<<

Article Brine Recycling from Industrial Textile Treated by Ozone. By-Products Accumulation. Part 1: Multi Recycling Loop

Lucyna Bili ´nska 1,*, Kazimierz Blus 1, Marta Gmurek 2 and Stanisław Ledakowicz 2

1 Textile Company Bilinski, Mickiewicza 29, 95-050 Konstantynow Lodzki, Poland; [email protected] 2 Faculty of Process & Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland; [email protected] (M.G.); [email protected] (S.L.) * Correspondence: [email protected]; Tel.: +48-42-211-05-02; Fax: +48-42-211-05-06

 Received: 8 January 2019; Accepted: 28 February 2019; Published: 5 March 2019 

Abstract: The “reactive” dyeing of textiles requires an application of low-molecular-weight (LMWS), such as NaCl or Na2SO4, as necessary auxiliary agents. LMWS acts only as a remediation factor and remains in the dyeing effluents constitute brine. The main goal of the presented study was to investigate the application of ozone technology for industrial textile wastewater highly polluted by LMWS. The study was divided into two parts. In Part 1, by-products accumulated during multi-recycling of the same wastewater was investigated. While Part 2 was devoted to the scaling up of ozonation process, Part 1 concerns the efficiency of textile wastewater ozonation carried out as a repeatable process. The sequence of and textile dyeing was repeated four times in a closed loop using the same process water. Although the wastewater decolorization was efficient in the subsequent ozonation cycles, some adverse effects, such as an increase in (COD) and self-buffering at pH 9.5–10.0, were suggested the accumulation of by-products. The preliminary detection of by-products by thin layer chromatography (TLC) revealed phenol and naphthol derivatives as the transformation products (TPs) of ozonation. Dyeing of cotton using purified wastewater (brine) resulted in very good DECMC color matching parameters (under 1.16), but only in the first recycling loop, and then the TPs affected the process.

Keywords: ozone treatment; industrial textile wastewater; wastewater recycling; brine production from wastewater; by-products of ozonation

1. Introduction About 97% of the world’s are salty, which makes the water undrinkable, and less than 1% water is potable. Unfortunately, the volume of the potable water used in industry and farming is still increasing, and numerous regions on our planet suffer from a water deficit [1]. Moreover, many industrial branches produce salty wastewater that contains a huge concentration of low-molecular-weight (LMWS), like NaCl and Na2SO4. Therefore, a large amount of LMWS is emitted into the environment, which disturbs living conditions in the biosphere [2,3]. As far as salty wastewater is concerned, the textile industry is one of the greatest polluters. LMWSs are commonly used in dyeing processes as auxiliaries—even 1.5 kg of LMWS per 1 kg of textiles can be used in these operations [4–7]. It should be kept in mind that during industrial dyeing by reactive dyes, the application of LMWS is inherent. LMWSs are remediating agents, which increase a dye distribution from the dyebath into the textile material by changing the equilibrium conditions of the dyeing liquor [8]. Therefore, LMWS cannot be eliminated from a typical exhaustion-fixation dyeing process. Consequently, thousands of tons of LMWS are used daily by textile manufacturers [2].

Water 2019, 11, 460; doi:10.3390/w11030460 www.mdpi.com/journal/water Water 2019, 11, 460 2 of 12

The regions of huge areas, like the Panjab region in India, have been polluted by the emission of textile wastewater released into the environment, without any previous purification, which increases general of surface water [3]. It is difficult to find an efficient and inexpensive treatment method that could be used to clean wastewater polluted by LMWS. Especially, biological treatment, which is the most commonly used method, could be severely affected by a high concentration of LMWS. The use of membrane filtration methods could be an option to deal with salinity; however, among them, (RO) is the only method that can eliminate LMWS from wastewater. On the other hand, RO is not suitable for COD removal from wastewater because of fouling. The use of microfiltration (MF) or ultrafiltration (UF) as a pretreatment step before nanofiltration (NF) and RO is possible, but this cannot eliminate the fouling problem entirely. Another problem is the huge volume of highly contaminated concentrate and backwashes. At present, the operating cost of membrane filtration is still high when industrial wastewater treatment is concerned [9]. An application of ozone as a non-discharge treatment method can be an alternative for the purification of textile wastewater contaminated by LMWS. In contrast to membrane filtration, ozonation cannot remove LMWS but can serve as a technique for brine recovery from wastewater. Ozone oxidation can give good results when many poorly degradable contaminants, including textile dyes, are taken into consideration [9,10]. It can be concluded that the effectiveness of dye decomposition by ozone treatment has been proven in many papers, and the field seems to be covered by the literature (Table1). However, it should be noted that only a few authors have dealt with by-products detection [11–15], scaling-up [16], or purified wastewater recycling [17–20]. A publication that includes all these topics has not been found.

Table 1. Literature overview of simulated and industrial textile wastewater treatment by ozonation. COD, chemical oxygen demand; TOC, total organic carbon; BOD, biological oxygen demand.

