Vehicle-Grid Integration (VGI) Roadmap: Enabling Vehicle-Based Grid Services

Total Page:16

File Type:pdf, Size:1020Kb

Vehicle-Grid Integration (VGI) Roadmap: Enabling Vehicle-Based Grid Services CALIFORNIA Vehicle-Grid Integration (VGI) Roadmap: Enabling vehicle-based grid services February 2014 The California ISO thanks the California Energy Commission and the California Public Utilities Commission for their support in the development of the VGI Roadmap. We also acknowledge the commitment to this effort shown by our industry stakeholders who participated in workshops leading up to the draft roadmap. Stakeholder engagement and ongoing feedback were critically important. Additionally, the ISO recognizes the work of DNV-GL, which facilitated the stakeholder process, integrated comments and developed the roadmap tracks. TABLE OF CONTENTS 1. Executive Summary ....................................................... 1 2. What is Vehicle-Grid Integration .............................................. 3 3. Identified Barriers ......................................................... 5 3.1 Value of VGI .....................................................5 3.2 Market Product Definitions, Requirements, and Processes ........................5 3.3 Technology and Coordination ..........................................5 4. VGI Roadmap ........................................................... 6 4.1 Track 1: Determine VGI Value and Potential .................................6 Activities for Determining VGI Value Track ..................................6 4.2 Track 2: Develop Enabling Policies, Regulations and Business Processes. .8 Activities for the Develop Enabling Policies Track ..............................9 4.3 Track 3: Support Enabling Technology Development ..........................11 Activities for the Support Enabling Technology Development Track .................11 5. Conclusion and Next Steps ................................................. 13 Appendix A: Detailed Roadmap Tracks ........................................15 Appendix B: Summary of Relevant Policy .......................................18 Appendix C: Activities Reference Information .....................................22 Appendix D: Standards Overview ............................................29 Appendix E: Index of Terms ................................................38 1. EXECUTIVE SUMMARY Vehicle electrification presents an unprecedented opportunity, stakeholder review process to ensure the roadmap captured through charging strategies and aggregation, to contribute the ideal course of actions. The intention is to keep to the reliable management of the power grid, without consumers in the driver’s seat during the transformation to impacting consumer driving habits. a cleaner grid by enabling managed EV charging consistent with grid conditions. Eventually, two-way interfaces between The State of California, long a leader in promoting EVs and the bulk power network could benefit both EV implementation of sustainable, clean energy resources, owners and the grid-at-large. is at the forefront of policies that fight climate change while advancing a green economy. Through an executive Creative approaches identified in this roadmap are expected order in 2012, Governor Jerry Brown set a target of 1.5 to lead to EV charging behavior that is beneficial or at least million zero-emission vehicles (ZEVs) on California roads not adverse to grid reliability. This roadmap also promotes by 2025.1 To realize this goal, the Governor’s Interagency the aggregation of EV resources that can be bid into the Working Group on Zero-Emission Vehicles published a ISO’s wholesale market as grid services—leveraging the ZEV Action Plan.2 The plan identifies actions across a synergies between EVs and the grid. number of agencies and organizations that when executed Vehicle electrification and smart grid technology advance California’s ZEV goals. implementation present an opportunity for EVs, through This Vehicle-Grid Integration (VGI) Roadmap accomplishes charging strategies and aggregation, to support and one of the ZEV Action Plan activities—mapping a way to provide valuable services to contribute to reliable develop solutions that enable electric vehicles (EV) to provide management of the electricity grid. At a minimum, grid services while still meeting consumer driving needs. managed or smart charging strategies are needed to ensure that EVs do not increase peak load, requiring As the main grid operator for the state, the California additional generation or capacity expansions. Ideally, Independent System Operator Corporation (ISO) took the charging is coordinated with grid conditions and the lead in drafting the VGI Roadmap in coordination with the ability for aggregation of EVs to respond to grid operator Governor’s Office, the California Energy Commission, the signals. The VGI Roadmap provides a high-level plan California Public Utilities Commission and the California to enable this combination of activities. Air Resources Board. The effort included a comprehensive VISION: Electric vehicle charging creates a reciprocal relationship between battery-powered cars and the power grid in a way that produces mutual benefits. Without compromising the driving habits of consumers, incentives should be pursued as a way to aggregate vehicle charging to develop valuable grid services. 1 California Executive Order B-16-2012. 2 The Governor’s Interagency Working Group on Zero-emission Vehicles published a Draft Action Plan for public comment in 2012, and a first edition in 2013. 