H. Cunea Habitat in Ottawa, Ontario (Origin of OT Ecotype) Or Athens, Ohio (Near Columbus, Origin of CO Ecotype)

Total Page:16

File Type:pdf, Size:1020Kb

H. Cunea Habitat in Ottawa, Ontario (Origin of OT Ecotype) Or Athens, Ohio (Near Columbus, Origin of CO Ecotype) Western University Scholarship@Western Electronic Thesis and Dissertation Repository 12-1-2011 12:00 AM Overwintering energetics of Lepidoptera: the effects of winter warming and thermal variability. Caroline M. Williams University of Western Ontario Supervisor Dr. Brent Sinclair The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Caroline M. Williams 2011 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Comparative and Evolutionary Physiology Commons Recommended Citation Williams, Caroline M., "Overwintering energetics of Lepidoptera: the effects of winter warming and thermal variability." (2011). Electronic Thesis and Dissertation Repository. 323. https://ir.lib.uwo.ca/etd/323 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. OVERWINTERING ENERGETICS OF LEPIDOPTERA: THE EFFECTS OF WINTER WARMING AND THERMAL VARIABILITY (Spine title: Overwintering energetics of Lepidoptera) (Thesis format: Integrated Article) by Caroline Margaret Williams Graduate Program in Biology A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Caroline Williams, 2011 THE UNIVERSITY OF WESTERN ONTARIO School of Graduate and Postdoctoral Studies CERTIFICATE OF EXAMINATION Supervisor Examiners ______________________________ ______________________________ Dr. Brent Sinclair Dr. Michael Angilletta Supervisory Committee ______________________________ Dr. John Millar ______________________________ Dr. Louise Milligan ______________________________ Dr. Louise Milligan ______________________________ Dr. James Staples ______________________________ Dr. Liz Webb The thesis by Caroline Margaret Williams entitled: Overwintering energetics of Lepidoptera: the effects of winter warming and thermal variability. is accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy ______________________ _______________________________ Date Chair of the Thesis Examination Board ii Abstract and Keywords Winter temperatures are changing rapidly, and although winter warming reduces cold stress for overwintering ectotherms, temperature-mediated increases in metabolic rate can decrease fitness in dormant insects by increasing consumption of energy reserves. Increases in thermal variability also increase energetic demands, due to non-linear thermal response curves. My objective was to quantify the negative effects of winter warming and increases in thermal variability on a range of Lepidopteran species. As overwintering insects rely on lipid catabolism, accurate lipid measurement is central to my dissertation; so I first compared four methods of lipid quantification; concluding thin layer chromatography was the only method sufficiently accurate and robust to variation in lipid composition. I then examined the physiological and life-history costs of winter warming in Erynnis propertius [EP], Papilio glaucus [PG], P. troilus [PT], and Hyphantria cunea [HC]. A simple increase in temperature caused lipid depletion in EP, but PT, PG and HC were insensitive to winter warming. In HC, this insensitivity was mediated by a plastic suppression of metabolism and a decrease in development time in the warmer winter. HC from their northern range edge had increased thermal sensitivity at the end of winter, as predicted by metabolic cold adaptation theory. In EP, I also investigated the impact of daily thermal variability on overwintering energetics, demonstrating a facultative and obligate suppression of thermal sensitivity in response to high daily thermal variability, which partially compensated for the increased energetic demands of the more variable environment. Modelling energy use with meteorological data demonstrated that phenology changes had disproportionate influence on energetics in variable environments; thus timing of entry into winter dormancy will strongly influence ectotherm fitness in temperate environments. Metabolic suppression in EP and HC are the first demonstrations of metabolic compensation in overwintering insects. Finally, I outline a framework to predict insect vulnerability to winter warming. Winter warming and increases in thermal variability may negatively impact the fitness of some overwintering insects, but diverse physiological mechanisms compensate for increased energetic demands over winter. iii Keywords: Temperature, energy, triacylglyceride, lipid, insect, phenotypic plasticity, local adaptation, thermal sensitivity, metabolic compensation, metabolic cold adaptation, development time, phenology. iv Co-Authorship Statement Chapter 1 will form part of a review on the effects of climate change on overwintering insects, with