Research Goal Textile Wastewater Type References Simulated [17,21–38] Color, COD, TOC or BOD removal Industrial [19,39–47] Kinetic study Simulated [25–27,30,31,33,35,37,48–62] Products, degradation mechanism Simulated [11–15] Salt or alkaline influence Simulated [13,17,31,34] Simulated [27,28] Cost evaluation Industrial [40,43,44] Simulated [17] Recycling Industrial [18–20] Simulated [23,24,27,29,61,63] Toxicity Industrial [44–46,64,65] Scale upgradation Industrial [16]

The main objective of the study presented in Part 1 was to investigate the recycling of purified wastewater. For this purpose, a highly contaminated industrial textile wastewater (the bath after the reactive dyeing of cotton, with a residual LMWS concentration equal to 30 g/L) was treated by ozone to remove color and then recycled as a source of ‘ready to use’ brine for the next dyeing. Therefore, the key idea was not to treat the LMWS as a pollutant, but as a resource that can be recycled. Consequently, the challenge was to keep LMWS concentration at a constant level, while the dye residuals were removed. To this end, the same wastewater was recycled four times (five cycles of fabric dyeing and four cycles of ozonation, carried out in a laboratory scale). The additional goal was to analyze the by-products that could have accumulated due to recycling, and their potential influence on the possibility of brine recycling. Water 2019,, 11,, x 460 FOR PEER REVIEW 33 of of 12 12

2. Experimental 2. Experimental 2.1. Materials 2.1. Materials The substances used for textile dyeing and present in the wastewater were dyes and auxiliaries. The substances used for textile dyeing and present in the wastewater were dyes and auxiliaries. The dyes were: Synozol Yellow KHL (C. I. Reactive Yellow145), Synozol Red K3BS150% (C. I. Reactive The dyes were: Synozol Yellow KHL (C. I. Reactive Yellow145), Synozol Red K3BS (C. I. Reactive Red 195), purchased from KISCO (Eksoy Chemical Industries, Adana, Turkey), and150% C. I. Reactive Red 195), purchased from KISCO (Eksoy Chemical Industries, Adana, Turkey), and C. I. Reactive Black 5 (purified dye, Boruta-Zachem (Bydgoszcz, Poland)). The auxiliaries were: an industrial Black 5 (purified dye, Boruta-Zachem (Bydgoszcz, Poland)). The auxiliaries were: an industrial dyeing dyeing assistant—Perigen LDR (SAA—a naphthalene sulfonic acid and carboxylates mixture, assistant—Perigen LDR (SAA—a naphthalene sulfonic acid and carboxylates mixture, Textilchemie Textilchemie Dr. Petry Co. (Reutlingen, Germany)), as well as NaCl, NaOH, and Na2CO3 (technical Dr. Petry Co. (Reutlingen, Germany)), as well as NaCl, NaOH, and Na CO (technical products from products from Tomchem (Łódź, Poland)). 2 3 Tomchem (Łód´z,Poland)). Raw knitted fabric, made of 100% cotton, was obtained from Sontex DK ApS (Ikast, Denmark); Raw knitted fabric, made of 100% cotton, was obtained from Sontex DK ApS (Ikast, Denmark); this fabric was previously bleached by a peroxide method. this fabric was previously bleached by a hydrogen peroxide method.

2.2.2.2. Experimental Experimental Procedure Procedure TheThe experiment was carried outout asas aa sequencesequence of of textile textile dyeing dyeing and and ozonation ozonation steps, steps, according according to tothe the scheme scheme presented presented in in Figure Figure1. 1.

Figure 1. Scheme of the recycling procedure (5 dyeing cycles and 4 ozonation cycles); blue—dyeing Figurewith C.I. 1. ReactiveScheme Blackof the 5,recycling yellow—dyeing procedure with (5 C. dyeing I. Reactive cycles Yellow145, and 4 ozonation red—dyeing cycles) with; blue C.I.— Reactivedyeing withRed 195. C.I. Reactive Black 5, yellow—dyeing with C. I. Reactive Yellow145, red—dyeing with C.I. Reactive Red 195. Textile dyeing: Cotton dyeing was carried out in a LABOMAT BFA-12 system (laboratory dyeing machineTextile made dyeing by Mathis: Cotton AG, dyeing Oberhasli, was carried Switzerland), out in a LABOM accordingAT BFA to a- standard12 system exhaustion-fixation (laboratory dyeing machineprocedure made at a by temperature Mathis AG of, Oberhasli 60 ◦C (Figure, Switzerland2). The weight), according of each to sample a standard was 10exhaustion g and the-fixation liquor procedureratio was setat a to temperature 1:12. The alkalis, of 60 which°C (Figure were 2) NaOH. The weight and Na of2CO each3 aqueous sample ,was 10 g and were the partially liquor ratiodosed was to avoidset to excessive1:12. The dyealkalis, hydrolyzation. which were TheNaOH electrolyte and Na (NaCl)2CO3 aqueous was dosed solutions only into, were fresh partially water doseddyes, notto avoid recycling excessive ones. dye hydrolyzation. The electrolyte (NaCl) was dosed only into dyes, not recycling ones. Water 2019, 11, 460 4 of 12 Water 2019, 11, x FOR PEER REVIEW 4 of 12

Figure 2. 2. ReactiveReactive dyeing dyeing of of cellulosic cellulosic fibers fibers according according to to standard standard exhaustion exhaustion-fixation-fixation procedure procedure run ◦ at a temperature of 60 ° C.C.