1 California Vehicle-Grid Integration (VGI) Roadmap: Enabling vehicle-based grid services February 2014 The following diagram summarizes the path to enable EVs The track activities include articulating VGI impacts to the to provide grid services. The roadmap begins with a value electricity system, identifying and quantifying VGI value assessment drawing from VGI use cases. The use cases streams and cost components, and estimating VGI market include the extent of vehicle aggregation, communication potential for various VGI use cases. needs, and the grid service being provided. As the value Track 2, “Develop Enabling Policies, Regulations, and assessment progresses, use cases are adjusted, refined Business Processes,” includes activities to define wholesale and prioritized. At the same time, program development and retail products and programs and associated policy. begins. As the California Public Utilities Commission (CPUC) The program development will identify how VGI resources will interact with the grid at the distribution and wholesale Determine VGI impacts, value and levels, including compensation. It also includes clarifying market potential settlement processes and defining signal and messaging interactions. Refine, adjust and prioritize VGI use cases Define program and product requirements Develop, refine and implement policy Identify and develop enabling technology Demonstrate performance and implement grid service capabilities and stakeholders develop programs, they are evaluated Track 3, “Support Enabling Technology Development,” in the context of existing policy. This evaluation identifies includes activities to develop enabling technology including needs for new policy and refinements to existing policy. standards that support VGI aggregation, communication, For use cases requiring little or no policy development, and control requirements. Enabling VGI technology will activities commence to implement and test the grid service facilitate EV aggregations to support grid services as capabilities. Policy work continues to support other valued articulated in the use cases. Policymakers, grid operators, use cases. Enabling technology development advances on and original equipment manufacturers (OEMs) must a separate supporting path. coordinate to enable VGI use cases that include two-way power flow. The roadmap is organized in three inter-dependent tracks: Steps to enable EV aggregations to provide grid 1. determine VGI value; services are already underway in California. Rulemaking 2. develop enabling policy; and proceedings and standard development efforts that will define the future for VGI are in progress.3 Research, 3. support enabling technology development. development and demonstrations have begun to explore the potential for VGI services and to enhance enabling Track 1, “Determine VGI Value,” will determine the value technologies. This roadmap is the first step toward defining and increase understanding of market potential for grid future steps towards meeting the goal of EV aggregations services enabled by VGI. This value determination will contributing to grid reliability. support how program developers and operators define VGI programs and facilitate industry investment decisions. Articulating value based on use cases is critical in Track 1. 3 Most notably, the CPUC has an active rulemaking on Alternative Fueled Vehicle Programs, Tariffs and Policies, R.13-11-007, which is in support of Executive Order B-116-2012 and which will conduct activities associated with this VGI Roadmap. California Vehicle-Grid Integration (VGI) Roadmap: Enabling vehicle-based grid services 2 February 2014 2. WHAT IS VEHICLE-GRID INTEGRATION? The term vehicle-grid integration or VGI, as used in this the regulatory considerations with each roadmap, encompasses the ways EVs can provide grid “dimension” and proposes a path toward implementation. services. To that end, EVs must have capabilities to manage The four use case categories are: charging or support two-way interaction between vehicles 1. Unidirectional power flow (V1G) with one and the grid. Managed charging refers to the technical resource and unified actors
Recommended publications
  • Design of an Efficient, Low Weight Battery Electric Vehicle Based on a VW Lupo 3L
    © EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Design of an efficient, low weight battery electric vehicle based on a VW Lupo 3L I.J.M. Besselink1, P.F. van Oorschot1, E. Meinders1, and H. Nijmeijer1 1Faculty of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands E-mail: [email protected] Abstract—A battery electric vehicle is being developed at the Eindhoven University of Technology, which will be used in future research projects regarding electric mobility. Energy storage in batteries is still at least 25 times heavier and has 10 times the volume in comparison to fossil fuel. This leads to an increase of the vehicle weight, especially when trying to maximise the range. A set of specifications is derived, taking into consideration the mobility requirements of people living in the Netherlands and the capabilities of electric vehicles. The VW Lupo 3L 1.2 TDI has been selected as the vehicle to be converted into a battery electric vehicle, since it has many favourable characteristics such as a very low mass and good aerodynamics. The design choices considering the power train and component selection are discussed in detail. Finally the battery electric Lupo is compared to the original Lupo 3L considering energy usage, costs per km and CO2 emissions. With respect to these aspects the advantages of electric propulsion are relatively small, as the donor vehicle is already very fuel efficient. Copyright Form of EVS25. Keywords—battery electric vehicle, power train, vehicle performance project is to develop and demonstrate environmentally 1.