Brent J. Sinclair (BJS), who contributed to the conception of many of the ideas and provided editorial comments on the writing. Chapter 2 was published in similar form in the Journal of Insect Physiology (reprint permission in Appendix 1). I was the first author, with co-authors Raymond H. Thomas (RHT), Heath A. MacMillan (HAM), Katie E. Marshall (KEM) and BJS. RHT provided expert technical assistance with the TLC-FID; KEM provided advice on the laboratory assays and statistical analyses; HAM provided advice on the laboratory assays and helped prepare the figures, BJS provided advice on the laboratory assays, contributed to experimental design, and helped write the manuscript. Chapter 3 is currently under review at Climate Research with Jessica J. Hellmann (JJH) and BJS, who had creative input into the conception of the work, contributed to developing the experimental design, and helped write the manuscript. Chapter 4 is currently in preparation for submission to Functional Ecology, with Wesley D. Chick, who collected and cared for the insects, and BJS, who contributed to the conception of the study, experimental design and choice of methods, gave advice on data analysis, and helped write the manuscript. Chapter 5 is under review in similar form at PLoS ONE, with myself as the first author and KEM, HAM, Jason D.K. Dzurisin (JDKD), JJH, and BJS as co-authors. KEM, JJH and BJS contributed to experimental design; HAM, KEM, JDKD and BJS helped perform the experiments; KEM performed the non-linear modeling of metabolic rate - temperature relationships, KEM, JDKD and HAM helped prepare the figures; KEM, JJH and BJS helped write the manuscript. Chapter 6 will (with Chapter 1) form part of a review on the effects of climate change on overwintering insects, with BJS, who contributed to the conception of many of the ideas and provided editorial comments on the writing. v Acknowledgments First of all, thank you to my mother, Jill Proudfoot, for unwavering love and support, and for encouraging me to pursue the opportunities that the world has presented. Thank you also to my sister, Belinda Williams, for support, companionship, and being a great Aunty. After my mother, no one has influenced my life more than my supervisor, Brent Sinclair. When I was a young undergraduate student, Brent, then a doctoral student himself, supervised my third year project. He encouraged me to pursue a Master’s degree, which he then co-supervised from abroad, and some years later he again showed confidence in me by inviting me to join his lab to do my PhD. Since then, he has been an exemplary mentor, providing a stimulating and challenging academic environment that has pushed me to fulfill the potential he recognised many years ago. Since Liana was born, his understanding and support have made it possible for me to continue to meet my suddenly- multifaceted responsibilities. Thank you Brent, for your rigorous and conscientious supervision, and for your friendship. For Chris Guglielmo and Yolanda Morbey; words are inadequate to express my gratitude for taking Liana and I into your home and supporting me through my first year of combining motherhood and PhD. You have both provided not only personal support but also contributed to my academic development, generously giving advice on all manner of issues; personal, career, statistical, biochemical, and theoretical. Thank you also to Linus and Nora for friendship and tolerance of the vagaries of babies. A special thank you to my advisory committee, Jim Staples and Louise Milligan, for their advice, guidance and friendship, and to Jim for reading my thesis so carefully pre- submission. It improved a lot as a result of your perceptive and no-nonsense comments. Many thanks to John Steele, who has been a patient mentor, and has taught me a lot about insect biochemistry. I also want to express thanks for the mentorship and opportunities provided to me by Jessica Hellman, who has developed the West Coast study system and has been generous with encouragement, advice and critical comments on manuscripts. Thank you to Matthias Lorenz and David Gray for helpful advice and discussion on lipid vi measurement, and diapause termination, respectively. Thank you to Mhairi McFarlane, Peter Carson, Mary Gartshore, and Andrea Schiller for facilitating my access to field sites, and Willem Roosenburg for maintaining the Ohio iButtons. John Lighton and Barbara Joos provided patient and knowledgeable
Recommended publications
  • Eastern Persius Duskywing Erynnis Persius Persius