OzonationOzonation:: A A semibatch semibatch glass glass reactor reactor (heterogeneous (heterogeneous gas gas-liquid-liquid system) system) with with a a capacity capacity of of 1 1 L L was used during the experiment. A A g gasas mixture mixture containing containing ozone ozone was was delivered delivered into into the reaction solution through through a porous porous plate. plate. Mixing Mixing was was performed performed with with a a magnetic magnetic stirrer stirrer (type (type ES ES 21 21,, Wigo, Wigo, PruszkówPruszków,, Poland Poland).). Ozone was was produced produced by by an an Ozonek Ozonek Ozone Ozone Generator Generator ( (Ozonek,Ozonek, Lublin Lublin,, Poland). Poland). The oxygen used for ozone production was supplied from a compressed gas cylinder (O purity 99.5%). The oxygen used for ozone production was supplied from a compressed gas cylinder2 (O2 purity 99.5%).The ozone The concentrationozone concentration was measured was measured at the inletat the and inlet outlet and outlet of the of reactor the reactor using using a BMT a BMT 963 Vent 963 Ventozone ozone analyzer. analyzer. The reactorThe reactor was thermostated.was thermostated. The temperatureThe temperature and pHand inside pH inside of the of reactor the reactor were weremonitored monitored using using an Elmetron an Elmetron C411 device C411 devi(Elmetron,ce (Elmetron Zabrze,, Zabrze Poland)., Poland). The progress The progress of the reaction of the was stopped by the addition of 0.01 M Na SO to the samples. reaction was stopped by the addition of 0.012 M3 Na2SO3 to the samples.

2.3. Analytical Methods The color of the samples collected at specified time intervals was measured by a spectrophotometer (Helios Thermo Fisher Scientific, Waltham, MA, US). A calibration plot based on Lambert-Beer’s law was used to determine the concentration of the dyes in the wastewater samples. Water 2019, 11, 460 5 of 12

2.3. Analytical Methods The color of the samples collected at specified time intervals was measured by a spectrophotometer (Helios Thermo Fisher Scientific, Waltham, MA, US). A calibration plot based on Lambert-Beer’s law was used to determine the concentration of the dyes in the wastewater samples. Chemical oxygen demand (COD) was obtained using the standard method with a HACH-LANGE apparatus (DR 3800) through dichromate (VI)—LCK 514 and 314 tests. By-product analysis was carried out by thin layer chromatography (TLC) using TLC Silica gel 60 F254 plates and ethyl acetate: n-butanol: water (1:1:8) and ethyl acetate: n-propanol: water (6:1:3) as eluents. The colors of the textile samples were measured using a DataColor 400 reflection spectrophotometer (Datacolor AG, Dietlikon, Switzerland) in accordance with ISO 105-J03 [66]. Each measured DECMC (DE of Color Measurement Committee) value is an average of at least three measurements (measured up to a maximum error value—standard deviation from the average value set at 0.1).

3. Results and Discussion

3.1. Ozonation in a Multi Recycling Loop After laboratory scale dyeing, the wastewater was treated by ozonation and used again in the next dyeing operation, according to the scheme presented in Figure1. This procedure was repeated four times, which gave five cycles of dyeing (one with fresh water and four with purified brine). A brine concentration was kept at a constant level during this experiment, and after each cycle was equal to 30 g/L. Consequently, there was no need for the additional use of NaCl before subsequent dyeing in the loop. In Figure3, the experimental points of each ozonation processes are presented. Figure3A shows color removal within the ozonation from cycles I to IV. It can be noted that the first ozonation (cycle I) was much more efficient in color reduction than the next ones (cycles II–IV), especially in the initial phase of the process. Therefore, the accumulation of some colorless by-products can be assumed; however, when the absorbed ozone dose is considered (Figure3B.), the highest values were recorded for cycle IV in the final process phase. Based on this observation, it can be concluded that by-product accumulation is caused by substances inhibiting decolorization via ozonation. This accumulation not only occurs because of competitive reactions of ozone with the by-products; likely, the by-products are not as easily oxidized by the ozone as the chromophores in dye molecules. The inhibitory effect is more likely caused by the buffering of the reaction mixture (pH 9.5–10.0). A buffering effect due to the presence of ozonation by-products was observed (presented in Figure4A). The premise for this conclusion could be the fact that NaOH concentration had to be increased in every subsequent dyeing cycle (Figure4A) to keep the proper alkalinity. Moreover, the COD values, the initial values (before the ozone treatment), and the final values (after the ozone treatment), increased in every subsequent recycling step (Figure4B). This observation gives information about by-product accumulation, as well. Water 2019, 11, x FOR PEER REVIEW 6 of 12 WaterWater2019 2019, 11, 11, 460, x FOR PEER REVIEW 66 of of 12 12

Figure 3. Ozonation from cycles I to IV, Q 0.66 L/min, CO3 42.3 mg/L: (A) color removal (A/A 0), (B) Figure 3. Ozonation from cycles I to IV, Q 0.66 L/min, C 42.3 mg/L: (A) color removal (A/A ), absorbedFigure 3. ozone Ozonation dose m fromgO3/L cycle. s I to IV, Q 0.66 L/min, CO3 42.3 mg/L: (A) color removal (A/A0), 0(B) (B) absorbed ozone dose mg /L. absorbed ozone dose mgO3/LO3.

