Proof of Quark Confinement and Baryon-Antibaryon Duality

Total Page:16

File Type:pdf, Size:1020Kb

Proof of Quark Confinement and Baryon-Antibaryon Duality Proof of quark confinement and baryon-antibaryon duality: I: Gauge symmetry breaking in dual 4D fractional quantum Hall superfluidic space-time A. E. Inopin1 and N. O. Schmidt2 1Department of Experimental Nuclear Physics, Karazin National University, Svobody Sq. 4, Kharkiv, 61077, Ukraine (E-mail: [email protected]) 2Department of Mathematics, Boise State University, 1910 University Drive, Boise, Idaho, 83725, USA (E-mail: [email protected]) (Dated: October 2012) We prove quark (and antiquark) confinement for a baryon-antibaryon pair and design a well- defined, easy-to-visualize, and simplified mathematical framework for particle and astro physics based on experimental data. From scratch, we assemble a dual 4D space-time topology and gen- eralized coordinate system for the Schwarzschild metric. Space-time is equipped with “fractional quantum number order parameter fields” and topological defects for the simultaneous and sponta- neous breaking of several symmetries, which are used to construct the baryon wavefunction and its corresponding antisymmetric tensor. The confined baryon-antibaryon pair is directly connected to skyrmions with “massive ‘Higgs-like’ scalar amplitude-excitations” and “massless Nambu-Goldstone pseudo-scalar phase-excitations”. Newton’s second law and Einstein’s relativity are combined to de- fine a Lagrangian with effective potential and effective kinetic. We prove that our theory upgrades the prediction precision and accuracy of QCD/QED and general relativity, implements 4D versions of string theory and Witten’s M-theory, and exemplifies M.C. Escher’s duality. I. INTRODUCTION ring “cancel out” due to the CPT-Theorem. Spontaneous symmetry breaking (SSB) generates massless “Nambu- Quarks and antiquarks are the fundamental building Goldstone pseudo-scalar phase-excitations” [10–13] and blocks of baryons and antibaryons, respectively. To date, massive “Higgs-like scalar amplitude-excitations” [14] of nature presents an impressive display of mass-energy puz- Laughlin statistics [3]. First, we provide conceptual zles in physics, including the creation, annihilation, and quark confinement proof in Section II. Second, we pro- confinement of baryons and antibaryons. The mystery vide mathematical quark confinement proof in Sections of quark confinement is a colossal problem in physics; III, IV, V, and VI. it is the phenomenon that color charged particles (such In Section II, we prepare for our quark confine- as quarks) cannot be isolated singularly, and therefore ment proof by conceptually aligning the reader to cannot be directly observed [1]. In this first paper of the our 4D FQHS space-time scenario. We investigate series, we hunt down this “Great Beast” and prove quark- the two dynamical scales that arise in the double- antiquark confinement for a baryon-antibaryon pair in a confinement, double-stereographic gravitational super- 4D space-time, where the dimension of time is circular lensing, and double-horizons inherent to baryons and an- rather than linear. We attack the problem from multiple tibaryons. We prove that a baryon-antibaryon pair is perspectives simultaneously to establish a well-defined composed of three distinct quark-antiquark pairs, which gauge theory equipped with Legget’s superfluid configu- form three corresponding “thin color-electric flux tubes” ration of Landau’s order parameter fields [2], Laughlin’s [15] of Laughlin excitations [3] and fractional statistics quasiparticles [3], a baryon wavefunction, antisymmetric [16]. We discuss the hadronization process and the mod- tensors, and more. From scratch, we construct a topo- ified Gribov QED/QCD vacuum, where all properties in logical solution and Lagrangian that intertwines Newto- 3D Schwarzschild space can be inferred from the analogue nian [4] and Einsteinian concepts [5], improves the pre- of the 2D gauge field on the six-coloring kagome lattice dictive capability of quantum chromo-dynamics (QCD) manifold. Additionally, we venture to the interaction be- and quantum electro-dynamics (QED) [6], reduces di- tween the boson propagators and gravity by introducing mensional complexity of string theory and M-theory [7], “gravitational birefringence”. exhibits M.C. Escher’s duality [8], and is directly sup- In Section III, we begin mathematically constructing ported by a diverse experimental