    COSEWIC Assessment and Status Report on the Eastern Persius Duskywing Erynnis persius persius in Canada ENDANGERED 2006 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION ENDANGERED WILDLIFE DES ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC 2006. COSEWIC assessment and status report on the Eastern Persius Duskywing Erynnis persius persius in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 41 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Production note: COSEWIC would like to acknowledge M.L. Holder for writing the status report on the Eastern Persius Duskywing Erynnis persius persius in Canada. COSEWIC also gratefully acknowledges the financial support of Environment Canada. The COSEWIC report review was overseen and edited by Theresa B. Fowler, Co-chair, COSEWIC Arthropods Species Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Évaluation et Rapport de situation du COSEPAC sur l’Hespérie Persius de l’Est (Erynnis persius persius) au Canada. Cover illustration: Eastern Persius Duskywing — Original drawing by Andrea Kingsley ©Her Majesty the Queen in Right of Canada 2006 Catalogue No. CW69-14/475-2006E-PDF ISBN 0-662-43258-4 Recycled paper COSEWIC Assessment Summary Assessment Summary – April 2006 Common name Eastern Persius Duskywing Scientific name Erynnis persius persius Status Endangered Reason for designation This lupine-feeding butterfly has been confirmed from only two sites in Canada.
    [Show full text]
  • Adaptation to Host Plants May Prevent Rapid Insect Responses to Climate Change
    Global Change Biology (2010) 16, 2923–2929, doi: 10.1111/j.1365-2486.2010.02177.x Adaptation to host plants may prevent rapid insect responses to climate change SHANNON L. PELINI1 , JESSICA A. KEPPEL2 , ANN E. KELLEY3 and JESSICA. J. HELLMANN Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA Abstract We must consider the role of multitrophic interactions when examining species’ responses to climate change. Many plant species, particularly trees, are limited in their ability to shift their geographic ranges quickly under climate change. Consequently, for herbivorous insects, geographic mosaics of host plant specialization could prohibit range shifts and adaptation when insects become separated from suitable host plants. In this study, we examined larval growth and survival of an oak specialist butterfly (Erynnis propertius) on different oaks (Quercus spp.) that occur across its range to determine if individuals can switch host plants if they move into new areas under climate change. Individuals from Oregon and northern California, USA that feed on Q. garryana and Q. kelloggii in the field experienced increased mortality on Q. agrifolia, a southern species with low nutrient content. In contrast, populations from southern California that normally feed on Q. agrifolia performed well on Q. agrifolia and Q. garryana and poorly on the northern, high elevation Q. kelloggii. Therefore, colonization of southern E. propertius in higher elevations and some northern locales may be prohibited under climate change but latitudinal shifts to Q. garryana may be possible. Where shifts are precluded due to maladaptation to hosts, populations may not accrue warm-adapted genotypes.
    [Show full text]
  • New Looks at and for Onespa, Buzyges, and Librita (Lepidoptera: Hesperiidae: Hesperiinae), with New Combinations and Descriptions of a New Genus and Six New Species
    INSECTA MUNDI A Journal of World Insect Systematics 0089 New looks at and for Onespa, Buzyges, and Librita (Lepidoptera: Hesperiidae: Hesperiinae), with new combinations and descriptions of a new genus and six new species George T. Austin and Andrew D. Warren McGuire Center for Lepidoptera and Biodiversity Florida Museum of Natural History University of Florida, P.O. Box 112710 Gainesville, Florida 32611 USA Date of Issue: July 24, 2009 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL George T. Austin and Andrew D. Warren New looks at and for Onespa, Buzyges, and Librita (Lepidoptera: Hesperiidae: Hesperiinae), with new combinations and descriptions of a new genus and six new species Insecta Mundi 0089: 1-55 Published in 2009 by Center for Systematic Entomology, Inc. P. O. Box 141874 Gainesville, FL 32614-1874 U. S. A. http://www.centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod taxon. Manuscripts considered for publication include, but are not limited to, systematic or taxonomic studies, revisions, nomenclatural changes, faunal studies, book reviews, phylo- genetic analyses, biological or behavioral studies, etc. Insecta Mundi is widely distributed, and refer- enced or abstracted by several sources including the Zoological Record, CAB Abstracts, etc. As of 2007, Insecta Mundi is published irregularly throughout the year, not as quarterly issues. As manuscripts are completed they are published and given an individual number. Manuscripts must be peer reviewed prior to submission, after which they are again reviewed by the editorial board to insure quality. One author of each submitted manuscript must be a current member of the Center for System- atic Entomology.