Figure 4. Ozonation cycles I–IV: (A) initial and final pH values, NaOH concentrations g/100gtextiles, Figure 4. Ozonation cycles I–IV: (A) initial and final pH values, NaOH concentrations g/100gtextiles , (B) (B) initial and final COD values, mgO2/L. initialFigure and 4. finalOzonation COD values,cycles I –mgIV:O2 (/LA). initial and final pH values, NaOH concentrations g/100gtextiles, (B) initial and final COD values, mgO2/L. Water 2019, 11, 460x FOR PEER REVIEW 7 of 12

The values of the color matching parameters of recycled textile samples, DECMC, are presented in TableThe 2. The values standard of the industrial color matching limiting parameters value of DE of recycledCMC equals textile 1.5 and samples, gives information DECMC, are presentedabout the acceptancein Table2. The of colorstandard quality. industrial It should limiting be notedvalue ofthat DE theCMC lowestequals DE 1.5CMC and values gives, information under 1.16, aboutwere obtainedthe acceptance for cycle of colorI (the quality.first recycling). It should In bethe noted cases of that cycles the lowestII–IV, the DE DECMCCMCvalues, values under were higher 1.16, were, for yellowobtained and for black cycle, I above (thefirst 1.5, recycling). which means In the that cases the of shade cycles was II–IV, slightly theDE changedCMC values compar wereed higher,to the standardfor yellow (standard and black,—textile above sample 1.5, whichs dyed means using that fresh the water) shade. This was observation slightly changed could compared be an argument to the forstandard by-product (standard—textile accumulation samples, which dyed afterward using disturb fresh water).ed the This dyeing observation process. couldHowever, be an the argument DECMC valuesfor by-product achieved accumulation, by us were much which more afterward satisfying disturbed than th theose dyeing obtained process. by Hu However, et al. [19] the during DECMC a correspondingvalues achieved experiment by us were (the much same more number satisfying of re-dyeing than those cycles) obtained. by Hu et al. [19] during a corresponding experiment (the same number of re-dyeing cycles). Table 2. DECMC values in accordance to ISO 105-J03, when depth of shade was 1% (w/w). Table 2. DECMC values in accordance to ISO 105-J03, when depth of shade was 1% (w/w). Cycle No. Re-Dying Type of the Dye I II CycleIII No. IV Re-Dying Type of the Dye Synozol Yellow KHLI 0.50 1.71 II 1.46 2.22 III IV Synozol Yellow KHLSynozol Red K3BS150% 0.50 0.50 1.711.02 0.64 1.41 1.46 2.22 Synozol Red K3BS150%Setazol Black DPT 0.50 1.16 1.021.92 1.73 1.56 0.64 1.41 Setazol Black DPT 1.16 1.92 1.73 1.56 The color fastness against washing, sweat, and rubbing (in accordance with ISO 105 C06, E04, and X12,The color respectively fastness [67 against–69]) washing, of recycled sweat, textile and samplesrubbing (inwas accordance excellent,with and ISOthe 105values C06, were E04, and not worseX12, respectively than five; the [67 –reason69]) of for recycled this result textile could samples be the was respectively excellent, and low the depth values of werethe tested not worse shade thans, – 1five;% (w/w) the reason. for this result could be the respectively low depth of the tested shades, –1% (w/w).

3.2. Preliminary By By-Product-Product Study A thin thin layer layer chromatography chromatography (TLC) (TLC) was was employed employed to a to preliminary a preliminary by-product by-product analysis. analysis. The followingThe following observations observations could could be performed be performed while while the the purified purified wastewater wastewater was was examined examined by by TLC TLC.. FFirstly,irstly, the fluorescencefluorescence in the UV light,light, which is characteristic of naphthalene hydroxyl hydroxyl derivatives derivatives,, was observed observed.. S Secondly,econdly, a lack of specific specific coloration of chromatograms after developing with Ehrlich reagent may have indicated the presence of amines amines.. Moreover, Moreover, the developing of the chromatograms with di di-azo-azo 4 4-nitroaniline-nitroaniline caused the appearance of colored spots (red) (red),, which confirm confirmeded that the coupling react reactionsions took place place,, and the hydroxyl aromatic compounds were present in the ozonated wastewater. At the same time time,, the chemical analysis carried out by a two two-step-step process process of azo azo-coupling-coupling (NaNO addition in acidic medium), and a further coupling reaction with resoricinol in a neutral (NaNO22 addition in acidic medium), and a further coupling reaction with resoricinol in a neutral mediummedium,, did notnot revealreveal the the occurrence occurrence of of amines. amines Based. Based on on TLC TLC analysis, analysis as, wellas well as observationsas observations of pH of pHvalues values during during ozonation ozonation cycles cycles (buffering (buffering phenomenon phenomenon presented presented in Figure in Fig4A;ure pKa 4A; 2-naphtholpKa 2-naphthol 9.51, 9.51,pKa 1-naphtholpKa 1-naphthol 9.34, pKa9.34, phenolpKa phenol 9.99), 9.99 it can), it be can concluded be concluded that ozonation that ozonation led to led the to formation the formation of the ofnaphthol the naphthol and phenol and derivatives phenol derivatives presented presented in Figure 5 in. However,Figure 5. theHowever, presence the of other presence unidentified of other unby-productsidentified cannotby-products be ruled cannot out. be ruled out.

X OH

O HO S - + O Na 0 - 2 O X Figure 5. Detected b by-productsy-products formed during ozonation in alkaline reaction medium (based on thin layer chromatography (TLC)).(TLC)).

