Einstein's Contributions to Atomic Physics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Second Quantized Approach to the Study of Model Hamiltonians in Quantum Hall Regime
Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Winter 12-15-2016 The Second Quantized Approach to the Study of Model Hamiltonians in Quantum Hall Regime Li Chen Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Recommended Citation Chen, Li, "The Second Quantized Approach to the Study of Model Hamiltonians in Quantum Hall Regime" (2016). Arts & Sciences Electronic Theses and Dissertations. 985. https://openscholarship.wustl.edu/art_sci_etds/985 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Department of Physics Dissertation Examination Committee: Alexander Seidel, Chair Zohar Nussinov Michael Ogilvie Xiang Tang Li Yang The Second Quantized Approach to the Study of Model Hamiltonians in Quantum Hall Regime by Li Chen A dissertation presented to The Graduate School of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2016 Saint Louis, Missouri c 2016, Li Chen ii Contents List of Figures v Acknowledgements vii Abstract viii 1 Introduction to Quantum Hall Effect 1 1.1 The classical Hall effect . .1 1.2 The integer quantum Hall effect . .3 1.3 The fractional quantum Hall effect . .7 1.4 Theoretical explanations of the fractional quantum Hall effect . .9 1.5 Laughlin's gedanken experiment . -
Canonical Quantization of Two-Dimensional Gravity S
Journal of Experimental and Theoretical Physics, Vol. 90, No. 1, 2000, pp. 1–16. Translated from Zhurnal Éksperimental’noœ i Teoreticheskoœ Fiziki, Vol. 117, No. 1, 2000, pp. 5–21. Original Russian Text Copyright © 2000 by Vergeles. GRAVITATION, ASTROPHYSICS Canonical Quantization of Two-Dimensional Gravity S. N. Vergeles Landau Institute of Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432 Russia; e-mail: [email protected] Received March 23, 1999 Abstract—A canonical quantization of two-dimensional gravity minimally coupled to real scalar and spinor Majorana fields is presented. The physical state space of the theory is completely described and calculations are also made of the average values of the metric tensor relative to states close to the ground state. © 2000 MAIK “Nauka/Interperiodica”. 1. INTRODUCTION quantization) for observables in the highest orders, will The quantum theory of gravity in four-dimensional serve as a criterion for the correctness of the selected space–time encounters fundamental difficulties which quantization route. have not yet been surmounted. These difficulties can be The progress achieved in the construction of a two- arbitrarily divided into conceptual and computational. dimensional quantum theory of gravity is associated The main conceptual problem is that the Hamiltonian is with two ideas. These ideas will be formulated below a linear combination of first-class constraints. This fact after the necessary notation has been introduced. makes the role of time in gravity unclear. The main computational problem is the nonrenormalizability of We shall postulate that space–time is topologically gravity theory. These difficulties are closely inter- equivalent to a two-dimensional cylinder. -
Introduction to Quantum Field Theory
Utrecht Lecture Notes Masters Program Theoretical Physics September 2006 INTRODUCTION TO QUANTUM FIELD THEORY by B. de Wit Institute for Theoretical Physics Utrecht University Contents 1 Introduction 4 2 Path integrals and quantum mechanics 5 3 The classical limit 10 4 Continuous systems 18 5 Field theory 23 6 Correlation functions 36 6.1 Harmonic oscillator correlation functions; operators . 37 6.2 Harmonic oscillator correlation functions; path integrals . 39 6.2.1 Evaluating G0 ............................... 41 6.2.2 The integral over qn ............................ 42 6.2.3 The integrals over q1 and q2 ....................... 43 6.3 Conclusion . 44 7 Euclidean Theory 46 8 Tunneling and instantons 55 8.1 The double-well potential . 57 8.2 The periodic potential . 