    [Show full text]
  • Energy Storage Policy Best Practices from New England: Ten Lessons from Six States
    Energy Storage Policy Best Practices from New England TEN LESSONS FROM SIX StATES AUGUST 2021 Todd Olinsky-Paul Clean Energy Group Clean Energy States Alliance Group Group ABOUT THIS REPORT this report, prepared by Clean energy group (Ceg) and the Clean energy states alliance (Cesa), presents energy storage policy best practices and examples of innovative policies from the new england states. the report describes what has worked best and provides a list of recommendations to guide states looking to expand energy storage markets with effective programs and policies. it is available online at https://www.cesa.org/resource-library/resource/energy-storage-policy-best- practices-from-new-england. ABOUT THE AUTHOR todd olinsky-paul is senior project director for Ceg and Cesa. He directs Cesa’s energy storage and technology advancement partnership (ESTAP), a federal-state funding and information sharing project that aims to accelerate the deployment of electrical energy storage technologies in the united states. todd also works on Ceg’s resilient power project, supporting solar+storage behind the meter for critical infrastructure energy resiliency, and leads Ceg and Cesa on energy storage policy and program development at the state level. todd has a M.s. in environmental policy from Bard College and a B.a. from Brown university. ACKNOWLEDGMENTS the author wishes to express his sincere thanks to representatives of the new england states for their input on this report; and to colleagues at Ceg and Cesa who made this a better report through their insightful review comments, including Warren leon, Maria Blais Costello, samantha Donalds, lew Milford, and seth Mullendore.
    [Show full text]
  • Replacing Property Taxes on Utility Generation with Revenues from a Carbon-Based Tax: a Minnesota Tax Shift Opportunity I
    Memo: To: Michael Noble, ME3 From: John Bailey, David Morris, ILSR (Tel: 612-379-3815) Date: 11/15/98 Re: Replacing Property Taxes on Utility Generation With Revenues from a Carbon-Based Tax: A Minnesota Tax Shift Opportunity I. Introduction Electric utilities in Minnesota pay four types of taxes: income tax, franchise fee (or gross receipts tax), sales tax, property tax.1 The total amount paid in each category is shown in Table 1. In 1995, the total came to $375 million. Table 1. Electric Utility Tax Paid in Minnesota in 1995 Property Tax MN Sales Tax MN Income Tax Franchise Fee Total NSP $152,078,365 $65,076,000 $31,709,000 $25,505,000 $274,368,365 Minnesota Power $34,706,493 $5,963,664 $3,843,817 $700,000 $45,213,974 Otter Tail $7,152,715 $4,197,450 $1,370,067 $233,643 $12,953,875 Interstate $3,670,381 $1,935,124 $573,770 $569,969 $6,749,244 Anoka Elec. Coop $3,179,055 $4,658,862 $0 $534,379 $8,372,296 Dakota Elec. Assoc. $4,742,500 $4,487,719 $0 $144,025 $9,374,244 Cooperative Power $7,095,000 $0 $0 $0 $7,095,000 United Power Assoc. $10,827,954 $0 $5,000 $0 $10,832,954 Total $223,452,463 $86,318,819 $37,501,654 $27,687,016 $374,959,952 Source: Minnesota Department of Public Service, 1996 Energy Policy and Conservation Report, December 1996 Recently, Minnesota has re-examined the utility tax structure in light of the restructuring of electricity occurring throughout the country.