The f formationormation of presented by by-products-products is characteristic of textile wastewater ozonation in an alkaline medium. medium. It It is iswell well known known that that ozone ozone treatment treatment under under alkalin alkalinee conditions conditions lead leadss to ozone to ozone self- decompositionself-decomposition,, which which result resultss in thein formation the formation of hydroxyl of hydroxyl radicals radicals [70]. In [these70]. Inconditions, these conditions, indirect oxidationindirect oxidation of pollutants of pollutants through through hydroxyl hydroxyl radicals, radicals, rather than rather a direct than a one direct supported one supported by ozone by Water 2019, 11, 460 8 of 12 ozone molecules, is the prevailing mechanism. This phenomenon drives rapid radical reactions, which are highly non-selective, and consequently, numerous low-molecular-weight by-products appear. Therefore, the presented by-products are a few of the possible ones that could have occurred. Based on the previous work of Mezzanotte et al. [71], the occurrence of various carbonyl compounds can be expected. The presence of innumerable low-molecular-weight by-products can be an explanation by low COD removal and an increase in absorbed ozone dose (discussed earlier in Section 3.1). Our attempts to use the high performance liquid chromatography with tandem mass spectroscopy (HPLC MS/MS) analysis to confirm the occurrence of by-products did not give a satisfactory result. The presence of many low-molecular-weight by-products made the task of their identification burdensome, and any specific by-product could not be recognized in this way; however, the detection of numerous low-molecular-weight by-products favored the assumption of a radical decomposition mechanism in an alkaline reaction medium. In accordance with the values of the DECMC parameter presented above in Table2, it can be concluded that the identified by-products are characterized by a low affinity to cellulosic fiber materials, and the by-products’ effect on color parameters in a CIELab system is insignificant.

4. Conclusions Based on the presented results, it can be concluded that ozonation is an efficient method for the decolorization of textile wastewater, characterized by high salinity and alkalinity. More than 90% of color removal was achieved within 30 min of the treatment. The investigation showed that the brine produced by wastewater decolorization could be successfully used in at least one subsequent dyeing of cotton fabrics. Even though the experiment indicated an efficient decolorization of textile wastewater by ozonation, the COD removal was rather poor. No more than 20% of the COD reduction could have been achieved. Correspondingly, the detected by-products, which stayed after the process, contributed low COD removal. The multi-recycling-loop experiment indicated an accumulation of the oxidation by-products that were analyzed by TLC and chemical analysis (coupling reactions with di-azo 4-nitroaniline), as naphthol and phenol derivatives. The occurrence of these specific by-products could suggest that an indirect oxidation mechanism via free radicals can occur during ozonation of the textile wastewater. The presence of the by-products resulted in a lower color removal rate by ozone treatment in subsequent recycling loops. At the same time, the increase in the COD values and the decrease in pH values of the wastewater could be observed. The formation of a stable buffer of pH 9.5–10.0, caused by the by-product’s accumulation, could also be observed. The color shades of upcycled fabrics were slightly influenced by the occurrence of by-products. Because of the detection of by-products, the findings of this study, Part 1, encourage discussion of the industrial applicability of textile wastewater treatment by ozone. It is possible that a more complex, multi-step treatment, could result in a more efficient removal of by-products. Consequently, industrial wastewater ozonation in the upscaled system was investigated in Part 2 of the study, to determine the feasibility of industrial implementation.

Author Contributions: Conceptualization, L.B.; Methodology, L.B.; Validation, M.G. and S.L.; Investigation, L.B. and K.B.; Data curation, L.B.; Writing—original draft preparation, L.B.; Writing—review and editing, K.B., M.G. and S.L.; Supervision, M.G. and S.L.; Project administration, L.B. Funding: This research received no external funding. Conflicts of Interest: The authors declare no conflict of interest.

References

1. OECD. OECD Due Diligence Guidance for Responsible Supply Chains in the Garment and Footwear Sector; OECD Publishing: Paris, France, 2018. [CrossRef] 2. Ghaly, A.; Ananthashankar, R.; Alhattab, M.; Ramakrishnan, V. Production, characterization and treatment of textile effluents: A critical review. J. Chem. Eng. Process Technol. 2013, 5, 1–19. [CrossRef] Water 2019, 11, 460 9 of 12