array. In short, the dual the topology and framework for our quark confinement baryon and antibaryon quantum states are encoded with proof in FQHS. We discuss the surface and generalized quantum number order parameters of fractional statistics Riemann coordinates used to encode our FQHS space- for quasiparticles with baryon wavefunction antisymme- time. We extend the definition of complex numbers and try. We prove quark-antiquark confinement in terms of use them to represent locations on the 1D Riemann sur- Laughlin excitations [3] that dynamically arise due to face; we prove that the complex numbers are both scalars our fractional quantum Hall superfluidic (FQHS) space- and Euclidean vectors. We define axis constraints for time and topology inspired by the quasiparticle inter- the vectors, which let us construct a powerful 2D gen- ferometer experiments of Goldman [9]. We prove that eralized coordinate system on the surface equipped with the quarks and antiquarks confined to the holographic the Pythagorean identity; the locations may always be The Hadronic Journal • Volume 35 • Number 5 • October 2012 expressed in terms of right triangles with real and imag- II. ALIGNMENT TO CONFINEMENT: inary components. CONCEPTUAL PROOF In Section IV, we explore the three distinct topologi- cal sub-surface zones for a baryon and antibaryon using At the Fermi scale, a baryon’s event horizon confine- set and group theory. We formally define the zones us- ment radius baryon = 2Mbaryon strongly depends on it’s ing trichotomy and our generalized coordinates for 2D mass Mbaryon, which can vary in size in accordance to and 3D space. We prove that the time-like region is a its quark composition identified by the Standard Model. holographic ring—a closed curve and simple contour of This is known as baryon confinement (for three-quark points, which can be scaled to, for example, the Fermi confinement) and is modeled as a baryon bag. Simi- radius. We formally define space and time as being dual. larly, an antibaryon’s event horizon confinement radius Additionally, we demonstrate that the time-like region antibaryon = 2Mantibaryon strongly depends on it’s mass represents the U(1) and SU(2) symmetry groups, which Mantibaryon. This is known as antibaryon confinement is isomorphic to the SO(3) orthogonal group; all 3D prop- (for three-antiquark confinement) and is modeled as an erties are inferred directly from the 2D holographic ring antibaryon bag. A baryon and its antibaryon merge to re- for the SU(2) gauged Bose-Einstein condensate. flect three-pair quark-antiquark confinement. For exam- In Section V, we define the Baryon Wavefunction ple in a proton-antiproton pair, an antiproton of antimass (BWF) of fractional quantum number order parameters Mantibaryon = Mantiproton = 1 GeV precisely counterbal- (OP) for our quark (q) and antiquark (q¯) confinement ances a proton of mass Mbaryon = Mproton = 1 GeV due proof. Additionally, we discuss the amplitude-excitations to antiferromagnetic ordering and the CPT-Theorem. [14] and phase-excitations [10–13] for Laughlin quasipar- On this scale we identify the general mechanism, namely ticles [3] experienced by the BWF OPs in our FQHS Baryon-Antibaryon Confinement (BAC), which is re- space-time scenario. For this, we express the full BWF sponsible for the dynamics. It is based on the appear- antisymmetries and CPT-transformations. ance of a critical radius 2M = baryon = antibaryon for In Section VI, we express the Lagrangian in terms of ef- quark-antiquark confinement at the 1 Fermi scale and fective potential and effective kinetic for our FQHS space- the appropriate generalized dynamics—effective gravito- time scenario. For this, we apply both Newtonian and strong interaction. So in gravity plus electromagnetism, Einsteinian concepts to the q and q¯ confinement proof there is one interesting mechanism—radiation trapping and thereby incorporate effective force, effective mass, just on the horizon’s surface, that is a coherent particle and effective acceleration. accumulation structure [18] of fractional statistics and toroidal vortex [20]. The toroidal vortex, that stores in- In Section VII, we prepare a concise correspondence formation as in the holographic hypothesis [15], inter- to the authors of the Yuan-Mo-Wang (YMW) baryon- twines the baryon and antibaryon confinement mecha- antibaryon SU(3) model [17]. In doing so, we relay the nisms, creating BAC. The toroidal vortex forms between importance of the YMW model and report