Exploratory Research Session on the Quantization of the Gravitational Field
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supergravity and Its Legacy Prelude and the Play
Supergravity and its Legacy Prelude and the Play Sergio FERRARA (CERN – LNF INFN) Celebrating Supegravity at 40 CERN, June 24 2016 S. Ferrara - CERN, 2016 1 Supergravity as carved on the Iconic Wall at the «Simons Center for Geometry and Physics», Stony Brook S. Ferrara - CERN, 2016 2 Prelude S. Ferrara - CERN, 2016 3 In the early 1970s I was a staff member at the Frascati National Laboratories of CNEN (then the National Nuclear Energy Agency), and with my colleagues Aurelio Grillo and Giorgio Parisi we were investigating, under the leadership of Raoul Gatto (later Professor at the University of Geneva) the consequences of the application of “Conformal Invariance” to Quantum Field Theory (QFT), stimulated by the ongoing Experiments at SLAC where an unexpected Bjorken Scaling was observed in inclusive electron- proton Cross sections, which was suggesting a larger space-time symmetry in processes dominated by short distance physics. In parallel with Alexander Polyakov, at the time in the Soviet Union, we formulated in those days Conformal invariant Operator Product Expansions (OPE) and proposed the “Conformal Bootstrap” as a non-perturbative approach to QFT. S. Ferrara - CERN, 2016 4 Conformal Invariance, OPEs and Conformal Bootstrap has become again a fashionable subject in recent times, because of the introduction of efficient new methods to solve the “Bootstrap Equations” (Riccardo Rattazzi, Slava Rychkov, Erik Tonni, Alessandro Vichi), and mostly because of their role in the AdS/CFT correspondence. The latter, pioneered by Juan Maldacena, Edward Witten, Steve Gubser, Igor Klebanov and Polyakov, can be regarded, to some extent, as one of the great legacies of higher dimensional Supergravity. -
Twenty Years of the Weyl Anomaly
CTP-TAMU-06/93 Twenty Years of the Weyl Anomaly † M. J. Duff ‡ Center for Theoretical Physics Physics Department Texas A & M University College Station, Texas 77843 ABSTRACT In 1973 two Salam prot´eg´es (Derek Capper and the author) discovered that the conformal invariance under Weyl rescalings of the metric tensor 2 gµν(x) Ω (x)gµν (x) displayed by classical massless field systems in interac- tion with→ gravity no longer survives in the quantum theory. Since then these Weyl anomalies have found a variety of applications in black hole physics, cosmology, string theory and statistical mechanics. We give a nostalgic re- view. arXiv:hep-th/9308075v1 16 Aug 1993 CTP/TAMU-06/93 July 1993 †Talk given at the Salamfest, ICTP, Trieste, March 1993. ‡ Research supported in part by NSF Grant PHY-9106593. When all else fails, you can always tell the truth. Abdus Salam 1 Trieste and Oxford Twenty years ago, Derek Capper and I had embarked on our very first post- docs here in Trieste. We were two Salam students fresh from Imperial College filled with ideas about quantizing the gravitational field: a subject which at the time was pursued only by mad dogs and Englishmen. (My thesis title: Problems in the Classical and Quantum Theories of Gravitation was greeted with hoots of derision when I announced it at the Cargese Summer School en route to Trieste. The work originated with a bet between Abdus Salam and Hermann Bondi about whether you could generate the Schwarzschild solution using Feynman diagrams. You can (and I did) but I never found out if Bondi ever paid up.) Inspired by Salam, Capper and I decided to use the recently discovered dimensional regularization1 to calculate corrections to the graviton propaga- tor from closed loops of massless particles: vectors [1] and spinors [2], the former in collaboration with Leopold Halpern. -
Einstein's Equations for Spin 2 Mass 0 from Noether's Converse Hilbertian