66 9 Perturbation theory 71 10 More on Feynman diagrams 80 11 Fermionic harmonic oscillator states 87 12 Anticommuting c-numbers 90 13 Phase space with commuting and anticommuting coordinates and quanti- zation 96 14 Path integrals for fermions 108 15 Feynman diagrams for fermions 114 2 16 Regularization and renormalization 117 17 Further reading 127 3 1 Introduction Physical systems that involve an infinite number of degrees of freedom are usually described by some sort of field theory. Almost all systems in nature involve an extremely large number of degrees of freedom. A droplet of water contains of the order of 1026 molecules and while each water molecule can in many applications be described as a point particle, each molecule has itself a complicated structure which reveals itself at molecular length scales. To deal with this large number of degrees of freedom, which for all practical purposes is infinite, we often regard a system as continuous, in spite of the fact that, at certain distance scales, it is discrete. -
The Optical Thin-Film Model: Part 2
qM qMqM Previous Page | Contents |Zoom in | Zoom out | Front Cover | Search Issue | Next Page qMqM Qmags THE WORLD’S NEWSSTAND® The Optical Thin-Film Model: Part 2 Angus Macleod Thin Film Center, Inc., Tucson, AZ Contributed Original Article n part 1 of this account [1] we covered the early attempts to topics but for our present account it is his assembly of electricity Iunderstand the phenomenon of light but heavily weighted and magnetism into a coherent connected theory culminating in towards the optics of thin ilms. Acceptance of the wave theory the prediction of a wave combining electric and magnetic ields and followed the great contributions of Young and Fresnel. We found traveling at the speed of light that most interests us. an almost completely modern account of the fundamentals of Maxwell’s ideas of electromagnetism were much inluenced by optics in Airy’s Mathematical Tracts but omitting any ideas of Michael Faraday (1791-1867). Faraday was born in the south of absorption loss. hus, by the 1830’s multiple beam interference in England to a family with few resources and was essentially self single ilms was well organized with expressions that could be used educated. His apprenticeship with a local bookbinder allowed for accurate calculation in dielectrics. Lacking in all this, however, him access to books and he read voraciously and developed an was an appreciation of the real nature of the light wave. At this interest in science, nourished by his attendance at lectures in the stage the models were mechanical with Fresnel’s ideas of an array Royal Institution of Great Britain. -
Transparent Conductive Oxides – Fundamentals and Applications Agenda
BuildMoNa Symposium 2019 Transparent Conductive Oxides – Fundamentals and Applications Monday, 23 September to Friday, 27 September 2019 Universität Leipzig, 04103 Leipzig, Linnéstr. 5, Lecture Hall for Theoretical Physics Agenda Monday, 23 September 2019 13:00 Prof. Dr. Marius Grundmann Universität Leipzig, Germany Opening 13:05 Dr. Debdeep Jena* Cornell University, USA Paul Drude Lecture I: The Drude Model Lives On: Its Simplicity and Hidden Powers 13:50 Prof. Vanya Darakchieva* Linköping University, Sweden Paul Drude Lecture II: Optical properties of the electron gas 14:35 Dr. Robert Karsthof University of Oslo, Norway Revisiting the electronic transport in doped nickel oxide *Invited talk 1 14:50 Dr. Petr Novák University of West Bohemia, Plzeň, Czech Republic Important factors influencing the electrical properties of sputtered AZO thin films 15:05 Coffee break (Aula) 15:35 Dr. Andriy Zakutayev* National Renewable Energy Laboratory, USA Wide Band Gap Chalcogenide Semiconductors 16:20 Alexander Koch Universität Jena, Germany Ion Beam Doped Transparent Conductive Oxides for Metasurfaces 16:35 Prof. Chris van de Walle* UC Santa Barbara, USA Fundamental limits on transparency of transparent conducting oxides *Invited talk 2 Tuesday, 24 September 2019 08:15 Excursion BMW Group Plant Leipzig Departure by bus from Leipzig, Linnéstr. 5 09:15 Start Excursion BMW Visitor Center 12:15 Departure by bus from BMW Visitor Center 12:45 Lunch (Aula) 14:30 Prof. Dr. Pedro Barquinha* Universidade Nova de Lisboa, Portugal Towards autonomous flexible electronic systems with zinc-tin oxide thin films and nanostructures 15:15 Dr. Saud Bin Anooz Leibniz Institute for Crystal Growth, Berlin, Germany Optimization of β-Ga2O3 film growth on miscut (100) β-Ga2O3 substrates by MOVPE 15:30 Dr. -
