AMG), cobS, that encodes a teins and the large subunit of viral terminases. Both the protein that catalyses the final step in cobalamin (vitamin terminase and the MCP proteins gave hits with low iden- B12) biosynthesis in prokaryotes, which has previously tity (32–35%) to a complete, unclassified archaeal virus only been found in cyanophages (Sullivan et al., 2005). (KY229235) recovered from a metagenomic assembly of Unfortunately, the remaining five ‘soft’ core clusters were a sample ~550 m below the seafloor (Nigro et al., 2017). hypothetical proteins and no function could be inferred. Like in the case of KY229235, our contig had identical Furthermore, no tRNA-encoding sequences or hallmarks repeated sequences (>30 nucleotides) at the 50 and 30 of temperate phage, such as integrase or excisionase terminal regions suggesting a complete viral genome. It genes, were detected in any of the recovered genomes. has been demonstrated that cellular metagenomes In addition to the terminase, we found other clusters indi- (>0.22 μm size fraction) are a source of bacterial and cating the Caudovirales affiliation of these viruses such archaeal viruses that are undergoing the lytic cycle and as prohead or portal proteins. This is to our knowledge actively replicating their DNA (López-Pérez et al., 2017). the first group of head-tail viruses described for the Cre- narchaeal superphylum, although they are relatively com- mon in Euryarchaea (Rachel et al., 2002; Pietilä New Thaumarchaeota viruses recovered from et al., 2014). metagenomic samples In order to expand the repertoire of putative Thaumarch- Phylogeny and host assignment aeota viruses we used the MCP, terminase and portal proteins of this new contig and KY229235 sequences as We next sought to establish
Recommended publications
  • The LUCA and Its Complex Virome in Another Recent Synthesis, We Examined the Origins of the Replication and Structural Mart Krupovic , Valerian V
    PERSPECTIVES archaea that form several distinct, seemingly unrelated groups16–18. The LUCA and its complex virome In another recent synthesis, we examined the origins of the replication and structural Mart Krupovic , Valerian V. Dolja and Eugene V. Koonin modules of viruses and posited a ‘chimeric’ scenario of virus evolution19. Under this Abstract | The last universal cellular ancestor (LUCA) is the most recent population model, the replication machineries of each of of organisms from which all cellular life on Earth descends. The reconstruction of the four realms derive from the primordial the genome and phenotype of the LUCA is a major challenge in evolutionary pool of genetic elements, whereas the major biology. Given that all life forms are associated with viruses and/or other mobile virion structural proteins were acquired genetic elements, there is no doubt that the LUCA was a host to viruses. Here, by from cellular hosts at different stages of evolution giving rise to bona fide viruses. projecting back in time using the extant distribution of viruses across the two In this Perspective article, we combine primary domains of life, bacteria and archaea, and tracing the evolutionary this recent work with observations on the histories of some key virus genes, we attempt a reconstruction of the LUCA virome. host ranges of viruses in each of the four Even a conservative version of this reconstruction suggests a remarkably complex realms, along with deeper reconstructions virome that already included the main groups of extant viruses of bacteria and of virus evolution, to tentatively infer archaea. We further present evidence of extensive virus evolution antedating the the composition of the virome of the last universal cellular ancestor (LUCA; also LUCA.