    [Show full text]
  • Nuclear Power Reactors in California
    Nuclear Power Reactors in California As of mid-2012, California had one operating nuclear power plant, the Diablo Canyon Nuclear Power Plant near San Luis Obispo. Pacific Gas and Electric Company (PG&E) owns the Diablo Canyon Nuclear Power Plant, which consists of two units. Unit 1 is a 1,073 megawatt (MW) Pressurized Water Reactor (PWR) which began commercial operation in May 1985, while Unit 2 is a 1,087 MW PWR, which began commercial operation in March 1986. Diablo Canyon's operation license expires in 2024 and 2025 respectively. California currently hosts three commercial nuclear power facilities in various stages of decommissioning.1 Under all NRC operating licenses, once a nuclear plant ceases reactor operations, it must be decommissioned. Decommissioning is defined by federal regulation (10 CFR 50.2) as the safe removal of a facility from service along with the reduction of residual radioactivity to a level that permits termination of the NRC operating license. In preparation for a plant’s eventual decommissioning, all nuclear plant owners must maintain trust funds while the plants are in operation to ensure sufficient amounts will be available to decommission their facilities and manage the spent nuclear fuel.2 Spent fuel can either be reprocessed to recover usable uranium and plutonium, or it can be managed as a waste for long-term ultimate disposal. Since fuel re-processing is not commercially available in the United States, spent fuel is typically being held in temporary storage at reactor sites until a permanent long-term waste disposal option becomes available.3 In 1976, the state of California placed a moratorium on the construction and licensing of new nuclear fission reactors until the federal government implements a solution to radioactive waste disposal.
    [Show full text]
  • Electrical Energy Storage
    08 Fall BACKGROUND The Energy Systems Toolkit (the „Toolkit‟) is aimed at organisations, community groups or businesses, at different stages in the project development process, whether exploring ideas to develop into a project or additional options to include in a current project. The Toolkit aims to provide further information to organisations on energy systems topics that will help determining whether a project idea is viable or highlight alternative options that should be considered. The Toolkit also provides support through the development process to construction, highlighting any support available to them. This could include: Signposting businesses or communities to additional support (technical or financial) in developing their project, to potential project partners or to potential sources of funding; Provide detail on key considerations and barriers across different technology projects; or Highlight different technology projects and themes that have been developed successfully across Scotland. For each of the topics, the guidance provided will be informative and will indicate the actions to be taken and the next steps the organisations should take to progress. The Toolkit links to other relevant guidance documents, such as the CARES Toolkit, which can be used in parallel. INTRODUCTION TO ELECTRICAL ENERGY STORAGE Electrical energy storage can provide a range of grid support services that can help maintain a stable and reliable electricity supply. Working in tandem with smart grid technology, the functions that it can provide include: Enabling the integration of more renewables into the energy mix. Storing energy from renewables to smooth variable supply. Helping energy consumers to manage their energy demand. Stabilising voltage and frequency on power networks.
    [Show full text]
  • Toward a Sustainable Electric Utility Sector
    The Distributed Utility Concept: Toward a Sustainable Electric Utility Sector Steven Letendre, John Byrne, and Young-Doo Wang, Center for Energy and Environmental Policy, University of Delaware The U.S. electric utility sector is entering an uncertain period as pressure mounts to cut costs and minimize environmental impacts. Many analysts believe that exposing the industry to competition is the key to reducing costs. Most restructuring proposals acknowledge the need to maintain environmental quality and suggest mechanisms for assuring continued support for end-use efficiency and renewable energy in a deregulated electric utility industry. Two of the most prominent ideas are non-bypassable line charges and portfolio standards. This paper suggests another option based on the distributed utility (DU) concept in which net metering and a form of performance-based ratemaking allow distributed generation, storage, and DSM to play an important role in a new competitive electric utility sector. A DU option directly incorporates these resources into the electric system by explicitly acknowledging their value in deferring distribution equipment upgrades. INTRODUCTION electric utility industry. In our view, the DU option has been neglected in the current debate. The electric utility sector in the U.S. is on the verge of A DU strategy involves a fundamental shift in the way fundamental change as regulators, policymakers, and indus- electricity is delivered, with a move away from large-scale try officials seek a strategy for introducing competition into central generation to distributed small-scale generation and the industry. The move toward competition is driven by the storage, and targeted demand-side management. To date, belief that significant efficiency gains could be realized by the DU concept has mainly been analyzed in terms of its exposing the industry to market forces.