Quantum Droplets in Dipolar Ring-Shaped Bose-Einstein Condensates
UNIVERSITY OF BELGRADE FACULTY OF PHYSICS MASTER THESIS Quantum Droplets in Dipolar Ring-shaped Bose-Einstein Condensates Author: Supervisor: Marija Šindik Dr. Antun Balaž September, 2020 UNIVERZITET U BEOGRADU FIZICKIˇ FAKULTET MASTER TEZA Kvantne kapljice u dipolnim prstenastim Boze-Ajnštajn kondenzatima Autor: Mentor: Marija Šindik Dr Antun Balaž Septembar, 2020. Acknowledgments I would like to express my sincerest gratitude to my advisor Dr. Antun Balaž, for his guidance, patience, useful suggestions and for the time and effort he invested in the making of this thesis. I would also like to thank my family and friends for the emotional support and encouragement. This thesis is written in the Scientific Computing Laboratory, Center for the Study of Complex Systems of the Institute of Physics Belgrade. Numerical simulations were run on the PARADOX supercomputing facility at the Scientific Computing Laboratory of the Institute of Physics Belgrade. iii Contents Chapter 1 – Introduction 1 Chapter 2 – Theoretical description of ultracold Bose gases 3 2.1 Contact interaction..............................4 2.2 The Gross-Pitaevskii equation........................5 2.3 Dipole-dipole interaction...........................8 2.4 Beyond-mean-field approximation......................9 2.5 Quantum droplets............................... 13 Chapter 3 – Numerical methods 15 3.1 Rescaling of the effective GP equation................... 15 3.2 Split-step Crank-Nicolson method...................... 17 3.3 Calculation of the ground state....................... 20 3.4 Calculation of relevant physical quantities................. 21 Chapter 4 – Results 24 4.1 System parameters.............................. 24 4.2 Ground state................................. 25 4.3 Droplet formation............................... 26 4.4 Critical strength of the contact interaction................. 28 4.5 The number of droplets........................... -
Solitons and Quantum Behavior Abstract
Solitons and Quantum Behavior Richard A. Pakula email: [email protected] April 9, 2017 Abstract In applied physics and in engineering intuitive understanding is a boost for creativity and almost a necessity for efficient product improvement. The existence of soliton solutions to the quantum equations in the presence of self-interactions allows us to draw an intuitive picture of quantum mechanics. The purpose of this work is to compile a collection of models, some of which are simple, some are obvious, some have already appeared in papers and even in textbooks, and some are new. However this is the first time they are presented (to our knowledge) in a common place attempting to provide an intuitive physical description for one of the basic particles in nature: the electron. The soliton model applied to the electrons can be extended to the electromagnetic field providing an unambiguous description for the photon. In so doing a clear image of quantum mechanics emerges, including quantum optics, QED and field quantization. To our belief this description is of highly pedagogical value. We start with a traditional description of the old quantum mechanics, first quantization and second quantization, showing the tendency to renounce to 'visualizability', as proposed by Heisenberg for the quantum theory. We describe an intuitive description of first and second quantization based on the concept of solitons, pioneered by the 'double solution' of de Broglie in 1927. Many aspects of first and second quantization are clarified and visualized intuitively, including the possible achievement of ergodicity by the so called ‘vacuum fluctuations’. PACS: 01.70.+w, +w, 03.65.Ge , 03.65.Pm, 03.65.Ta, 11.15.-q, 12.20.*, 14.60.Cd, 14.70.-e, 14.70.Bh, 14.70.Fm, 14.70.Hp, 14.80.Bn, 32.80.y, 42.50.Lc 1 Table of Contents Solitons and Quantum Behavior ............................................................................................................................................ -