    [Show full text]
  • Virus–Host Interactions and Their Roles in Coral Reef Health and Disease
    !"#$"%& Virus–host interactions and their roles in coral reef health and disease Rebecca Vega Thurber1, Jérôme P. Payet1,2, Andrew R. Thurber1,2 and Adrienne M. S. Correa3 !"#$%&'$()(*+%&,(%--.#(+''/%!01(1/$%0-1$23++%(#4&,,+5(5&$-%#6('+1#$0$/$-("0+708-%#0$9(&17( 3%+7/'$080$9(4+$#3+$#6(&17(&%-($4%-&$-1-7("9(&1$4%+3+:-10'(70#$/%"&1'-;(<40#(=-80-5(3%+807-#( &1(01$%+7/'$0+1($+('+%&,(%--.(80%+,+:9(&17(->34&#0?-#($4-(,01@#("-$5--1(80%/#-#6('+%&,(>+%$&,0$9( &17(%--.(-'+#9#$->(7-',01-;(A-(7-#'%0"-($4-(70#$01'$08-("-1$40'2&##+'0&$-7(&17(5&$-%2'+,/>12( &##+'0&$-7(80%+>-#($4&$(&%-(/10B/-($+('+%&,(%--.#6(540'4(4&8-(%-'-08-7(,-##(&$$-1$0+1($4&1( 80%/#-#(01(+3-12+'-&1(#9#$->#;(A-(493+$4-#0?-($4&$(80%/#-#(+.("&'$-%0&(&17(-/@&%9+$-#( 791&>0'&,,9(01$-%&'$(50$4($4-0%(4+#$#(01($4-(5&$-%('+,/>1(&17(50$4(#',-%&'$010&1(C#$+19D('+%&,#($+( 01.,/-1'-(>0'%+"0&,('+>>/10$9(791&>0'#6('+%&,(",-&'401:(&17(70#-&#-6(&17(%--.("0+:-+'4->0'&,( cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest $4&$($4-(01.,/-1'-(+.(80%/#-#(+1(%--.(./1'$0+1(0#(&1(-##-1$0&,('+>3+1-1$(+.($4-#-(:,+"&,,9( 0>3+%$&1$(-180%+1>-1$#; To p - d ow n e f f e c t s Viruses infect all cellular life, including bacteria and evidence that macroorganisms play important parts in The ecological concept that eukaryotes, and contain ~200 megatonnes of carbon the dynamics of viroplankton; for example, sponges can organismal growth and globally1 — thus, they are integral parts of marine eco- filter and consume viruses6,7.
    [Show full text]
  • Viruses in Transplantation - Not Always Enemies
    Viruses in transplantation - not always enemies Virome and transplantation ECCMID 2018 - Madrid Prof. Laurent Kaiser Head Division of Infectious Diseases Laboratory of Virology Geneva Center for Emerging Viral Diseases University Hospital of Geneva ESCMID eLibrary © by author Conflict of interest None ESCMID eLibrary © by author The human virome: definition? Repertoire of viruses found on the surface of/inside any body fluid/tissue • Eukaryotic DNA and RNA viruses • Prokaryotic DNA and RNA viruses (phages) 25 • The “main” viral community (up to 10 bacteriophages in humans) Haynes M. 2011, Metagenomic of the human body • Endogenous viral elements integrated into host chromosomes (8% of the human genome) • NGS is shaping the definition Rascovan N et al. Annu Rev Microbiol 2016;70:125-41 Popgeorgiev N et al. Intervirology 2013;56:395-412 Norman JM et al. Cell 2015;160:447-60 ESCMID eLibraryFoxman EF et al. Nat Rev Microbiol 2011;9:254-64 © by author Viruses routinely known to cause diseases (non exhaustive) Upper resp./oropharyngeal HSV 1 Influenza CNS Mumps virus Rhinovirus JC virus RSV Eye Herpes viruses Parainfluenza HSV Measles Coronavirus Adenovirus LCM virus Cytomegalovirus Flaviviruses Rabies HHV6 Poliovirus Heart Lower respiratory HTLV-1 Coxsackie B virus Rhinoviruses Parainfluenza virus HIV Coronaviruses Respiratory syncytial virus Parainfluenza virus Adenovirus Respiratory syncytial virus Coronaviruses Gastro-intestinal Influenza virus type A and B Human Bocavirus 1 Adenovirus Hepatitis virus type A, B, C, D, E Those that cause
    [Show full text]
  • The Virocell Concept and Environmental Microbiology
    The ISME Journal (2013) 7, 233–236 & 2013 International Society for Microbial Ecology All rights reserved 1751-7362/13 www.nature.com/ismej COMMENTARY The virocell concept and environmental microbiology Patrick Forterre The ISME Journal (2013) 7, 233–236; doi:10.1038/ismej. of viruses to virions explains why viral ecologists 2012.110; published online 4 October 2012 consider that counting viral particles is equivalent to counting viruses. However, this might not be the case. Fluorescent dots observed in stained environ- The great virus comeback mental samples are not always infectious viral particles but can instead represent inactivated Enumeration of viral particles in environmental virions, gene transfer agents (that is, fragments of samples by fluorescence electron microscopy and cellular genome packaged in Caudovirales capsids) transmission electron microscopy has suggested that or membrane vesicles containing DNA (Soler et al., viruses represent the most abundant biological 2008). Furthermore, viral particles reveal their viral entities on our planet. In addition, metagenomic nature only if they encounter a host. The living form analyses focusing on viruses (viromes) have shown of the virus is the metabolically active ‘vegetative that viral genomes are a large reservoir of novel state of autonomous replication’, that is, its intra- genetic diversity (Kristensen et al., 2010; Mokili cellular form. I have recently introduced a new et al., 2012). These observations have convinced concept, the virocell, to emphasize this point most microbiologists that viruses, ‘the dark matter of (Forterre, 2011, 2012). Viral infection indeed trans- the biosphere’, have a major role in structuring forms the cell (a bacterium, an archaeon or a cellular populations and controlling geochemical eukaryote) into a virocell, whose function is no cycles (Rowher and Youle, 2012).