    [Show full text]
  • Research and Development of Electric Vehicle in China and Latest Trends on Diffusion
    Research and Development of Electric Vehicle in China and Latest Trends on Diffusion China Automotive Technology & Research Center (CATARC) Ma JianYong [email protected] 1. Research and manufacture of EV in China 2 2 2012,15495 thousand passenger cars were sold in china. Chinese government will attempt to double citizens' revenue before 2020. And this plan will promote the passenger cars market continue increase. 中国乘用车市场发展 变化趋势 18000000 60% 销量 同比 Sales Growth rate 15493669 16000000 52.9% 50.0% 14472416 50% 13757794 14000000 45.7% 12000000 40% 10331315 10000000 33.2% 30.8% 29.6% 30% 8000000 6755609 6297533 22.3% 6000000 5148546 20% 16.0%3973624 4000000 3036842 2618922 10% 1745585 2000000 1197996 7.3% 5.2% 0 0% 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012E 3 3 Support Policies from Central Government “Carry out energy- saving and new "Automobile industry “New energy "Notice on the private energy vehicle restructuring and vehicle production purchase of new demonstration pilot revitalization plan" companies and energy vehicles work notice” product access subsidy pilot” rules " 2001.1 2009.1.23 2009.2 2009.3 2009.5 2009.7 2009.12 2010.6 2012.7 "Energy-saving and Interim new energy Measures for the 10 billion CNY of automotive industry Administration of funds of the State development plan 863major projects energy-saving Council to support (2010-2120)" of Electric vehicle and new energy technical R&D and financial innovation New energy vehicle industrialization assistance demonstration pilot cities to extend 4 Bulletin number
    [Show full text]
  • The Impacts of Storing Solar Energy in the Home to Reduce Reliance on the Utility
    ARTICLES PUBLISHED: XX MONTH XXXX | VOLUME: 2 | ARTICLE NUMBER: 17001 The impacts of storing solar energy in the home to reduce reliance on the utility Robert L. Fares* and Michael E. Webber There has been growing interest in using energy storage to capture solar energy for later use in the home to reduce reliance on the traditional utility. However, few studies have critically assessed the trade-os associated with storing solar energy rather than sending it to the utility grid, as is typically done today. Here we show that a typical battery system could reduce peak power demand by 8–32% and reduce peak power injections by 5–42%, depending on how it operates. However, storage ineciencies increase annual energy consumption by 324–591 kWh per household on average. Furthermore, storage operation indirectly increases emissions by 153–303 kg CO2, 0.03–0.20 kg SO2 and 0.04–0.26 kg NOx per Texas household annually. Thus, home energy storage would not automatically reduce emissions or energy consumption unless it directly enables renewable energy. 1 n recent years, there has been growing interest in storing energy lead-acid batteries used with solar panels in the UK would increase 41 25 2 produced from rooftop photovoltaic panels in a home battery both primary energy consumption and carbon dioxide emissions . 42 1 3 Isystem to minimize reliance on the electric utility . A number In this paper we critically assess the trade-offs of using lithium- 43 4 of vendors have sought to capture this emerging market, including ion battery storage to capture solar energy and minimize reliance on 44 5 electric vehicle market leader Tesla and German home energy the utility.
    [Show full text]
  • 2019 Clean Energy Plan
    2019 Clean Energy Plan A Brighter Energy Future for Michigan Solar Gardens power plant at This Clean Energy Plan charts Grand Valley State University. a course for Consumers Energy to embrace the opportunities and meet the challenges of a new era, while safely serving Michigan with affordable, reliable energy for decades to come. Executive Summary A New Energy Future for Michigan Consumers Energy is seizing a once-in-a-generation opportunity to redefine our company and to help reshape Michigan’s energy future. We’re viewing the world through a wider lens — considering how our decisions impact people, the planet and our state’s prosperity. At a time of unprecedented change in the energy industry, we’re uniquely positioned to act as a driving force for good and take the lead on what it means to run a clean and lean energy company. This Clean Energy Plan, filed under Michigan’s Integrated Resource Plan law, details our proposed strategy to meet customers’ long-term energy needs for years to come. We developed our plan by gathering input from a diverse group of key stakeholders to build a deeper understanding of our shared goals and modeling a variety of future scenarios. Our Clean Energy Plan aligns with our Triple Bottom Line strategy (people, planet, prosperity). By 2040, we plan to: • End coal use to generate electricity. • Reduce carbon emissions by 90 percent from 2005 levels. • Meet customers’ needs with 90 percent clean energy resources. Consumers Energy 2019 Clean Energy Plan • Executive Summary • 2 The Process Integrated Resource Planning Process We developed the Clean Energy Plan for 2019–2040 considering people, the planet and Identify Goals Load Forecast Existing Resources Michigan’s prosperity by modeling a variety of assumptions, such as market prices, energy Determine Need for New Resources demand and levels of clean energy resources (wind, solar, batteries and energy waste Supply Transmission and Distribution Demand reduction).