    [Show full text]
  • Invertebrates
    State Wildlife Action Plan Update Appendix A-5 Species of Greatest Conservation Need Fact Sheets INVERTEBRATES Conservation Status and Concern Biology and Life History Distribution and Abundance Habitat Needs Stressors Conservation Actions Needed Washington Department of Fish and Wildlife 2015 Appendix A-5 SGCN Invertebrates – Fact Sheets Table of Contents What is Included in Appendix A-5 1 MILLIPEDE 2 LESCHI’S MILLIPEDE (Leschius mcallisteri)........................................................................................................... 2 MAYFLIES 4 MAYFLIES (Ephemeroptera) ................................................................................................................................ 4 [unnamed] (Cinygmula gartrelli) .................................................................................................................... 4 [unnamed] (Paraleptophlebia falcula) ............................................................................................................ 4 [unnamed] (Paraleptophlebia jenseni) ............................................................................................................ 4 [unnamed] (Siphlonurus autumnalis) .............................................................................................................. 4 [unnamed] (Cinygmula gartrelli) .................................................................................................................... 4 [unnamed] (Paraleptophlebia falcula) ...........................................................................................................
    [Show full text]
  • Papilio (New Series) # 25 2016 Issn 2372-9449
    PAPILIO (NEW SERIES) # 25 2016 ISSN 2372-9449 ERNEST J. OSLAR, 1858-1944: HIS TRAVEL AND COLLECTION ITINERARY, AND HIS BUTTERFLIES by James A. Scott, Ph.D. in entomology University of California Berkeley, 1972 (e-mail: [email protected]) Abstract. Ernest John Oslar collected more than 50,000 butterflies and moths and other insects and sold them to many taxonomists and museums throughout the world. This paper attempts to determine his travels in America to collect those specimens, by using data from labeled specimens (most in his remaining collection but some from published papers) plus information from correspondence etc. and a few small field diaries preserved by his descendants. The butterfly specimens and their localities/dates in his collection in the C. P. Gillette Museum (Colorado State University, Fort Collins, Colorado) are detailed. This information will help determine the possible collection locations of Oslar specimens that lack accurate collection data. Many more biographical details of Oslar are revealed, and the 26 insects named for Oslar are detailed. Introduction The last collection of Ernest J. Oslar, ~2159 papered butterfly specimens and several moths, was found in the C. P. Gillette Museum, Colorado State University, Fort Collins, Colorado by Paul A. Opler, providing the opportunity to study his travels and collections. Scott & Fisher (2014) documented specimens sent by Ernest J. Oslar of about 100 Argynnis (Speyeria) nokomis nokomis Edwards labeled from the San Juan Mts. and Hall Valley of Colorado, which were collected by Wilmatte Cockerell at Beulah New Mexico, and documented Oslar’s specimens of Oeneis alberta oslari Skinner labeled from Deer Creek Canyon, [Jefferson County] Colorado, September 25, 1909, which were collected in South Park, Park Co.