A Note on Einstein's Annus Mirabilis
Annales de la Fondation Louis de Broglie, Volume 25, no 3, 2000 379 A note on Einstein’s Annus Mirabilis Michael Bushev Bulgarian Academy of Sciences, Institute of Solid State Physics 72 Tzarigradsko Chaussee blvd., 1784 Soa, Bulgaria ABSTRACT. Within one only year, 1905, Einstein framed the three epoch-making theories of relativity, of Brownian movement and of photoelectricity. This year of creative outbreak - Einstein’s ANNUS MIRABILIS - raises the crucial question : what was the common source of these seemingly dierent problems within the context of physics at the time ? In the proposed here symmetrized connection of the physical theories centred around the phenomena of light, Einstein’s research program is represented as a response of the genius to the state of physics at the turn of 20 century and a problem addressed to the science of coming 21 century. RESUM E. Au cours d’une seule annee, 1905, Einstein a elabore trois theories qui font epoque : de la relativite, du mouvement Brownien et de la photoelectricite. Cette annee d’explosion creatrice - l’ANNUS MIRABILIS d’Einstein - souleve une question crucialle : qui est la source commune de ces problemes apparemment dierents dans le contexte de la physique de l’epoque ? Dans la liaison symetrique des theories physiques ici proposee, centree autour des phenomenes de la lumiere, la programme de recherche d’Einstein est presentee comme la reponse du genie al’etat de la physique a l’aube du 20-eme siecle et comme un probleme adresse au 21-eme siecle “I will never stop pondering on the question of the essence of light.” A. -
530 Book Reviews
530 Book reviews found in the progressive stages of certainty brought about by systematic actions over nature rather than passive contemplation; authorization was the basic role of the House of Solomon, later to be materialized in the Royal Society; confirmation is related to all the personal virtues of the natural phil- osopher as prophet and gentleman (patience, self-sacrifice, constancy etc.); divination is identified with the inductive method; and prophecy appears in the supposedly plain style of reporting which included genres such as fables and aphorisms for the outsider in order to generate more debate. In Chapter 4 the book delves into the analogy between the prophetic temples as loci outside the polis and the Royal Society as a supposedly neutral environment in the political unrest of seventeenth-century England. After an interlude in which the author establishes an important distinction between the expert (who offers knowledge as if attainable by the majority) and the prophet (who presents knowledge as beyond the reach of the general public), the second part of the book takes us to America in the second half of the twentieth century. J. Robert Oppenheimer’s self-portrayal before, during and after his trial and Rachel Carson’s use of mass media are the two main examples Walsh presents of modern individual prophets: the former as a cultic prophet, an apostle for peace and a victim of political fear; the latter as an average housewife on the peripheries of academic science and political decisions creating a kairos for public debate on pesticides. More difficult to follow is the argument of Chapter 9 on the rhetorical technologies of climate change, where advocates and deniers of the importance of climate change seem to replicate prophetic patterns such as the accusation of bias in the opponents’ reports or the mixture of present description and future predictions. -
A History of English Literature MICHAEL ALEXANDER