    [Show full text]
  • First Insight Into the Viral Community of the Cnidarian Model Metaorganism Aiptasia Using RNA-Seq Data
    First insight into the viral community of the cnidarian model metaorganism Aiptasia using RNA-Seq data Jan D. Brüwer and Christian R. Voolstra Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, Saudi Arabia ABSTRACT Current research posits that all multicellular organisms live in symbioses with asso- ciated microorganisms and form so-called metaorganisms or holobionts. Cnidarian metaorganisms are of specific interest given that stony corals provide the foundation of the globally threatened coral reef ecosystems. To gain first insight into viruses associated with the coral model system Aiptasia (sensu Exaiptasia pallida), we analyzed an existing RNA-Seq dataset of aposymbiotic, partially populated, and fully symbiotic Aiptasia CC7 anemones with Symbiodinium. Our approach included the selective removal of anemone host and algal endosymbiont sequences and subsequent microbial sequence annotation. Of a total of 297 million raw sequence reads, 8.6 million (∼3%) remained after host and endosymbiont sequence removal. Of these, 3,293 sequences could be assigned as of viral origin. Taxonomic annotation of these sequences suggests that Aiptasia is associated with a diverse viral community, comprising 116 viral taxa covering 40 families. The viral assemblage was dominated by viruses from the families Herpesviridae (12.00%), Partitiviridae (9.93%), and Picornaviridae (9.87%). Despite an overall stable viral assemblage, we found that some viral taxa exhibited significant changes in their relative abundance when Aiptasia engaged in a symbiotic relationship with Symbiodinium. Elucidation of viral taxa consistently present across all conditions revealed a core virome of 15 viral taxa from 11 viral families, encompassing many viruses previously reported as members of coral viromes.
    [Show full text]
  • Taxonomic, Functional and Expression Analysis of Viral Communities Associated with Marine Sponges
    Taxonomic, functional and expression analysis of viral communities associated with marine sponges Mary Nguyen1, Bernd Wemheuer1, Patrick W. Laffy2, Nicole S. Webster2,3 and Torsten Thomas1 1 Centre for Marine Science and Innovation & School of Biological & Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia 2 Australian Institute of Marine Science, Townsville, QLD, Australia 3 Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia ABSTRACT Viruses play an essential role in shaping the structure and function of ecological communities. Marine sponges have the capacity to filter large volumes of ‘virus-laden’ seawater through their bodies and host dense communities of microbial symbionts, which are likely accessible to viral infection. However, despite the potential of sponges and their symbionts to act as viral reservoirs, little is known about the sponge-associated virome. Here we address this knowledge gap by analysing metagenomic and (meta-) transcriptomic datasets from several sponge species to determine what viruses are present and elucidate their predicted and expressed functionality. Sponges were found to carry diverse, abundant and active bacteriophages as well as eukaryotic viruses belonging to the Megavirales and Phycodnaviridae. These viruses contain and express auxiliary metabolic genes (AMGs) for photosynthesis and vitamin synthesis as well as for the production of antimicrobials and the defence against toxins. These viral AMGs can therefore contribute to the
    [Show full text]
  • Chapter 20974
    Genome Replication of Bacterial and Archaeal Viruses Česlovas Venclovas, Vilnius University, Vilnius, Lithuania r 2019 Elsevier Inc. All rights reserved. Glossary RNA-primed DNA replication Conventional DNA Negative sense ( À ) strand A negative-sense DNA or RNA replication used by all cellular organisms whereby a strand has a nucleotide sequence complementary to the primase synthesizes a short RNA primer with a free 3′-OH messenger RNA and cannot be directly translated into protein. group which is subsequently elongated by a DNA Positive sense (+) strand A positive sense DNA or RNA polymerase. strand has a nucleotide sequence, which is the same as that Rolling-circle DNA replication DNA replication whereby of the messenger RNA, and the RNA version of this sequence the replication initiation protein creates a nick in the circular is directly translatable into protein. double-stranded DNA and becomes covalently attached to Protein-primed DNA replication DNA replication whereby the 5′ end of the nicked strand. The free 3′-OH group at the a DNA polymerase uses the 3′-OH group provided by the nick site is then used by the DNA polymerase to synthesize specialized protein as a primer to synthesize a new DNA strand. the new strand. Genomes of Prokaryotic Viruses At present, all identified archaeal viruses have either double-stranded (ds) or single-stranded (ss) DNA genomes. Although metagenomic analyzes suggested the existence of archaeal viruses with RNA genomes, this finding remains to be substantiated. Bacterial viruses, also refered to as bacteriophages or phages for short, have either DNA or RNA genomes, including circular ssDNA, circular or linear dsDNA, linear positive-sense (+)ssRNA or segmented dsRNA (Table 1).