Einstein’s Equations for Spin 2 Mass 0 from Noether’s Converse Hilbertian Assertion October 4, 2016 J. Brian Pitts Faculty of Philosophy, University of Cambridge [email protected] forthcoming in Studies in History and Philosophy of Modern Physics Abstract An overlap between the general relativist and particle physicist views of Einstein gravity is uncovered. Noether’s 1918 paper developed Hilbert’s and Klein’s reflections on the conservation laws. Energy-momentum is just a term proportional to the field equations and a “curl” term with identically zero divergence. Noether proved a converse “Hilbertian assertion”: such “improper” conservation laws imply a generally covariant action. Later and independently, particle physicists derived the nonlinear Einstein equations as- suming the absence of negative-energy degrees of freedom (“ghosts”) for stability, along with universal coupling: all energy-momentum including gravity’s serves as a source for gravity. Those assumptions (all but) imply (for 0 graviton mass) that the energy-momentum is only a term proportional to the field equations and a symmetric curl, which implies the coalescence of the flat background geometry and the gravitational potential into an effective curved geometry. The flat metric, though useful in Rosenfeld’s stress-energy definition, disappears from the field equations. Thus the particle physics derivation uses a reinvented Noetherian converse Hilbertian assertion in Rosenfeld-tinged form. The Rosenfeld stress-energy is identically the canonical stress-energy plus a Belinfante curl and terms proportional to the field equations, so the flat metric is only a convenient mathematical trick without ontological commitment. Neither generalized relativity of motion, nor the identity of gravity and inertia, nor substantive general covariance is assumed. -
Guest Editorial: Truth, Beauty, and Supergravity Stanley Deser
Guest Editorial: Truth, beauty, and supergravity Stanley Deser Citation: American Journal of Physics 85, 809 (2017); doi: 10.1119/1.4994807 View online: http://dx.doi.org/10.1119/1.4994807 View Table of Contents: http://aapt.scitation.org/toc/ajp/85/11 Published by the American Association of Physics Teachers Articles you may be interested in Entanglement isn't just for spin American Journal of Physics 85, 812 (2017); 10.1119/1.5003808 Three new roads to the Planck scale American Journal of Physics 85, 865 (2017); 10.1119/1.4994804 A demonstration of decoherence for beginners American Journal of Physics 85, 870 (2017); 10.1119/1.5005526 The geometry of relativity American Journal of Physics 85, 683 (2017); 10.1119/1.4997027 The gravitational self-interaction of the Earth's tidal bulge American Journal of Physics 85, 663 (2017); 10.1119/1.4985124 John Stewart Bell and Twentieth-Century Physics: Vision and Integrity American Journal of Physics 85, 880 (2017); 10.1119/1.4983117 GUEST EDITORIAL Guest Editorial: Truth, beauty, and supergravity (Received 9 June 2017; accepted 28 June 2017) [http://dx.doi.org/10.1119/1.4994807] I begin with a warning: theoretical physics is an edifice Dirac equation governing the behavior of electrons—as well built over the centuries by some of mankind’s greatest minds, as all the other leptons and quarks, hence also our protons using ever more complicated and sophisticated concepts and and neutrons. Indeed, it is perhaps one of our three most mathematics to cover phenomena on scales billions of times beautiful equations, along with Maxwell’s and Einstein’s! It removed—in directions both bigger and smaller—from our came full-blown from the head of one of the true greats of human dimensions, where our simple intuition or primitive the last century, and instantly divided all particles into two language cannot pretend to have any validity. -
Personal Recollections of the Early Days Before and After the Birth of Supergravity
Personal recollections of the early days before and after the birth of Supergravity Peter van Nieuwenhuizen I March 29, 1976: Dan Freedman, Sergio Ferrara and I submit first paper on Supergravity to Physical Review D. I April 28: Stanley Deser and Bruno Zumino: elegant reformulation that stresses the role of torsion. I June 2, 2016 at 1:30pm: 5500 papers with Supergravity in the title have appeared, and 15000 dealing with supergravity. I Supergravity has I led to the AdS/CFT miracle, and I made breakthroughs in longstanding problems in mathematics. I Final role of supergravity? (is it a solution in search of a problem?) I 336 papers in supergravity with 126 collaborators I Now: many directions I can only observe in awe from the sidelines I will therefore tell you my early recollections and some anecdotes. I will end with a new research program that I am enthusiastic about. In 1972 I was a Joliot Curie fellow at Orsay (now the Ecole Normale) in Paris. Another postdoc (Andrew Rothery from England) showed me a little book on GR by Lawden.1 I was hooked. That year Deser gave lectures at Orsay on GR, and I went with him to Brandeis. In 1973, 't Hooft and Veltman applied their new covariant quantization methods and dimensional regularization to pure gravity, using the 't Hooft lemma (Gilkey) for 1-loop divergences and the background field formalism of Bryce DeWitt. They found that at one loop, pure gravity was finite: 1 2 2 ∆L ≈ αRµν + βR = 0 on-shell. But what about matter couplings? 1\An Introduction to Tensor Calculus and Relativity". -
Chern-Simons Terms As an Example of the Relations Between Mathematics and Physics
PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S. STANLEY DESER Chern-Simons terms as an example of the relations between mathematics and physics Publications mathématiques de l’I.H.É.S., tome S88 (1998), p. 47-51 <http://www.numdam.org/item?id=PMIHES_1998__S88__47_0> © Publications mathématiques de l’I.H.É.S., 1998, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CHERN-SIMONS TERMS AS AN EXAMPLE OF THE RELATIONS BETWEEN MATHEMATICS AND PHYSICS by STANLEY DESER The inevitability of Chern-Simons terms in constructing a variety of physical models, and the mathematical advances they in turn generate, illustrate the unexpected but profound interactions between the two disciplines. 1 begin with warmest greetings to the Institut des Hautes Études Scientifiques (IHÉS) on the occasion of its 40th birthday, and look forward to its successes in the years to come. My own association dates back to its early days in 1966-67 and it has continued fruitfully ever since. The IHÉS represents a unique synthesis between Mathematics and Physics, as empha- sized by this volume’s title. I propose to illustrate this synthesis through a particular set of examples, Chern-Simons "effects" in physics. -
Curriculum Vitae
Lawrence Lee, PhD [email protected] +1 856 765 4622 cern.ch/larry Broadly-trained particle physicist with expertise in searching for physics beyond the standard model at particle colliders. Particular expertise in supersymmetry, long- lived particles, and unconventional searches. Technical skills include expertise in detector data acquisition system, analysis software, and detector simulation. Professional Experience Research Associate / Postdoctoral Fellow, LPPC 2016– Harvard University, Cambridge, MA – Supervisor: J. Huth Research Associate, CoEPP 2014–16 The University of Adelaide, Adelaide, Australia – Supervisor: P. Jackson Education Ph.D. Physics, Yale University – Supervisor: T. Golling 2014 B.S. Physics, Rutgers University – Supervisors: R. Ransome, R. Gilman, R. Tumulka 2009 Research Experience MEMBER OF THE ATLAS COLLABORATION 2009– NEW SMALL WHEEL MUON SPECTROMETER UPGRADE Micromegas Trigger Coordinator 2020– Integration of trigger electronics for the micromegas detector of the New Small Wheel (NSW) upgrade for the ATLAS muon spectrometer Online Software Coordination 2019– Designed, implemented, and/or maintain the readout, configuration, and cali- bration software systems for the NSW Micromegas Digitization 2017–18 Responsible for digitization and simulation of the readout and trigger paths for the micromegas detector for the NSW PHYSICS ANALYSIS Convener of SUSY RPV/LL sub-group 2017–19 Defined standards and direction of searches for long-lived particles and R-parity- violating supersymmetry. Served two terms. Searches -
Cv: Erin O'sullivan