on a number the spherical shells defined at the inner confinement ra- of similarities between it and our confinement scenario. dius and the outer confinement radius = 3M Additionally, we contrast the models by identifying key 2M 3M (based on the effective potential); 2M and 3M corre- distinctions and suggest that our model may upgrade the spond to the “horizon” and “imaginary surface”, respec- YMW model’s state space and accuracy, and thereby ex- tively, in Figure 6 of Witten [15]; there are two distinct tend its prediction horizon. Ultimately, we realize that quantum critical points imposed by an antibaryon or both constructions exhibit remarkable similarities, and baryon for the double-stereographic gravitational super- that it may be possible in the
Recommended publications
  • The GW Plus Cumulant Method and Plasmonic Polarons: Application To
    The GW plus cumulant method and plasmonic polarons: application to the homogeneous electron gas Fabio Caruso and Feliciano Giustino Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom (Dated: August 28, 2018) We study the spectral function of the homogeneous electron gas using many-body perturbation theory and the cumulant expansion. We compute the angle-resolved spectral function based on the GW approximation and the ‘GW plus cumulant’ approach. In agreement with previous studies, the GW spectral function exhibits a spurious plasmaron peak at energies 1.5ωpl below the quasiparticle peak, ωpl being the plasma energy. The GW plus cumulant approach, on the other hand, reduces significantly the intensity of the plasmon-induced spectral features and renormalizes their energy relative to the quasiparticle energy to ωpl. Consistently with previous work on semiconductors, our results show that the HEG is characterized by the emergence of plasmonic polaron bands, that is, broadened replica of the quasiparticle bands, red-shifted by the plasmon energy. I. INTRODUCTION disappears when a higher level of theory is employed, such as the cumulant expansion.8 The cumulant expan- sion approach is the state-of-the-art technique for the The homogeneous electron gas (HEG) denotes a model description of satellites in photoemission and it accounts system of electrons interacting with a compensating ho- 1 for the interaction between electrons and plasmons em- mogeneous positively-charged background. The model, ploying an independent boson model.15 This model is ex- because of its simplicity, lends itself to analytical treat- actly solvable for a single core electron interacting with ment and has therefore provided the ideal test-case a plasmon bath, and it provides an explicit expression for the early development of many-body perturbation 8,16 2 for the spectral function.
    [Show full text]
  • Quasiparticle Scattering, Lifetimes, and Spectra Using the GW Approximation
    Quasiparticle scattering, lifetimes, and spectra using the GW approximation by Derek Wayne Vigil-Fowler A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Steven G. Louie, Chair Professor Feng Wang Professor Mark D. Asta Summer 2015 Quasiparticle scattering, lifetimes, and spectra using the GW approximation c 2015 by Derek Wayne Vigil-Fowler 1 Abstract Quasiparticle scattering, lifetimes, and spectra using the GW approximation by Derek Wayne Vigil-Fowler Doctor of Philosophy in Physics University of California, Berkeley Professor Steven G. Louie, Chair Computer simulations are an increasingly important pillar of science, along with exper- iment and traditional pencil and paper theoretical work. Indeed, the development of the needed approximations and methods needed to accurately calculate the properties of the range of materials from molecules to nanostructures to bulk materials has been a great tri- umph of the last 50 years and has led to an increased role for computation in science. The need for quantitatively accurate predictions of material properties has never been greater, as technology such as computer chips and photovoltaics require rapid advancement in the control and understanding of the materials that underly these devices. As more accuracy is needed to adequately characterize, e.g. the energy conversion processes, in these materials, improvements on old approximations continually need to be made. Additionally, in order to be able to perform calculations on bigger and more complex systems, algorithmic devel- opment needs to be carried out so that newer, bigger computers can be maximally utilized to move science forward.