    [Show full text]
  • Downloaded from Genbank
    bioRxiv preprint doi: https://doi.org/10.1101/443457; this version posted October 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Characterisation of the faecal virome of captive and wild Tasmanian 2 devils using virus-like particles metagenomics and meta- 3 transcriptomics 4 5 6 Rowena Chong1, Mang Shi2,3,, Catherine E Grueber1,4, Edward C Holmes2,3,, Carolyn 7 Hogg1, Katherine Belov1 and Vanessa R Barrs2,5* 8 9 10 1School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia. 11 2Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, 12 University of Sydney, NSW 2006, Australia. 13 3School of Life and Environmental Sciences and Sydney Medical School, Charles Perkins 14 Centre, University of Sydney, NSW 2006, Australia. 15 4San Diego Zoo Global, PO Box 120551, San Diego, CA 92112, USA. 16 5Sydney School of Veterinary Science, University of Sydney, NSW 2006, Australia. 17 18 *Correspondence: [email protected] 19 1 bioRxiv preprint doi: https://doi.org/10.1101/443457; this version posted October 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 20 Abstract 21 Background: The Tasmanian devil is an endangered carnivorous marsupial threatened by devil 22 facial tumour disease (DFTD).
    [Show full text]
  • Viruses and Type 1 Diabetes: from Enteroviruses to the Virome
    microorganisms Review Viruses and Type 1 Diabetes: From Enteroviruses to the Virome Sonia R. Isaacs 1,2 , Dylan B. Foskett 1,2 , Anna J. Maxwell 1,2, Emily J. Ward 1,3, Clare L. Faulkner 1,2, Jessica Y. X. Luo 1,2, William D. Rawlinson 1,2,3,4 , Maria E. Craig 1,2,5,6 and Ki Wook Kim 1,2,* 1 Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; [email protected] (S.R.I.); [email protected] (D.B.F.); [email protected] (A.J.M.); [email protected] (E.J.W.); [email protected] (C.L.F.); [email protected] (J.Y.X.L.); [email protected] (W.D.R.); [email protected] (M.E.C.) 2 Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia 3 Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia 4 Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia 5 Institute of Endocrinology and Diabetes, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia 6 Faculty of Medicine and Health, Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW 2006, Australia * Correspondence: [email protected]; Tel.: +61-2-9382-9096 Abstract: For over a century, viruses have left a long trail of evidence implicating them as frequent suspects in the development of type 1 diabetes.
    [Show full text]
  • A Multi-Classifier, Expert-Guided Approach to Detect Diverse DNA and RNA Viruses
    Lawrence Berkeley National Laboratory Recent Work Title VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Permalink https://escholarship.org/uc/item/4d30q22s Journal Microbiome, 9(1) ISSN 2049-2618 Authors Guo, Jiarong Bolduc, Ben Zayed, Ahmed A et al. Publication Date 2021-02-01 DOI 10.1186/s40168-020-00990-y Peer reviewed eScholarship.org Powered by the California Digital Library University of California Guo et al. Microbiome (2021) 9:37 https://doi.org/10.1186/s40168-020-00990-y SOFTWARE ARTICLE Open Access VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses Jiarong Guo1, Ben Bolduc1, Ahmed A. Zayed1, Arvind Varsani2,3, Guillermo Dominguez-Huerta1, Tom O. Delmont4, Akbar Adjie Pratama1, M. Consuelo Gazitúa5, Dean Vik1, Matthew B. Sullivan1,6,7* and Simon Roux8* Abstract Background: Viruses are a significant player in many biosphere and human ecosystems, but most signals remain “hidden” in metagenomic/metatranscriptomic sequence datasets due to the lack of universal gene markers, database representatives, and insufficiently advanced identification tools. Results: Here, we introduce VirSorter2, a DNA and RNA virus identification tool that leverages genome-informed database advances across a collection of customized automatic classifiers to improve the accuracy and range of virus sequence detection. When benchmarked against genomes from both isolated and uncultivated viruses, VirSorter2 uniquely performed consistently with high accuracy (F1-score > 0.8) across viral diversity, while all other tools under-detected viruses outside of the group most represented in reference databases (i.e., those in the order Caudovirales). Among the tools evaluated, VirSorter2 was also uniquely able to minimize errors associated with atypical cellular sequences including eukaryotic genomes and plasmids.