    [Show full text]
  • Santa Monica Mountains Butterfly List
    Santa Monica Mountains Butterfly List Probable in Griffith Park Abundance Codes: A- Abundant C- Common Possible in Griffith Park U- Uncommon R- Rare ?- Not Yet Found Food Plant Flight Time Swallowtails Papilionidae Anise Swallowtail Papilio zelicaon Fennel or other carrot family All year Giant Swallowtail Papilio cresphones Citrus Mar-Oct Western Tiger Swallowtail Papilio rutulus Mostly sycamore; cottonwood, willow, alder All year Pale Swallowtail Papilio eurymedon Ceanothus, other buckthorn family Feb-Oct White and Sulphurs Pieridae Whites Becker's White Pontia beckerii Bladderpod Feb-Aug Checkered White Pontia protodice Mustards, native and non-native All year Cabbage White Pieris rapae Black mustard, wild radish, nasturtium All year Sara Orangetip Anthocharis sara Native mustards Feb-June Sulphurs Orange Sulphur Colias eurytheme Various pea family: lotus, clover, vetch All year Harford's Sulphur Colias harfordii Astragalus (locoweed or rattleweed) Apr-Sept California Dogface Colias eurydice False indigo (Amorpha californica) Mar-Sept Cloudless Sulphur Phoebis sennae Cassia (Senna) Mar-Oct Sleepy Orange Eurema nicippe Cassia (Senna) Mar-Oct Dainty Sulphur Nathalis iole Various sunflower family Mar-Nov Gossamer-Wings Lycaenidae Coppers Tailed Copper Lycaena arota Wild currant or goooseberry (Ribes) May-July Gorgon Copper Lycaena gorgon Wand Buckwheat (Eriogonum elongatum) Apr-July Hairstreaks Great Purple Hairstreak Atlides halesus Mistletoe in sycamores or cottonwood Mar-Oct California Hairstreak Satyrium californica Ceanothus (wild
    [Show full text]
  • OC Butterfly Host Plants.Xlsx
    plant scientific plant common butterfly scientific butterfly common Acmispon glaber Deerweed Callophrys perplexa Bramble Hairstreak Acmispon glaber Deerweed Colias eurytheme Orange Sulphur Acmispon glaber Deerweed Erynnis funeralis Funereal Duskywing Acmispon glaber Deerweed Glaucopsyche lygdamus Silvery Blue Acmispon glaber Deerweed Plebejus acmon Acmon Blue Acmispon glaber Deerweed Strymon avalona Avalon Hairstreak Amorpha californica False Indigo Leptotes marina Marine Blue Amorpha californica False indigo Strymon melinus Gray Hairstreak Amorpha californica False Indigo Zerene eurydice California Dogface Amsinckia sp. Fiddleneck Vanessa cardui Painted Lady Antirrhinum sp. Snapdragon Junonia coenia Buckeye Artemisia sp. Sagebrush Vanessa virginiensis American Lady Asclepias californica California Milkweed Danaus plexippus Monarch Asclepias eriocarpa Indian Milkweed Danaus plexippus Monarch Asclepias fascicularis Narrow-leafed Milkweed Danaus plexippus Monarch Astragalus douglasii Douglas's Milkvetch Colias alexandra harfordii Harford's Sulphur Astragalus douglasii Douglas's Milkvetch Cupido amyntula Western Tailed-Blue Atriplex sp. Saltbush Brephidium exilis Western Pygmy Blue Baccharis glutinosa Marsh Baccharis Calephelis nemesis Fatal Metalmark Bebbia juncea Sweetbush Calephelis wrighti Wright's Metalmark Castilleja sp. Indian Paintbrush Chlosyne leanira Leanira Checkerspot Caulanthus lasiophyllus California Mustard Pontia sisymbrii Spring White Ceanothus spp. Buckbrush Celastrina argiolus echo Echo Blue Ceanothus spp. Buckbrush Nymphalis
    [Show full text]
