Springer Tracts in Modern Physics
Total Page:16
File Type:pdf, Size:1020Kb
References 1. Abdalla, M.S.: Time-Dependent Harmonic Oscillator with Variable Mass Un- der the Action of a Driving Force. Phys. Rev. A 34 (1986) 4598-4605. 2. Abdalla, M.S.: Isotropic Time-Dependent Coupled Oscillators. Phys. Rev. A 85 (1987) 4160-4166. 3. Abers, E.S., Lee, B.W.: Gauge Theories. Phys. Rep. 9 (1973) 1-141. 4. Adamovski, J., Gerlach, B., Leschke, H.: Strong Coupling Limit of Polaron Energy, Revisited. Phys. Lett. A 79 (1980) 249-251. 5. Adamovski, J., Gedach, B., Leschke, H.: Explicit Evaluation of Certain Ganssian Functional Integrals Arising in Problems of Statistical Physics. J. Math. Phys. 23 (1982) 243-249. 6. Agarwal, G.S.: Brownian Motion of a Quantum Oscillator. Phys. Rev. A 4 (1971) 739-747. 7. Aharonov, Y., Bohm, D.: Significance of Electromagnetic Potentials in the Quantum Theory. Phys. Rev. 115 (1959) 485-491. 8. Ahmedov, H.: Path Integral Over Single-Sheeted Hyperboloid and Related Potentials. Turkish J. Phys. 21 (1997) 265-271. 9. Ahmedov, H., Duru, I.H.: Scattering from the Potential Barrier V = cosh -2 wx from the Path Integration over SO(I, 2). J. Phys. A: Math. Gen. 30 (1997) 173- 184. 10. Akhundova, E.A., Dodonov, V.V., Man'ko, V.I.: The Quasi-Classical Propa- gator of a Quantum Particle in a Uniform Field in a Hag Space. J. Phys. A: Math. Gen. 18 (1985) 467-477. 11. Albeverio, S.: Some Recent Developments and Applications of Path In- tegrals. In Path Integrals from meV to MeV, Bielefeld, 1985. Edited by M. C. Gutzwiller et al. World Scientific, Singapore, 1986, pp. 3-32. 12. Albeverio, S., Blanchard, Ph., Hcegh-Krohn, R.: Stationary Phase for the Feynman Integral and Trace Formula. In Functional Integration: Theory and Applications, Louvain-la-Neuve, 1979. Edited by J.P. Antoine, E. Tirapequi. Plenum Press, New York, 1980, pp. 23-41. Feynman Path Integrals, the Pois- son Formula and the Theta Function for the SchrSdinger Operators. In Trends in Applications of Pure Mathematics to Mechanics III. Edited by R. J. Knops. Pitman, New York, 1981, pp. 1-22. Feynman Path Integrals and the Trace For- mula for the Schrrdinger Operators. Commun. Math. Phys. 811 (1982) 49-76. 13. Albeverio, S., Blanchard, Ph., Hclegh-Krohn, R.: Some Applications of Func- tional Integration. In Mathematical Problems in Theoretical Physics, Proceed- ings of the IV. International Con]erence on Mathematical Physics, Berlin, 368 References 1981. Edited by R. Schrader, R. Seiler, D.A. Uhlenbrock. Lecture Notes in Physics 153. Springer, Berlin, Heidelberg, 1982, pp. 265-297. 14. Albeverio, S., Brzelniak, Z.: Finite Dimensional Approximation Approach to Oscillatory Integrals and Stationary Phase in Infinite Dimensions. J. Funct. Anal. 113 (1993) 177-244. Oscillatory Integrals on Hilbert Spaces and SchrS- clinger Equation with Magnetic Fields. J. Math. Phys. 36 (1995) 2135-2156. 15. Albeverio, S., Brzeiniak, Z., D~browski, L.: Time-Dependent Propagator with Point Interaction. Trieste Preprint ILAS/MS-8/1993, Workshop on Point In- teractions, Trieste, 1992. J. Phys.A: Math. Gen. 27 (1994) 4933-4943. Funda- mental Solution of the Heat and SchrSdinger Equations with Point Interaction. J.Funct.Anal. 130 (1995) 220-254. The Heat Equation with Point Interaction in L p Spaces. Integr. Equat. Oper. Th. 21 (1995) 127-138. 