    [Show full text]
  • Holography and Holomorphy in Quantum Field Theories and Gravity
    Departamento de F´ısica de Part´ıculas HOLOGRAPHY AND HOLOMORPHY IN QUANTUM FIELD THEORIES AND GRAVITY Eduardo Conde Pena Santiago de Compostela, abril de 2012. UNIVERSIDADE DE SANTIAGO DE COMPOSTELA Departamento de F´ısica de Part´ıculas HOLOGRAPHY AND HOLOMORPHY IN QUANTUM FIELD THEORIES AND GRAVITY Eduardo Conde Pena Santiago de Compostela, abril de 2012. UNIVERSIDADE DE SANTIAGO DE COMPOSTELA Departamento de F´ısica de Part´ıculas HOLOGRAPHY AND HOLOMORPHY IN QUANTUM FIELD THEORIES AND GRAVITY Tese presentada para optar ao grao de Doutor en F´ısica por: Eduardo Conde Pena Abril, 2012 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA Departamento de F´ısica de Part´ıculas Alfonso V´azquez Ramallo, Catedr´atico de F´ısica Te´orica da Universidade de Santiago de Compostela, CERTIFICO: que a memoria titulada “Holography and holomorphy in quantum field theories and gravity” foi realizada, baixo a mi˜na direcci´on, por Eduardo Conde Pena, no departamento de F´ısica de Part´ıculas desta Universidade e constit´ue o traballo de Tese que presenta para optar ao grao de Doutor en F´ısica. Asinado: Alfonso V´azquez Ramallo. Santiago de Compostela, abril de 2012. A mis padres What I cannot create, I cannot understand. Became famous when found in Feynman’s last chalkboard. Agradecementos En primer lugar me gustar´ıaagradecer a Alfonso Ramallo la oportunidad de hacer el doctorado bajo su tutela. Es alguien de quien un estudiante de doctorado tiene mucho que aprender: por ejemplo su metodolog´ıade trabajo, su dedicaci´on y su continua ilusi´on son excelentes valores para “un joven aprendiz”. Le tengo que agradecer las muchas veces que nos hemos sentado a hacer cuentas codo con codo, algo nada com´un y que alivia sobremanera la tortuosa iniciaci´on al mundo de la investigaci´on.
    [Show full text]
  • Photoemission Footprints of Extrinsic Plasmarons
    Photoemission footprints of extrinsic plasmarons B. Hellsing1;2∗ and V.M. Silkin2;3;4 1Department of Physics, Gothenburg University, S-41296 Gothenburg, Sweden 2Donostia International Physics Center (DIPC), 20018 San Sebasti´an,Spain 3Depto. de F´ısica de Materiales, Facultad de Ciencias Qu´ımicas, Universidad del Pa´ısVasco, Apdo. 1072, 20080 San Sebasti´an,Spain 4IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain A prediction how to experimentally distinguish excitations of extrinsic plasmarons from intrinsic plasmarons is presented. In surface systems where excitations of acoustic surface plasmons is possible it is shown that the photo-electron yield in normal photoemission should decay according to an inverse square root dependence with respect to the photon energy. A computational analysis of the system p(2×2)-K/Graphite confirms this prediction. PACS numbers: 73.21.Fg,73.20.Mf, 79.60.Dp INTRODUCTION THEORY The intention is to form a theory in order to calculate In photoemission experiments, photo-electrons carry the yield of extrinsic plasmaron excitations. The energy information of many-body interactions created by the loss induced by the escaping photo-electron in an ARPES photo-hole and by the escaping photo-electron itself. In experiment is given by the rate of electronic surface exci- the case of strong coupling between the photo-hole or in- tations. In first order time dependent perturbation the- duced density caused by the photo-electron, and plasmon ory, "golden-rule", we have that the rate of extrinsic excitations, the quasi particle picture breaks down and plasmaron excitation is given by [23] new loss peaks appear in the photoemission spectrum.
    [Show full text]
  • An Examination and Assessment of Available Incoherent Scattering S
    An Examination and Assessment of Available Incoherent Scattering S-Matrix Theory, also Compton Profile Information, and Their Impact on Photon Attenuation Coefficient Compilations J. H. Hubbell U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology 100 Bureau Drive Stop 8463 Gaithersburg, MD 20899-8463 QC 100 NIST .1156 NO. 6358 1999 An Examination and Assessment of Available Incoherent Scattering S-Matrix Theory, also Compton Profile Information, and Their Impact on Photon Attenuation Coefficient Compilations J. H. Hubbell U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology 100 Bureau Drive Stop 8463 Gaithersburg, MD 20899-8463 July 1999 U.S. DEPARTMENT OF COMMERCE William M. Daley, Secretary TECHNOLOGY ADMINISTRATION Gary R. Bachula, Acting Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Raymond G. Kammer, Director . An Examination and Assessment of Available Incoherent Scattering S-Matrix Theory, also Compton Profile Information, and their Impact on Photon Attenuation Coefficient Compilations* J. H. Hubbeir* 11830 Rocking Horse Road, Rockville, MD 20852 Abstract The Klein-Nishina formulae for the differential and integral cross sections for Compton (or incoherent) scattering of x-ray photons from atomic electrons assume that the electrons are free (unbound) and at rest, which is a good approximation for photons of the order of 1 MeV or higher, particularly for low-Z target materials. The probability for dislodging bound electrons can be taken into account at least approximately by including an incoherent scattering function S(x,Z) in the differential Klein-Nishina formula. Currently available systematic theoretical tabulations of S(x,Z), where x is a momentum transfer variable dependent on the photon deflection angle and the photon incident energy do not use S-matrix theory with its claimed higher accuracy.