  • Climate-Driven Insect Herbivory in Mixed Coast Live Oak Woodlands Within the Mt
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Fall 2019 Climate-Driven Insect Herbivory in Mixed Coast Live Oak Woodlands Within the Mt. Hamilton Range, Santa Clara County Michelle Domocol San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Domocol, Michelle, "Climate-Driven Insect Herbivory in Mixed Coast Live Oak Woodlands Within the Mt. Hamilton Range, Santa Clara County" (2019). Master's Theses. 5061. DOI: https://doi.org/10.31979/etd.xuky-txw9 https://scholarworks.sjsu.edu/etd_theses/5061 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. CLIMATE-DRIVEN INSECT HERBIVORY IN MIXED COAST LIVE OAK WOODLANDS WITHIN THE MT. HAMILTON RANGE, SANTA CLARA COUNTY A Thesis Presented to The Faculty of the Department of Environmental Studies San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Michelle Domocol December 2019 © 2019 Michelle Domocol ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled CLIMATE-DRIVEN INSECT HERBIVORY IN MIXED COAST LIVE OAK WOODLANDS WITHIN THE MT. HAMILTON RANGE, SANTA CLARA COUNTY by Michelle Domocol APPROVED FOR THE DEPARTMENT OF ENVIRONMENTAL STUDIES SAN JOSÉ STATE UNIVERSITY December 2019 Lynne Trulio, Ph.D. Department of Environmental Studies Kristin Byrd, Ph.D. United States Geological Survey Kathryn Davis, Ph.D.
    [Show full text]
  • Plant-Pollinator Interactions of the Oak-Savanna: Evaluation of Community Structure and Dietary Specialization
    Plant-Pollinator Interactions of the Oak-Savanna: Evaluation of Community Structure and Dietary Specialization by Tyler Thomas Kelly B.Sc. (Wildlife Biology), University of Montana, 2014 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Biological Sciences Faculty of Science © Tyler Thomas Kelly 2019 SIMON FRASER UNIVERSITY SPRING 2019 Copyright in this work rests with the author. Please ensure that any reproduction or re-use is done in accordance with the relevant national copyright legislation. Approval Name: Tyler Kelly Degree: Master of Science (Biological Sciences) Title: Plant-Pollinator Interactions of the Oak-Savanna: Evaluation of Community Structure and Dietary Specialization Examining Committee: Chair: John Reynolds Professor Elizabeth Elle Senior Supervisor Professor Jonathan Moore Supervisor Associate Professor David Green Internal Examiner Professor [ Date Defended/Approved: April 08, 2019 ii Abstract Pollination events are highly dynamic and adaptive interactions that may vary across spatial scales. Furthermore, the composition of species within a location can highly influence the interactions between trophic levels, which may impact community resilience to disturbances. Here, I evaluated the species composition and interactions of plants and pollinators across a latitudinal gradient, from Vancouver Island, British Columbia, Canada to the Willamette and Umpqua Valleys in Oregon and Washington, United States of America. I surveyed 16 oak-savanna communities within three ecoregions (the Strait of Georgia/ Puget Lowlands, the Willamette Valley, and the Klamath Mountains), documenting interactions and abundances of the plants and pollinators. I then conducted various multivariate and network analyses on these communities to understand the effects of space and species composition on community resilience.