16. Albeverio, S., Combe, Ph., H0egh-Krohn, R., Rideau, G., Sirgue-CoUin, M., Sirgue, M., Stora, R. (Editors): Feynman Path Integrals. Lecture Notes in Physics 106. Springer, Berlin, Heidelberg, 1979. 17. Albeverio, S., F.Gesztesy, H0egh-Krohn, R.J., Holden, H.: Solvable Models in Quantum Mechanics. Springer, Berlin, Heidelberg, 1988. 18. Albeverio, S., H0egh-Krohn, R.J.: Mathematical Theory of Feynman Path In- tegrals. Edited by A. Dold, B. Eckmann. Lecture Notes in Mathematics 523. Springer, Berlin, Heidelberg, 1976. 19. Albeverio, S., Hcegh-Krohn, R.J.: Oscillatory Integrals and the Method of Stationary Phase in Infinitely Many Dimensions, with Applications to the Classical Limit of Quantum Mechanics. Invent. math. 40 (1977) 59-106. 20. Albeverio, S., Pachya, S., Scarletti, S.: A Short Overview of Mathematical Approaches to Functional Integration. In Functional Integration, Geometry and Strings, Proceedings of the XXV Karpacz Winter School of Theoretical Physics, Karpacz, 1989. Edited by Z. Haba, J. Sobczyk. Birkh~iuser, Basel, 1989, pp. 230-276. 21. Alexandrou, C., Fleischer, W., Rosenfelder, R.: Fourier Path Integrals, Partial Averaging, and the Polaron Problem. Phys. Rev. Lett. 65 (1990) 2615-2618. Alexandrou, C., Rosenfelder, R.: Stochastic Solution to Highly Nonlocal Ac- tions. The Polaron Problem. Phys. Rep. 215 (1992) 1-48. Rosenfelder, R., Schreiber., A.W.: Polaron Variational Methods in the Parti- cle Representation of Field Theory. 1. General Formalism. Phys. Rev. D 53 (1996) 3337-3353. 2. Numerical Results for the Propagator. Ibid 3354-3365. 22. Alicki, R.: Path Integrals and Stationary Phase Approximation for Quantum Dynamical Semigroups. Quadratic Systems. J. Math. Phys. 23 (1982) 1370- 1375. 23. Alley, T.M., Fainberg, V.Ya., Pak, N.K.: New Approach to the Path Integral for the Dirac Propagator. Phys. Rev. D 50 (1994) 6594-6598. Path Integral for Spin: A New Approach. Nuci. Phys. B 429 (1994) 321-343. 24. Ambjcrn, J., Durhuus, B., Jonsson, T.: A Random Walk Representation of the Dirac Propagator. Nucl.Phys. B 330 (1990) 509-522. 25. Anderson, A.: Operator Methods for Finding New Propagators from Old. Phys. Rev. D 37 (1988) 536-539. References 369 26. Anderson, A., Anderson, S.B.: Phase Space Path Integration of Integrable Quantum Systems. Ann.Phys.(N. Y.) 199 (1990) 155-186. 27. Antoine, J.-P., Tirapegni, E. (Editors): Functional Integration: Theory and Applications. Plenum Press, New York, 1980. 28. Antoine, M., Comtet, A., Desbois, J., Ouvry, S.: Magnetic Fields and Brownian Motion on the 2-Sphere. J. Phys. A: Math. Gen. 24 (1991) 2581-2586. 29. Aoki, K.: Heat Kernels and Superdeterminants of Laplace Operators on Super Riemann Surfaces. Commun. Math. Phys. 117 (1988) 405-429. 30. Apfeldorf, K.M., Orddfiez, C.: Coordinate Redefmition Invariance and "Extra" Terms. Nucl. Phys. B 479 (1996) 515-526. 31. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York, 1980. 32. Arnold, V.I., Avez, A.: Ergodic Problems o.[ Classical Mechanics. New York, 1986. 33. Arthurs, A.M.: Path Integrals in Polar Coordinates. Proc. Roy. Soc. (London) A 313 (1969) 445-452. 34. Arthurs, A.M.: Path Integrals in Curvilinear Coordinates. Proc. Roy. Soc. (Lon- don) A 318 (1970) 523-529. 