3. Bhatia, D.; Sharma, N.R.; Kanwar, R.; Singh, J. Physicochemical assessment of industrial textile effluents of Punjab (India). Appl. Water Sci. 2018, 8, 83. [CrossRef] 4. Allègre, C.; Moulin, P.; Maisseu, M.; Charbit, F. Treatment and reuse of reactive dyeing effluents. J. Memb. Sci. 2006, 269, 15–34. [CrossRef] 5. Kalliala, E.; Talvenmaa, P. Environmental profile of textile wet processing in Finland. J. Clean. Prod. 2000, 8, 143–154. [CrossRef] 6. Karcher, S.; Kornmüller, A.; Jekel, M. Anion exchange resins for removal of reactive dyes from textile . Water Res. 2002, 36, 4717–4724. [CrossRef] 7. Bisschops, I.; Spanjers, H. Literature review on textile wastewater characterization. Environ. Technol. 2003, 24, 1399–1411. [CrossRef][PubMed] 8. Zollinger, H. Color Chemistry: Syntheses, Properties, and Applications of Organic Dyes and Pigments; Wiley VCH: Weinhein, Germany, 1991. 9. Gonzalez, O.; Bayarri, B.; Acena, J.; Perez, S.; Barcelo, D. Treatment technologies for wastewater reuse: Fate of contaminants of emerging concern. In Advanced Treatment Technologies for Urban Wastewater Reuse; Fatta-Kassinos, D., Dionysiou, D.D., Kummerer, K., Eds.; Springer: New York, NY, USA, 2016; pp. 7–33. 10. Glaze, W.H.; Kang, J.-W.; Chapin, D.H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 1987, 9, 335–352. [CrossRef] 11. Constapel, M.; Schellenträger, M.; Marzinkowski, J.M.; Gäb, S. Degradation of reactive dyes in wastewater from the textile industry by ozone: Analysis of the products by accurate masses. Water Res. 2009, 43, 733–743. [CrossRef][PubMed] 12. Wang, X.; Cheng, X.; Sun, D.; Ren, Y.; Xu, G. Fate and transformation of naphthylaminesulfonic azo dye Reactive Black 5 during wastewater treatment process. Environ. Sci. Pollut. Res. 2014, 21, 5713–5723. [CrossRef][PubMed] 13. Pérez, A.; Poznyak, T.; Chairez, I. Effect of additives on ozone-based decomposition of Reactive Black 5 and Direct Red 28 dyes. Water Environ. Res. 2013, 85, 291–300. [CrossRef][PubMed] 14. Venkatesh, S.; Quaff, A.R.; Pandey, N.D.; Venkatesh, K. Impact of ozonation on decolorization and mineralization of azo dyes: Biodegradability enhancement, by-products formation, required energy and cost. Ozone Sci. Eng. 2015, 37, 420–430. [CrossRef] 15. Meetani, M.A.; Hisaindee, S.M.; Abdullah, F.; Ashraf, S.S.; Rauf, M.A. Liquid chromatography tandem mass spectrometry analysis of photodegradation of a diazo compound: A mechanistic study. Chemosphere 2010, 80, 422–427. [CrossRef][PubMed] 16. Ma, J.; Chen, Y.; Nie, J.; Ma, L.; Huang, Y.; Li, L.; Liu, Y.; Guo, Z. Pilot-scale study on catalytic ozonation of bio-treated dyeing and finishing wastewater using recycled waste iron shavings as a catalyst. Sci. Rep. 2018, 8, 1–11. [CrossRef][PubMed] 17. Colindres, P.; Yee-Madeira, H.; Reguera, E. Removal of Reactive Black 5 from aqueous solution by ozone for water reuse in textile dyeing processes. 2010, 258, 154–158. [CrossRef] 18. Senthilkumar, M.; Muthukumar, M. Studies on the possibility of recycling reactive dye bath effluent after decolouration using ozone. Dye. Pigment. 2007, 72, 251–255. [CrossRef] 19. Hu, E.; Shang, S.; Tao, X.; Jiang, S.; Chiu, K. Regeneration and reuse of highly polluting textile dyeing effluents through catalytic ozonation with carbon aerogel catalysts. J. Clean. Prod. 2016, 137, 1055–1065. [CrossRef] 20. Ledakowicz, S.; Zyłła,˙ R.; Pa´zdzior, K.; Wr˛ebiak,J.; Sójka-Ledakowicz, J. Integration of ozonation and biological treatment of industrial wastewater from dyehouse. Ozone Sci. Eng. 2017, 39, 357–365. [CrossRef] 21. Khare, U.K.; Bose, P.; Vankar, P.S. Impact of ozonation on subsequent treatment of azo dye solutions. J. Chem. Technol. Biotechnol. 2007, 82, 1012–1022. [CrossRef] 22. Koch, M.; Yediler, A.; Lienert, D.; Insel, G.; Kettrup, A. Ozonation of hydrolyzed azo dye reactive yellow 84 (CI). Chemosphere 2002, 46, 109–113. [CrossRef] 23. Wang, C.; Yediler, A.; Lienert, D.; Wang, Z.; Kettrup, A. Ozonation of an azo dye C.I. Remazol Black 5 and toxicological assessment of its oxidation products. Chemosphere 2003, 52, 1225–1232. [CrossRef] 24. Ulson, S.M.A.G.; Bonilla, K.A.S.; De Souza, A.A.U. Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment. J. Hazard. Mater. 2010, 179, 35–42. [CrossRef] [PubMed] Water 2019, 11, 460 10 of 12

25. Tabrizi, M.T.F.; Glasser, D.; Hildebrandt, D. Wastewater treatment of reactive dyestuffs by ozonation in a semi-batch reactor. Chem. Eng. J. 2011, 166, 662–668. [CrossRef] 26. Chung, J.; Kim, J.-O. Application of advanced oxidation processes to remove refractory compounds from dye wastewater. Desalin. Water Treat. 2012, 25, 233–240. [CrossRef]

27. Arslan, I.; Akmehmet Balcioglu, I.; Tuhkanen, T. Advanced oxidation of synthetic dyehouse effluent by O3, H2O2/O3 and H2O2/UV processes. Environ. Technol. 1999, 20, 921–931. [CrossRef] 28. Alaton, I.A.; Balcioglu, I.A.; Bahnemann, D.W. Advanced oxidation of a reactive dyebath effluent:

Comparison of O3,H2O2/UV-C and TiO2/UV-A processes. Water Res. 2002, 36, 1143–1154. [CrossRef] 29. Ledakowicz, S.; Solecka, M.; Zylla, R. Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. J. Biotechnol. 2001, 89, 175–184. [CrossRef] 30. Sarayu, K.; Swaminathan, K.; Sandhya, S. Assessment of degradation of eight commercial reactive azo dyes individually and in mixture in aqueous solution by ozonation. Dye. Pigment. 2007, 75, 362–368. [CrossRef] 31. Bamperng, S.; Suwannachart, T.; Atchariyawut, S.; Jiraratananon, R. Ozonation of dye wastewater by membrane contactor using PVDF and PTFE membranes. Sep. Purif. Technol. 2010, 72, 186–193. [CrossRef] 32. Gül, ¸S.;Özcan, Ö.; Erbatur, O. Ozonation of C.I. Reactive Red 194 and C.I. Reactive Yellow 145 in aqueous solution in the presence of granular activated carbon. Dye. Pigment. 2007, 75, 426–431. [CrossRef] 33. Zhang, F.; Yediler, A.; Liang, X.; Kettrup, A. Effects of dye additives on the ozonation process and oxidation by-products: A comparative study using hydrolyzed C.I. Reactive Red 120. Dye. Pigment. 2004, 60, 1–7. [CrossRef] 34. Oguz, E.; Keskinler, B.; Çelik, C.; Çelik, Z. Determination of the optimum conditions in the removal of − Bomaplex Red CR-L dye from the textile wastewater using O3,H2O2, HCO3 and PAC processes for the removal of Bomaplex Red CR-L dye from aqueous solution. J. Hazard. Mater. 2006, 131, 66–72. [CrossRef] [PubMed] 35. Turhan, K.; Durukan, I.; Ozturkcan, S.A.; Turgut, Z. Decolorization of textile basic dye in aqueous solution by ozone. Dye. Pigment. 2012, 92, 897–901. [CrossRef] 36. Konsowa, A.H.; Ossman, M.E.; Chen, Y.; Crittenden, J.C. Decolorization of industrial wastewater by ozonation followed by adsorption on activated carbon. J. Hazard. Mater. 2010, 176, 181–185. [CrossRef] [PubMed] 37. Gül, ¸S.;Özcan-Yildirim, Ö. Degradation of Reactive Red 194 and Reactive Yellow 145 azo dyes by O3 and H2O2/UV-C processes. Chem. Eng. J. 2009, 155, 684–690. [CrossRef] 38. Hsing, H.J.; Chiang, P.C.; Chang, E.E.; Chen, M.Y. The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: A comparative study. J. Hazard. Mater. 2007, 141, 8–16. [CrossRef][PubMed] 39. Arslan, I.; Balcioglu, I.A. Advanced oxidation of raw and biotreated textile industry wastewater with O3, H2O2/UV-C and their sequential application. J. Chem. Technol. Biotechnol. 2001, 60, 53–60. [CrossRef] 40. Cardoso, J.C.; Bessegato, G.G.; Zanoni, M.V.B. Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization. Water Res. 2016, 98, 39–46. [CrossRef][PubMed] 41. Shaikh, I.A.; Ahmed, F.; Sahito, A.R.; Pathan, A.A. In-situ decolorization of residual dye effluent in textile jet dyeing machine by ozone. Pak. J. Anal. Envirion. Chem. 2014, 15, 72–76. 42. Qi, L.; Wang, X.; Xu, Q. Coupling of biological methods with membrane filtration using ozone as pre-treatment for water reuse. Desalination 2011, 270, 264–268. [CrossRef] 43. Azbar, N.; Yonar, T.; Kestioglu, K. Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 2004, 55, 35–43. [CrossRef][PubMed] 44. Dulov, A.; Dulova, N.; Trapido, M. Combined physicochemical treatment of textile and mixed industrial wastewater. Ozone Sci. Eng. 2011, 33, 285–293. [CrossRef] 45. Somensi, C.A.; Simionatto, E.L.; Bertoli, S.L.; Wisniewski, A.; Radetski, C.M. Use of ozone in a pilot-scale plant for textile wastewater pre-treatment: Physico-chemical efficiency, degradation by-products identification and environmental toxicity of treated wastewater. J. Hazard. Mater. 2010, 175, 235–240. [CrossRef][PubMed] 46. Baban, A.; Yediler, A.; Lienert, D.; Kemerdere, N.; Kettrup, A. Ozonation of high strength segregated effluents from a woollen textile dyeing and finishing plant. Dye. Pigment. 2003, 58, 93–98. [CrossRef] Water 2019, 11, 460 11 of 12