    [Show full text]
  • Erynnis Propertius
    Erynnis propertius English name Propertius duskywing Scientific name Erynnis propertius Family Hesperiidae (Skippers), subfamily Pyrginae (Spread-wing Skippers) Other scientific names none Risk status BC: vulnerable (S3); blue-listed Canada: COSEWIC: candidate for assessment (low priority) Global: secure (G5) Elsewhere: California – apparently secure (S4); Nevada– unranked (S?); Oregon – unranked (S?); Washington – vulnerable (S3), state monitoring as species of concern Range/Known distribution Propertius duskywings are found along the Pacific coast, from southern British Columbia, through Washington, Oregon, Nevada and California into Baja California, usually in association with oak species. In British Columbia, their range is limited to the Garry oak ecosystems of southeastern Vancouver Island and adjacent Gulf Islands (as far north as Hornby Island) and an isolated Garry oak site on Sumas Mountain. A few small populations have also been recorded at non- Garry oak sites in the Lower Mainland, north to Mount Currie. Although vulnerable, Propertius duskywings are still found in moderate numbers. They are the most common duskywings on the coast of southern British Columbia. Distribution of Erynnis propertius known sites for Georgia Depression populations Species at Risk in Garry Oak and Associated Ecosystems in British Columbia Erynnis.p65 1 4/14/03, 12:11 PM Erynnis propertius hooked Male, dorsal view ends on Female, dorsal view wingspan 3.9 cm antennae wingspan 3.9 cm milky white spots Male, ventral view Mating pair Erynnis propertius All photos: Crispin Guppy Field Description Propertius duskywing are large, dark brown skippers with hooked antennae, and are the largest duskywings (wingspan 3.0-3.9 cm) occurring in British Columbia.
    [Show full text]
  • Sentinels on the Wing: the Status and Conservation of Butterflies in Canada
    Sentinels on the Wing The Status and Conservation of Butterflies in Canada Peter W. Hall Foreword In Canada, our ties to the land are strong and deep. Whether we have viewed the coasts of British Columbia or Cape Breton, experienced the beauty of the Arctic tundra, paddled on rivers through our sweeping boreal forests, heard the wind in the prairies, watched caribou swim the rivers of northern Labrador, or searched for song birds in the hardwood forests of south eastern Canada, we all call Canada our home and native land. Perhaps because Canada’s landscapes are extensive and cover a broad range of diverse natural systems, it is easy for us to assume the health of our important natural spaces and the species they contain. Our country seems so vast compared to the number of Canadians that it is difficult for us to imagine humans could have any lasting effect on nature. Yet emerging science demonstrates that our natural systems and the species they contain are increas- ingly at risk. While the story is by no means complete, key indicator species demonstrate that Canada’s natural legacy is under pressure from a number of sources, such as the conversion of lands for human uses, the release of toxic chemicals, the introduction of new, invasive species or the further spread of natural pests, and a rapidly changing climate. These changes are hitting home and, with the globalization and expansion of human activities, it is clear the pace of change is accelerating. While their flights of fancy may seem insignificant, butterflies are sentinels or early indicators of this change, and can act as important messengers to raise awareness.
    [Show full text]
  • Translocation Experiments with Butterflies Reveal Limits to Enhancement of Poleward Populations Under Climate Change
    Translocation experiments with butterflies reveal limits to enhancement of poleward populations under climate change Shannon L. Pelinia,1, Jason D. K. Dzurisina, Kirsten M. Priora, Caroline M. Williamsb, Travis D. Marsicoa,2, Brent J. Sinclairb, and Jessica J. Hellmanna,3 aDepartment of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556; and bDepartment of Biology, University of Western Ontario, London, ON, Canada N6A 5B7 Edited by Paul R. Ehrlich, Stanford University, Stanford, CA, and approved May 13, 2009 (received for review January 12, 2009) There is a pressing need to predict how species will change their zation of new sites also could be limited by host plant availability in geographic ranges under climate change. Projections typically species that share their range boundary with host resources (6). assume that temperature is a primary fitness determinant and that In addition, populations at the range edge could be locally populations near the poleward (and upward) range boundary are adapted. Previous studies suggest that isolation, genetic drift, and preadapted to warming. Thus, poleward, peripheral populations local selection can lead to locally adapted forms, including at the will increase with warming, and these increases facilitate poleward range edge (7–9). If peripheral populations are not preadapted to range expansions. We tested the assumption that poleward, pe- warmer climates that are characteristic of their range center, ripheral populations are enhanced by warming using 2 butterflies climate change may not enhance peripheral populations (10–12). (Erynnis propertius and Papilio zelicaon) that co-occur and have Without enhancement to increase the number of potential colo- contrasting degrees of host specialization and interpopulation nists, poleward colonization could be restricted (3, 4, 13).
    [Show full text]