    [Show full text]
  • Graphene Spectroscopy
    Colloquium: Graphene spectroscopy D. N. Basov and M. M. Fogler Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA A. Lanzara and Feng Wang Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Yuanbo Zhang ( 远波) State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China (Dated: July 28, 2014) Spectroscopic studies of electronic phenomena in graphene are reviewed. A variety of methods and techniques are surveyed, from quasiparticle spectroscopies (tunneling, photoemission) to methods probing density and current response (infrared optics, Raman) to scanning probe nanoscopy and ul- trafast pump-probe experiments. Vast complimentary information derived from these investigations is shown to highlight unusual properties of Dirac quasiparticles and many-body interaction effects in the physics of graphene. PACS numbers: 81.05.Uw, 73.20.-r, 03.65.Pm, 82.45.Mp CONTENTS (2D) allotrope of carbon is characterized by a number of su- perlative virtues (Geim, 2009), e.g., a record-high electronic I. Introduction1 mobility at ambient conditions (Morozov et al., 2008), excep- A. Scope of this review1 B. Graphene morphology2 tional mechanical strength (Lee et al., 2008a), and thermal C. Electronic structure of graphene neglecting interactions3 conductivity (Balandin et al., 2008; Ghosh et al., 2008) Re- D. Many-body effects and observables4 markable properties of graphene have ignited tremendous in- terest that resulted in approximately 50,000 publications at the II. Quasiparticle properties6 1 A. Dirac spectrum and chirality6 time of writing.
    [Show full text]
  • Spin Transport in a Quantum Hall Insulator
    applied sciences Article Spin Transport in a Quantum Hall Insulator Azaliya Azatovna Zagitova 1,*, Andrey Sergeevich Zhuravlev 1, Leonid Viktorovich Kulik 1 and Vladimir Umansky 2 1 Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia; [email protected] (A.S.Z.); [email protected] (L.V.K.) 2 Braun Center for Submicron Research, Weizmann Institute of Science, Rehovot 76100, Israel; [email protected] * Correspondence: [email protected] Abstract: A novel experimental optical method, based on photoluminescence and photo-induced resonant reflection techniques, is used to investigate the spin transport over long distances in a new, recently discovered collective state—magnetofermionic condensate. The given Bose–Einstein condensate exists in a purely fermionic system (ν = 2 quantum Hall insulator) due to the presence of a non-equilibrium ensemble of spin-triplet magnetoexcitons—composite bosons. It is found that the condensate can spread over macroscopically long distances of approximately 200 µm. The propagation velocity of long-lived spin excitations is measured to be 25 m/s. Keywords: spintronics; spin transport; excitations; low-dimensional systems; spectroscopy; the Bose–Einstein condensate 1. Introduction The growing interest in spintronics [1,2] has been incited by the prospect of build- Citation: Zagitova, A.A.; Zhuravlev, ing fast, energy-efficient devices utilizing the electron spin. In particular, there has been A.S.; Kulik, L.V.; Umansky, V. Spin rapid development in magnonics [3], which uses spin waves to transport information [4,5]. Transport in a Quantum Hall Magnonic systems are free of many disadvantages of electronic systems associated with Insulator.