A History of English Literature MICHAEL ALEXANDER [p. iv] © Michael Alexander 2000 All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. No paragraph of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright, Designs and Patents Act 1988, or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, 90 Tottenham Court Road, London W 1 P 0LP. Any person who does any unauthorised act in relation to this publication may be liable to criminal prosecution and civil claims for damages. The author has asserted his right to be identified as the author of this work in accordance with the Copyright, Designs and Patents Act 1988. First published 2000 by MACMILLAN PRESS LTD Houndmills, Basingstoke, Hampshire RG21 6XS and London Companies and representatives throughout the world ISBN 0-333-91397-3 hardcover ISBN 0-333-67226-7 paperback A catalogue record for this book is available from the British Library. This book is printed on paper suitable for recycling and made from fully managed and sustained forest sources. 10 9 8 7 6 5 4 3 2 1 09 08 07 06 05 04 03 02 O1 00 Typeset by Footnote Graphics, Warminster, Wilts Printed in Great Britain by Antony Rowe Ltd, Chippenham, Wilts [p. v] Contents Acknowledgements The harvest of literacy Preface Further reading Abbreviations 2 Middle English Literature: 1066-1500 Introduction The new writing Literary history Handwriting -
Curriculum Vitae
Lawrence Lee, PhD [email protected] +1 856 765 4622 cern.ch/larry Broadly-trained particle physicist with expertise in searching for physics beyond the standard model at particle colliders. Particular expertise in supersymmetry, long- lived particles, and unconventional searches. Technical skills include expertise in detector data acquisition system, analysis software, and detector simulation. Professional Experience Research Associate / Postdoctoral Fellow, LPPC 2016– Harvard University, Cambridge, MA – Supervisor: J. Huth Research Associate, CoEPP 2014–16 The University of Adelaide, Adelaide, Australia – Supervisor: P. Jackson Education Ph.D. Physics, Yale University – Supervisor: T. Golling 2014 B.S. Physics, Rutgers University – Supervisors: R. Ransome, R. Gilman, R. Tumulka 2009 Research Experience MEMBER OF THE ATLAS COLLABORATION 2009– NEW SMALL WHEEL MUON SPECTROMETER UPGRADE Micromegas Trigger Coordinator 2020– Integration of trigger electronics for the micromegas detector of the New Small Wheel (NSW) upgrade for the ATLAS muon spectrometer Online Software Coordination 2019– Designed, implemented, and/or maintain the readout, configuration, and cali- bration software systems for the NSW Micromegas Digitization 2017–18 Responsible for digitization and simulation of the readout and trigger paths for the micromegas detector for the NSW PHYSICS ANALYSIS Convener of SUSY RPV/LL sub-group 2017–19 Defined standards and direction of searches for long-lived particles and R-parity- violating supersymmetry. Served two terms. Searches -
The CREATION of SCIENTIFIC EFFECTS
The CREATION of SCIENTIFIC EFFECTS Jed Z. Buchwald is the Bern Dibner Professor of the History of Science at MIT and direc tor of the Dibner Institute for the History of Science and Technology, which is based at MIT. He is the author of two books, both published by the University of Chicago Press: From Maxwell to Microphysics: Aspects ofElectromagnetic Theory in the Lost Quarter ofthe Nine teenth Century (1985) and The Rise of the Wove Theory of Light: Aspects of Optical Theory and Ex periment in the First Third of the Nineteenth Century (1989). The University of Chicago Press, Chicago 60637 The University of Chicago Press, Ltd., London © 1994 by The University of Chicago All rights reserved. Published 1994 Printed in the United States of America 03 02 01 00 99 98 97 96 95 94 1 2 3 4 5 ISBN: 0-226-07887-6 (cloth) 0-226-07888-4 (paper) Library of Congress Cataloging-in-Publication Data Buchwald, Jed Z. The creation of scientific effects: Heinrich Hertz and electric waves I Jed Z. Buchwald. p. cm. Includes bibliographical references and index. 1. Electric waves. 2. Hertz, Heinrich, 1857-1894. 3. Physicists-Germany. I. Title. QC661.B85 1994 537-dc20 93-41783 CIP @ The paper used in this publication meets the minimum requirements of the American Na tional Standard for Information Sciences-Permanence of Paper for Printed Library Materials, ANSI Z39.48-1984. • • • CONTENTS List of Figures vii List of Tables xi Preface xiii ONE Introduction: Heinrich Hertz, Maker of Effects 1 PART ONE: In Helmholtz's Laboratory Two Forms of Electrodynamics