    [Show full text]
  • PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation
    ORNL/TM-2010/221 PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation March 2012 Prepared by Mithat C. Kisacikoglu Abdulkadir Bedir Burak Ozpineci Leon M. Tolbert DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: [email protected] Web site: http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source. Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone: 865-576-8401 Fax: 865-576-5728 E-mail: [email protected] Web site: http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.
    [Show full text]
  • 2019/2020 Residential Energy Storage Demand Response Demonstration Evaluation – Winter Season
    2019/20 Residential Energy Storage Demand Response Demonstration Evaluation Winter Season Prepared for National Grid and Unitil Submitted by Guidehouse Inc. 77 South Bedford Street Suite No. 400 Burlington, MA 01803 guidehouse.com Reference No.: 148414 September 23, 2020 Study Overview Demonstration Summary The two residential storage demonstrations evaluated in this study are part of the Program Administrators’ broader active demand response initiatives. National Grid’s demonstration targets residential customers that already installed or are considering installing a battery storage system as part of a “Bring Your Own Battery” or “BYOB” demonstration. Prior to the final event of the winter season, 148 devices were enrolled in National Grid’s demonstration in Massachusetts. Of these, data indicated that 102 successfully participated in at least one event called during the winter season. National Grid called two events, on December 19, 2019 and February 14, 2020. Both events lasted 2 hours, from 5 p.m. to 7 p.m. Unitil’s demonstration paid for and installed a battery storage system for each of four participants. There is no additional participant incentive. Until called events every day from January 1, 2020 through February 29, 2020 from 5 p.m. to 7 p.m. Evaluation Objectives The goal of this evaluation was to assess the technical feasibility and scalability of battery storage as a resource for lowering the system peak demand (National Grid) and flattening the solar PV output curve (Unitil) for residential customers. The impact analysis assessed whether the battery storage system lowered demand during the Winter Peak Periods and measured demand and energy impacts.
    [Show full text]
  • Regularization of Business Investment in the Electric Utility Industry
    This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research Volume Title: Regularization of Business Investment Volume Author/Editor: Universities-National Bureau Volume Publisher: Princeton University Press/NBER Volume ISBN: 0-87014-195-3 Volume URL: http://www.nber.org/books/univ54-1 Publication Date: 1954 Chapter Title: Regularization of Business Investment in the Electric Utility Industry Chapter Author: Edward W. Morehouse Chapter URL: http://www.nber.org/chapters/c3026 Chapter pages in book: (p. 213 - 282) REGULARIZATION OF BUSINESS INVESTMENT IN THE ELECTRIC UTILITY INDUSTRY' EDWARD W. MOREHOUSE GENERAL PUBLIC UTILITIES CORPORATION Introduction THIS PAPER explores the possibilities of regularizing business invest- ment by the electric utility industry. The program for the conference adds, "as means of maintaining high productive employment in a private enterprise economy." This ultimate goal of "high productive employment" as an incen- tive for regularization of investment is of less importance in the electric utility industry than in other industries, as data submitted later tend to show. Electric utilities already have achieved a rela- tively high stability of employment of operating personnel, and the impact of investment on wages and employment in electric utility operations is relatively less significant to the total economy than it is in other industries. Any contribution that electric utilities might make by stabilizing their capital expenditures would be a contribu- tion to employment stability generally, and particularly to employ- ment in the building of plant, or the manufacture of plant and equipment items, needed by electric utilities. These indirect em- ployment effects would bulk larger than the direct effects on the number of employees used in utility operations.
    [Show full text]