    [Show full text]
  • Three-Particle Electron-Hole Complexes in Two-Dimensional Electron Systems
    Three-particle electron-hole complexes in two-dimensional electron systems V. A. Kuznetsov,1, 2, ∗ L. V. Kulik,2 M. D. Velikanov,3, 4 A. S. Zhuravlev,2 A. V. Gorbunov,2 S. Schmult,5, y and I. V. Kukushkin2, 1 1National Research University Higher School of Economics, 141700 Moscow, Russia 2Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia 3Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia 4Skolkovo Institute of Science and Technology, Nobel str. 3, 143026 Moscow, Russia 5Max-Planck-Institut f¨urFestk¨orperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany. (Dated: August 15, 2018) Three-particle complexes consisting of two holes in the completely filled zero electron Landau level and an excited electron in the unoccupied first Landau level are investigated in a quantum Hall insulator. The distinctive features of these three-particle complexes are an electron-hole mass symmetry and the small energy gap of the quantum Hall insulator itself. Theoretical calculations of the trion energy spectrum in a quantizing magnetic field predict that, besides the ground state, trions feature a hierarchy of excited bound states. In agreement with the theoretical simulations, we observe new photoluminescence lines related to the excited trion states. A relatively small energy gap allows the binding of three-particle complexes with magnetoplasma oscillations and formation of plasmarons. The plasmaron properties are investigated experimentally. PACS numbers: 73.43.Lp, 71.35.Pq, 78.55.-m, 73.21.Fg Keywords: Quantum Hall Effect, Photoluminescence, Trion, Plasmaron I. INTRODUCTION QW bound to it (D0 complex) and a photoexcited ex- 9 citon bound to a D0 complex .
    [Show full text]
  • Photoemission Footprints of Extrinsic Plasmarons
    PHYSICAL REVIEW B 92, 205421 (2015) Photoemission footprints of extrinsic plasmarons B. Hellsing1,2,* and V. M. Silkin2,3,4 1Department of Physics, Gothenburg University, S-41296 Gothenburg, Sweden 2Donostia International Physics Center (DIPC), 20018 San Sebastian,´ Spain 3Departamento de F´ısica de Materiales, Facultad de Ciencias Qu´ımicas, Universidad del Pa´ıs Vasco, Apartado 1072, 20080 San Sebastian,´ Spain 4IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain (Received 23 June 2015; revised manuscript received 21 October 2015; published 18 November 2015) A prediction of how to experimentally distinguish excitations of extrinsic plasmarons from intrinsic plasmarons is presented. In surface systems where excitations of acoustic surface plasmons are possible, it is shown that the photoelectron yield in normal photoemission should decay according to an inverse square-root dependence with respect to the photon energy. A computational analysis of the system p(2×2)-K/graphite confirms this prediction. DOI: 10.1103/PhysRevB.92.205421 PACS number(s): 73.21.Fg, 73.20.Mf, 79.60.Dp I. INTRODUCTION experiment is given by the rate of electronic surface excita- tions. Applying linear response theory the rate of extrinsic In photoemission experiments, photoelectrons carry infor- plasmaron excitation is given by [23] mation of many-body interactions created by the photohole and by the escaping photoelectron itself. In the case of −qz˜ strong coupling between the photohole or induced density 4π e W(ω,z˜) = Im[g(q,ω)], (1) caused by the photoelectron, and plasmon excitations, the A q q quasiparticle picture breaks down and new loss peaks appear in the photoemission spectrum.
    [Show full text]
  • Observation of Plasmarons in Quasi-Free-Standing Doped Graphene
    Observation of Plasmarons in Quasi-Free-Standing Doped Graphene Aaron Bostwick,1 Florian Speck,2 Thomas Seyller,2 Karsten Horn,3 Marco Polini,*4 Reza Asgari,*5 Allan H. MacDonald,6 Eli Rotenberg†1 1E. O. Lawrence Berkeley Laboratory, Advanced Light Source, MS6-2100, Berkeley, CA 94720 2Lehrstuhl für Technische Physik, Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany 3Dept. of Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany 4NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56126 Pisa, Italy” 5School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran 6Dept. of Physics, Univ. of Texas at Austin, 1 University Station C1600, Austin TX 78712 *These authors contributed equally to this work. †To whom correspondence should be addressed A hallmark of graphene is its unusual conical band structure that leads to a zero-energy band gap at a single Dirac crossing point. By measuring the spectral function of charge carriers in quasi-free-standing graphene with angle-resolved photoemission spectroscopy, we show that at finite doping the well-known linear Dirac spectrum does not provide a full description of the charge-carrying excitations. We observe composite “plasmaron” particles, which are bound states of charge carriers with plasmons, the density oscillations of the graphene electron gas. The Dirac crossing point is resolved into three crossings: the first between pure charge bands, the second between pure plasmaron bands, and the third a ring-shaped crossing between charge and plasmaron bands. Electrons in metals and semiconductors undergo many complex interactions, and most theoretical treatments make use of the quasiparticle approximation, in which independent electrons are replaced by electron- and hole- like quasiparticles interacting through a dynamically screened Coulomb force.