35. Arthurs, A.M. (Editor): Functional Integration and Its Applications. Oxford University Press, London, 1975. 36. Aurich, R., Bolte, J.: Quantization Rules for Strongly Chaotic Systems. Mod. Phys. Lett. B 6 (1992) 1691-1719. 37. Aurich, R., Bolte, J., Matthies, C., Sieber, M., Steiner, F.: Crossing the En- tropy Barrier of Dynamical Zeta Functions. Physica D 63 (1993) 71-86. 38. Aurich, R., Hesse, T., Steiner, F.: On the Role of Non-Periodic Orbits in the Semiclassical Quantization of the Truncated Hyperbola Billiard. Phys. Rev. Lett. 74 (1995) 4408-4411. 39. Aurich, R., Matthies, C., Sieber, M., Steiner, F.: Novel Rule for Quantizing Chaos. Phys. Rev. Left. 68 (1992) 1629-1632. 40. Aurich, R., Schettler, F., Steiner, F.: Subtleties of Arithmetical Quantum Chaos. Phys. Rev. E 51 (1995) 4173-4202. 41. Aurich, R., Sieber, M., Steiner, F.: Quantum Chaos of the Hadamard- Gutzwiller Model. Phys. Rev. Lett. 61 (1988) 483-487. 42. Aurich, R., Steiner, F.: Periodic-Orbit Sum Rules for the Hadamard-Gutzwiller Model. Physica D 39 (1989) 169-193. Energy-Level Statistics of the Hada- mard-Gutzwiller Ensemble. Physica D 43 (1990) 155-180. From Classical Pe- riodic Orbits to the Quantization of Chaos. Proc. Roy. Soc. (London) A 437 (1992) 693-714. Exact Theory for the Quantum Eigenstates of a Strongly Chaotic System. Physica D 48 (1991) 445-470. Staircase Functions, Spectral Rigidity, and a Rule for Quantizing Chaos. Phys. Rev. A 45 (1992) 583-592. Asymptotic Distribution of the Pseudo-Orbits and the Generalized Euler Con- stant 7,a for a Family of Strongly Chaotic Systems. Phys. Rev. A 46 (1992) 771-781. Periodic-Orbit Theory of the Number Variance 572(L) of Strongly Chaotic Systems. Physica D 82 (1995) 266-287. 370 References 43. Babbit, D.G.: A Summation Procedure for Certain Feynman Integrals. J. Math. Phys. 4 (1963) 36-41. 44. Badralexe, E.: Feynman Path Integral for Dissipative Lagrangians. J. Phys. A: Math. Gen. 17 (1984) 569-574. 45. B/icker, A., Steiner, F., Stifter, P.: Spectral Statistics in the Quantized Car- dioid Billiard. Phys. Rev. E 52 (1995) 2463-2472. 46. Bakhrakh, V.L., Vetchinkin, S.I., Khristenko, S.V.: Green's Function of a Multidimensional Isotropic Harmonic Oscillator. Theor. Math. Phys. 12 (1972) 776-778. 47. Balachandran, A.P., Ramachandran, R., Rupertsberger, H.: Semiclassical Functional Methods for Arbitrary Hamiltonians. Phys. Rev. D 15 (1977) 457- 462. 48. Balazs, N.L., Voros, A.: Chaos on the Pseudosphere. Phys. Rep. 143 (1986) 109-240. 49. Baltes, H.P., Hilf, E.R.: Spectra o] Finite Systems. Bibliographisches Institut, Mannheim, 1976. 50. Baranov, A.M., Frolov, I.V., Shvarts, A.S.: Geometry of Two-Dimensional Superconformal Field Theories. Theor. Math. Phys. 70 (1987) 64-72. 51. Baranov, A.M., Manin, Yu.I., Frolov, I.V., Schwarz, A.S.: The Multiloop Con- tribution in the Fermionic String. Soy. J. Nucl. Phys. 43 (1986) 670-671. A Superanalog of the Selberg Trace Formula and Multiloop Contributions for Fermionic Strings. Commun. Math. Phys. 111 (1987) 373-392. 52. Baranov, A.M., Schwarz, A.S.: Multiloop Contribution to String Theory. JETP Lett. 42, 419-421 (1985) 419-421. On the Multiloop Contributions to the String Theory. Int. J. Mod. Phys. A 2 (1987) 1773-1796. 53. Bargmann, V.: On a Hilbert Space of Analytic Functions and an Associated Integral Transform. Part 1.