CV: ERIN O'SULLIVAN Stockholm University Stockholm, Sweden [email protected] http://icecube.wisc.edu/~eosullivan Postdoctoral Appointments • 04/2017 { present: Postdoctoral Research Associate, IceCube and Hyper-Kamiokande collabo- rations, Stockholm University, Sweden • 05/2014 { 03/2017: Postdoctoral Research Associate, Super-Kamiokande and Hyper-Kamiokande collaborations, Duke University, Durham, NC, USA Education • 09/2008 { 04/2014: PhD, Queen's University, SNO+ collaboration, Kingston, ON, Canada, Advisor - Mark Chen Grants • PI of a Stockholm University - University of Tokyo cooperation grant, valued at 150,000 SEK Positions of leadership • 2016 { present: Convener of the Hyper-Kamiokande software group • 2018 { present: Swedish delegate on the Hyper-Kamiokande International Board of Representa- tives • 2017 { 2018: Coordinator of the public release of the Hyper-Kamiokande design report • Referee for the Journal of Cosmology and Astroparticle Physics since 2018 • 2017 { present: Internal IceCube reviewer for an analysis searching for coincidences between fast radio bursts and MeV-scale neutrinos • 2018 { present: One of four members on the task force responsible for determining the configu- ration of photosensors to be used in the final design of the Hyper-Kamiokande detector • 2015 { 2016: Review panel member for the NSF Graduate Research Fellowship Program • 2009 { 2014: Director of Graduate Student Members, Canadian Association of Physicists Invited presentations (16 invited presentations since 2015, including 2 international summer schools) • New windows to the Universe symposium, Royal Swedish Academy of Sciences, Stockholm, Sweden, November 2018. \Neutrino astronomy with IceCube" • International Workshop on Next Generation Nucleon Decay and Neutrino Detectors (NNN), Uni- versity of British Columbia, Vancouver, Canada, November 2018. \Current and future prospects of solar and supernova neutrinos" • OKC@10 symposium, Artipelag, Stockholm, Sweden, September 2018. -
Memories of a Theoretical Physicist
Memories of a Theoretical Physicist Joseph Polchinski Kavli Institute for Theoretical Physics University of California Santa Barbara, CA 93106-4030 USA Foreword: While I was dealing with a brain injury and finding it difficult to work, two friends (Derek Westen, a friend of the KITP, and Steve Shenker, with whom I was recently collaborating), suggested that a new direction might be good. Steve in particular regarded me as a good writer and suggested that I try that. I quickly took to Steve's suggestion. Having only two bodies of knowledge, myself and physics, I decided to write an autobiography about my development as a theoretical physicist. This is not written for any particular audience, but just to give myself a goal. It will probably have too much physics for a nontechnical reader, and too little for a physicist, but perhaps there with be different things for each. Parts may be tedious. But it is somewhat unique, I think, a blow-by-blow history of where I started and where I got to. Probably the target audience is theoretical physicists, especially young ones, who may enjoy comparing my struggles with their own.1 Some dis- claimers: This is based on my own memories, jogged by the arXiv and IN- SPIRE. There will surely be errors and omissions. And note the title: this is about my memories, which will be different for other people. Also, it would not be possible for me to mention all the authors whose work might intersect mine, so this should not be treated as a reference work. -
Republication Of: the Dynamics of General Relativity
Gen Relativ Gravit (2008) 40:1997–2027 DOI 10.1007/s10714-008-0661-1 GOLDEN OLDIE Republication of: The dynamics of general relativity Richard Arnowitt · Stanley Deser · Charles W. Misner Published online: 8 August 2008 © Springer Science+Business Media, LLC 2008 Abstract This article—summarizing the authors’ then novel formulation of General Relativity—appeared as Chap. 7, pp. 227–264, in Gravitation: an introduction to current research, L. Witten, ed. (Wiley, New York, 1962), now long out of print. Intentionally unretouched, this republication as Golden Oldie is intended to provide contemporary accessibility to the flavor of the original ideas. Some typographical corrections have been made: footnote and page numbering have changed–but not section nor equation numbering, etc. Current institutional affiliations are encoded in: [email protected], [email protected], [email protected]. An editorial note to this paper and biographies of the authors can be found via doi:10.1007/s10714-008-0649-x. Original paper: R. Arnowitt, S. Deser and C. W. Misner, in Gravitation: an introduction to current research (Chap. 7). Edited by Louis Witten. John Wiley & Sons Inc., New York, London, 1962, pp. 227–265. Reprinted with the kind permissions of the editor, Louis Witten, and of all three authors. R. Arnowitt (B) Department of Physics, Texas A&M University, 4242 TAMU, College Station, TX 77843-4242, USA e-mail: [email protected] S. Deser (B) Mailstop 057, Brandeis University, 415 South Street, Waltham, MA 02454, USA e-mail: [email protected] Lauritsen Laboratory, California Institute of Technology, Pasadena, CA 91125, USA C. W. -