    [Show full text]
  • C 2020 by Yubo “Paul” Yang. All Rights Reserved
    c 2020 by Yubo \Paul" Yang. All rights reserved. ELECTRON-ION CORRELATION AND FINITE-SIZE EFFECTS IN QUANTUM MONTE CARLO SIMULATIONS BY YUBO \PAUL" YANG DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate College of the University of Illinois at Urbana-Champaign, 2020 Urbana, Illinois Doctoral Committee: Assistant Professor Bryan K. Clark, Chair Professor David M. Ceperley, Director of Research Professor James N. Eckstein Professor Taylor L. Hughes Abstract This thesis explores properties of a mixture of electrons and ions using the quantum Monte Carlo method. In many electronic structure studies, purely electronic properties are calculated on a static potential energy surface generated by \clamped" ions. This can lead to quantitative errors, for example, in the prediction of diamond carbon band gap, as well as qualitatively wrong behavior, especially when light nuclei such as protons are involved. In this thesis, we explore different ways to include effects of dynamic ions and tackle challenges that arise in the process. We benchmarked the diffusion Monte Carlo (DMC) method on electron- ion simulations consisting of small atoms and molecules. We found the method to be nearly exact once sufficiently accurate trial wave functions have been constructed. The difference between the dynamic-ion and static-ion simulations can mostly be explained by the diagonal Born-Oppenheimer correction. We applied this method to solid hydrogen at megabar pressures and tackled additional problems involving geometry optimization and finite-size effects. The phase diagram produced by our electron-ion DMC simulations differ from previous DMC studies, showing 50 GPa higher molecular-molecular transition and 150 GPa higher molecular-to-atomic transition pressures.
    [Show full text]
  • Atomically Controlled Surfaces, Interfaces and Nanostructures
    Atomically Controlled Surfaces, Interfaces and Nanostructures edited by Antonio Bianconi, Augusto Marcelli superstripes press S u p e r s t r i p e s P r e ss science series Atomically Controlled Surfaces, Interfaces and Nanostructures th Book of Abstracts of the 13 International Conference on Atomically Controlled Surfaces, Interfaces and Nanostructures Frascati Rome, Italy, October 9-15, 2016 ACSIN 2016 edited by Antonio Bianconi, Augusto Marcelli superstripes press S u p e r s t r i p e s P r e ss science series Science Series No.9 Title: Atomically Controlled Surfaces, Interfaces and Nanostructures Published on October 2016 by Superstripes Press, Rome, Italy http://www.superstripes.net/science/science.htm © 2016 Superstripes Press © 2016 Multiple authors Adil Acun, Akira Akaishi, Thierry Angot, Masaaki Araidai, Victor Aristov, Tetsuya Aruga, Mikhail Avdeev, Krzysztof Banas, Agnieszka Banas, Florian Banhart, Friedhelm Bechstedt, Atsushi Beniya, Mrinal Bera, Richard Berndt, Antonio Bianconi, Patrizia Borghetti, Federico Boscherini, Pavel Brunkov, Christian Brylinski, Antoni Bukaluk, Arrigo Calzolari, Giovanni Castorina, Paola Castrucci, Yuliang Chen, Chien Wei Chen, Mingshu Chen, Shirley Chiang, Shohei Chiashi, Deung-Jang Choi, Gianfelice Cinque, Antonio Cricenti, Mario D'Acunto, María E. Dávila, Oscar Rodriguez De La Fuente, Irene Paola De Padova, Okan Deniz, Daniele Di Gioacchino, Yi Du, Katarzyna Dziedzic-Kocurek, Konstantin Eltsov, Paul Evans, Jens Falta, Daniel Farias, Fernando Flores, Dillon Fong, Anna Fontcuberta i Morral, Katharina
    [Show full text]