47. Ciardelli, G.; Ranieri, N. The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation. Water Res. 2001, 35, 567–572. [CrossRef] 48. Perkowski, J.; Kos, L.; Zyłła, R.; Ledakowicz, S. A kinetic model of decoloration of water solution of anthraquinone dye initiated by generality hydroksyl radicals. Fibres Text. East. Eur. 2005, 13, 59–64. 49. Al jibouri, A.K.H.; Wu, J.; Upreti, S.R. Continuous ozonation of methylene blue in water. J. Water Process Eng. 2015, 8, 142–150. [CrossRef] 50. López-López, A.; Pic, J.S.; Debellefontaine, H. Ozonation of azo dye in a semi-batch reactor: A determination of the molecular and radical contributions. Chemosphere 2007, 66, 2120–2126. [CrossRef][PubMed] 51. Kusvuran, E.; Gulnaz, O.; Samil, A.; Erbil, M. Detection of double bond-ozone stoichiometry by an iodimetric method during ozonation processes. J. Hazard. Mater. 2010, 175, 410–416. [CrossRef][PubMed] 52. Zhao, W.; Liu, F.; Yang, Y.; Tan, M.; Zhao, D. Ozonation of Cationic Red X-GRL in aqueous solution: Kinetics and modeling. J. Hazard. Mater. 2011, 187, 526–533. [CrossRef][PubMed] 53. Wu, J.; Wang, T. Ozonation of aqueous azo dye in a semi-batch reactor. Water Res. 2001, 35, 1093–1099. [CrossRef] 54. Gomes, A.C.; Fernandes, L.R.; Simões, R.M.S. Oxidation rates of two textile dyes by ozone: Effect of pH and competitive kinetics. Chem. Eng. J. 2012, 189–190, 175–181. [CrossRef] 55. Gomes, A.C.; Nunes, J.C.; Simões, R.M.S. Determination of fast ozone oxidation rate for textile dyes by using a continuous quench-flow system. J. Hazard. Mater. 2010, 178, 57–65. [CrossRef][PubMed] 56. Tizaoui, C.; Grima, N. Kinetics of the ozone oxidation of Reactive Orange 16 azo-dye in aqueous solution. Chem. Eng. J. 2011, 173, 463–473. [CrossRef] 57. Torregrosa, J.I.; Navarro-Laboulais, J.; Lopez, F.; Cardona, S.C.; Abad, A.; Capablanca, L. Study of the ozonation of a dye using kinetic information reconstruction. Ozone Sci. Eng. 2008, 30, 344–355. [CrossRef] 58. Choi, I.S.; Wiesmann, U. Effect of chemical reaction and mass transfer on ozonation of the Azo Dyes Reactive Black 5 and Reactive Orange 96. Ozone Sci. Eng. 2004, 26, 539–549. [CrossRef] 59. Panda, K.K.; Mathews, A.P. Ozone oxidation kinetics of Reactive Blue 19 anthraquinone dye in a tubular in situ ozone generator and reactor: Modeling and sensitivity analyses. Chem. Eng. J. 2014, 255, 553–567. [CrossRef] 60. Chen, T.Y.; Kao, C.M.; Hong, A.; Lin, C.E.; Liang, S.H. Application of ozone on the decolorization of reactive dyes—Orange-13 and Blue-19. Desalination 2009, 249, 1238–1242. [CrossRef] 61. Patil, N.N.; Shukla, S.R. Decolorization of Reactive Blue 171 dye using ozonation and UV/H2O2 and elucidation of the degradation mechanism. Environ. Prog. Sustain. Energy 2015, 1–10. [CrossRef] 62. Chu, W.; Ma, C.W. Quantitative prediction of direct and indirect dye ozonation kinetics. Water Res. 2000, 34, 3153–3160. [CrossRef] 63. Ledakowicz, S.; Gonera, M. Optimisation of oxidants dose for combined chemical and biological treatment of textile wastewater. Water Res. 1999, 33, 2511–2516. [CrossRef] 64. Pa´zdzior, K.; Wr˛ebiak,J.; Klepacz-Smółka, A.; Gmurek, M.; Bili´nska,L.; Kos, L.; Sójka-Ledakowicz, J.; Ledakowicz, S. Influence of ozonation and biodegradation on toxicity of industrial textile wastewater. J. Environ. Manag. 2017, 195, 166–173. [CrossRef][PubMed] 65. Eremektar, G.; Selcuk, H.; Meric, S. Investigation of the relation between COD fractions and the toxicity in a textile finishing industry wastewater: Effect of preozonation. Desalination 2007, 211, 314–320. [CrossRef] 66. International Organization for Standardization. ISO 105-J03:2009—Textiles—Tests for Colour Fastness—Part J03: Calculation of Colour Differences, 2009. Available online: https://www.iso.org/standard/51385.html (accessed on 16 December 2018). 67. International Organization for Standardization (ISO). ISO 105-C06:2010—Textiles—Tests for Colour Fastness—Part C06: Colour Fastness to Domestic and Commercial Laundering, n.d. Available online: https://www.iso.org/standard/51276.html (accessed on 16 December 2018). 68. International Organization for Standardization (ISO). ISO 105-E04:2013—Textiles—Tests for Colour Fastness—Part E04: Colour Fastness to Perspiration, n.d. Available online: https://www.iso.org/standard/ 57973.html (accessed on 20 December 2018). 69. International Organization for Standardization (ISO). ISO 105-X12:2016—Textiles—Tests for Colour Fastness—Part X12: Colour Fastness to Rubbing, n.d. Available online: https://www.iso.org/standard/ 65207.html (accessed on 20 December 2018). Water 2019, 11, 460 12 of 12

70. Beltran, F.J. Ozone Reaction Kinetics for Water and Wastewater Systems; Lewis Publishers: Boca Raton, FL, USA, 2004. 71. Mezzanotte, V.; Fornaroli, R.; Canobbio, S.; Zoia, L.; Orlandi, M. Colour removal and carbonyl by production in high dose ozonation for effluent polishing. Chemosphere 2013, 91, 629–634. [CrossRef][PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).