The Oskar Klein Centre Stockholm University Sweden
Luca Visinelli H +46 72 141 5617 The Oskar Klein Centre B [email protected] Stockholm University Í goo.gl/exib2J Sweden luca.visinelli Education December 16, Ph.D. in Physics, The University of Utah, Salt Lake City, USA. 2011 Advisor: Dr. Paolo Gondolo. Thesis: Axions in CDM and inflation models August 6, 2011 M.Sc. in Physics, The University of Utah, Salt Lake City, USA. Advisor: Dr. Paolo Gondolo. Topics: Theoretical physics June 22, 2007 B.Sc. in Physics, University of Bologna, Italy. Advisor: Dr. Fiorenzo Bastianelli. Thesis: Neutrino oscillations in curved spacetime. Grade: 110/110 cum Laude October 14, “Laurea Triennale” B.Sc. in Physics, University of Bologna, Italy. 2005 Advisor: Dr. Giovanni Carlo Bonsignori. Thesis: The Interacting Boson Model. Grade: 110/110 cum Laude July 4, 2002 High School Diploma, High School “E. Fermi”, Bologna, Italy. Grade: 100/100 Research experience 2016 – Today Researcher, Stockholm University (Sweden) Principal investigator: Prof. Katherine Freese (U. of Michigan and Stockholm U.) I am currently working at Stockholm University on WIMP capture, axion cosmology and astrophysics, modeling and evolution of dark stars with the MESA stellar code, reheating after inflation. My interview at the Oskar Klein Centre can be found at this website. 2013 – 2015 Postdoctoral Fellow, Mediterranean Center on Climate Changes (CMCC), Bologna Principal investigators: Simona Masina (2013-2015), Marcello Vichi (2013-2014); I have extended the numerical code for data assimilation used at CMCC, to include observations of biogeochemical quantities in the simulation. The data assimilation code has been coupled to the Nucleus for European Modeling of the Ocean (NEMO) and to the ocean Biogeochemical Flux Model (BFM), to simulate the ocean carbon uptake for the past decades on a high performance computing. -
Einstein's Contributions to Atomic Physics
IOP PUBLISHING PHYSICA SCRIPTA Phys. Scr. 79 (2009) 058101 (10pp) doi:10.1088/0031-8949/79/05/058101 Einstein’s contributions to atomic physics Lorenzo J Curtis Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA E-mail: [email protected] Received 15 January 2009 Accepted for publication 16 January 2009 Published 29 April 2009 Online at stacks.iop.org/PhysScr/79/058101 Abstract Many of the epoch-breaking papers that have been published by Einstein are remembered today as treatises dealing with various isolated phenomena rather than as direct consequences of a new unified world view. This paper traces the various ways in which ten papers published by Einstein during the period 1905–1925 influenced the development of the modern atomic paradigm, and illustrates how these discoveries can be made intuitive and pedagogically useful. PACS numbers: 30.00, 01.65.+g 1. Introduction It is clear why Drude accepted these manuscripts without hesitation. There is a striking clarity of exposition in these four Models for atomic structure are often associated with certain papers that makes it apparent that these were not to Einstein individuals, such as the ‘atoms’ of Thomson, Rutherford, a series of isolated studies of separate problems. The papers Bohr, Schrödinger and Dirac. Although it is seldom were instead a manifestation of a new enlightenment that had specifically mentioned, many aspects of the development of come into existence in the mind of Einstein that made these these models were suggested or heavily influenced by Albert seemingly different problems become recognizable pieces of Einstein in papers that are primarily remembered for other a puzzle that fell uniquely into place.