    [Show full text]
  • Order Caudovirales
    Caudovirales ORDER CAUDOVIRALES TAXONOMIC STRUCTURE OF THE ORDER Order Caudovirales Family Myoviridae Genus “T4-like viruses” Genus “P1-like viruses” Genus “P2-like viruses” DNA Genus “Mu-like viruses” DS Genus “SPO1-like viruses” Genus “H-like viruses” Family Siphoviridae Genus “-like viruses” Genus “T1-like viruses” Genus “T5-like viruses” Genus “L5-like viruses” Genus “c2-like viruses” Genus “M1-like viruses” Genus “C31-like viruses” Genus “N15-like viruses” Family Podoviridae Genus “T7-like viruses” Genus “P22-like viruses” Genus “29-like viruses” Genus “N4-like viruses” GENERAL The order consists of the three families of tailed bacterial viruses infecting Bacteria and Archaea: Myoviridae (long contractile tails), Siphoviridae (long non-contractile tails), and Podoviridae (short non-contractile tails). Tailed bacterial viruses are an extremely large group with highly diverse virion, genome, and replication properties. Over 4,500 descriptions have been published (accounting for 96% of reported bacterial viruses): 24% in the family Myoviridae, 62% in the family Siphoviridae, and 14% in the family Podoviridae (as of November 2001). However, data on virion structure, genome organization, and replication properties are available for only a small number of well-studied species. Their great evolutionary age, large population sizes, and extensive horizontal gene transfer between bacterial cells and viruses have erased or obscured many phylogenetic relationships amongst the tailed viruses. However, enough common features survive to indicate their fundamental relatedness. Therefore, formal taxonomic names are used for Caudovirales at the order and family level, but only vernacular names at the genus level. VIRION PROPERTIES MORPHOLOGY The virion has no envelope and consists of two parts, the head and the tail.
    [Show full text]
  • Novel Virulent Bacteriophages Infecting Mediterranean Isolates of the Plant Pest Xylella Fastidiosa and Xanthomonas Albilineans
    viruses Article Novel Virulent Bacteriophages Infecting Mediterranean Isolates of the Plant Pest Xylella fastidiosa and Xanthomonas albilineans Fernando Clavijo-Coppens 1,2,3 , Nicolas Ginet 1 , Sophie Cesbron 2 , Martial Briand 2, Marie-Agnès Jacques 2 and Mireille Ansaldi 1,* 1 Laboratoire de Chimie Bactérienne, UMR7283, Centre National de la Recherche Scientifique, Aix-Marseille Université, 13009 Marseille, France; [email protected] (F.C.-C.); [email protected] (N.G.) 2 Institute Agro, INRAE, IRHS, SFR QUASAV, University of Angers, 49000 Angers, France; [email protected] (S.C.); [email protected] (M.B.); [email protected] (M.-A.J.) 3 Bioline-Agrosciences, Equipe R&D–Innovation, 06560 Valbonne, France * Correspondence: [email protected]; Tel.: +33-491164585 Abstract: Xylella fastidiosa (Xf ) is a plant pathogen causing significant losses in agriculture worldwide. Originating from America, this bacterium caused recent epidemics in southern Europe and is thus considered an emerging pathogen. As the European regulations do not authorize antibiotic treatment in plants, alternative treatments are urgently needed to control the spread of the pathogen and eventually to cure infected crops. One such alternative is the use of phage therapy, developed more than 100 years ago to cure human dysentery and nowadays adapted to agriculture. The first step towards phage therapy is the isolation of the appropriate bacteriophages. With this goal, we searched Citation: Clavijo-Coppens, F.; Ginet, for phages able to infect Xf strains that are endemic in the Mediterranean area. However, as Xf N.; Cesbron, S.; Briand, M.; Jacques, is truly a fastidious organism, we chose the phylogenetically closest and relatively fast-growing M.-A.; Ansaldi, M.
    [Show full text]