An Ecological Investigation of Stream Insects in Algonquin Park, Ontario

Total Page:16

File Type:pdf, Size:1020Kb

An Ecological Investigation of Stream Insects in Algonquin Park, Ontario UNIVERSITY OF TORONTO STUDIES BIOLOGICAL SERIES, No. 56 AN ECOLOGICAL INVESTIGATION OF STREAM INSECTS IN ALGONQUIN PARK, ONTARIO By Wm. M. SPRULES (From the Department of Zoology, University of Toronto) PUBLICATIONS OF THE ONTARIO FISHERIES RESEARCH LABORATORY, No. 69 TORONTO UNIVERSITY OF TORONTO PRESS 1947 1 it CONTENTS PAGE Abstract • ......1 Introduction ...................................................................................... 2 Historical Review ............................................................................. 3 Acknowledgments ............................................................................. 4 Description of Drainage Area, Streams and Station Sites ........... 5 Physico-Chemical Conditions ......................................................... 10 Apparatus and Methods ............................................................. 11 Oxygen .......................................................................................... 12 Hydrogen Ion Concentration ..................................................... 13 Type of Bottom ........................................................................... 13 Flow ................................................................................................ 13 Depth ............................................................................................. 14 Colour ............................................................................................ 14 Temperature ................................................................................. 14 Biological Conditions ........................................................................ 16 Apparatus and Methods ............................................................. 16 Sources of Error ....................................................................... 17 The Diurnal Emergence of Insects from a Rapids ................... 21 The Effect of a Freshet on the Insect Fauna of a Stream ....... 24 The Effect of Intermittent Flow on the Insect Fauna of a Rapids ................................................................................... 27 Quantitative Results ................................................................. 27 Qualitative Results 30 Discussion ................................................................................. 30 The Effect of Flooding by a Beaver Dam on the Insect Fauna of a Rapids ............................................................................ 34 The Insect Distribution on Different Types of Bottom ........... 37 Quantitative Results ............................................................... 38 Qualitative Results ................................................................... 40 (a) General Differences ..................................................... 40 Sand ............................................................................ 41 Muck ............................................................................ 41 Gravel .......................................................................... 41 Rubble .......................................................................... 41 (b) Species Differences ....................................................... 42 Plecoptera .................................................................... 42 Ephemeroptera ........................................................... 43 Trichoptera .................................................................. 45 PAGE Biological Conditions—(continued) Discussion ................................................................................. 47 The Distribution of Insects in Rocky Riffles at Various Dis- tances from the Source ....................................................... 52 Quantitative Results ................................................................. 53 Qualitative Results ................................................................... 55 Plecoptera ............................................................................. 55 Ephemeroptera ..................................................................... 60 Trichoptera ........................................................................... 64 Discussion ................................................................................. 67 Summary ............................................................................................ 71 List of Species ................................................................................... 73 Literature Cited ............................................................................... 79 TABLES PAGE 1. Average physical and chemical conditions at the stations in the summer of 1938 ............................................................................................ 10 2. Periods during which collections were made at stations in 1938, 1939, 1940, and 1941 .................................................................................. 12 3. Number of insects that emerged at stations 5, 6, and 7 from June 6 to August 31, 1939 and 1940 .................................................................. 25 4. Analysis of the total insect emergence at station 1 from June 1 to September 11 in 1938 and 1939 .......................................................... 29 5. Analysis of the total insect emergence from different types of bottom in 1938, 1939, and 1940 39 6. Average per cent composition of the insect emergence from rubble (rapid), gravel, muck, and sand bottoms, for 1938, 1939, and 1940 . ... 40 7. Total number of species of Plecoptera, Ephemeroptera, and Trichoptera that emerged from different types of bottom during the investigation. 42 8. Distribution of Plecoptera and relative abundance of each species on different types of bottom 43 9. Distribution of Ephemeroptera and relative abundance of each species on different types of bottom 44 10. Distribution of Trichoptera and relative abundance of each species on different types of bottom 46 11. Quantitative analysis of the total insect emergence from June 1 to August 31 at station 2 in 1939, station 3a in 1940, station 3 in 1938 and station 4 in 1939 ................................................................................ 53 12. Distribution of Plecoptera at stations 2, 3a, 3, and 4 showing the relative abundance of each species 55 13. Relative importance of the families of Plecoptera at the stations 57 14. Distribution of Ephemeroptera at stations 2, 3a, 3, and 4, showing the relative abundance of each species 61 15. Distribution of Trichoptera at stations 2, 3a, 3, and 4, showing the relative abundance of each species 65 FIGURES PAGE FIG. 1. Map of Mud Creek drainage system 6 FIG. 2. Illustrations of stations in Mud creek facing 8 FIG. 3. Illustration of station in the Madawaska river facing 9 FIG. 4. Cage-trap in position in the stream facing 9 FIG. 5. The total insect emergence for twenty-four-hour periods at sta- tions 4a and 4b from July 3rd to 13th inclusive, 1941, showing the results of collecting the cages once a day, every hour and at four-hour intervals. 19 FIG. 6. The total hourly emergence of insects and water temperature in degrees Fahrenheit at stations 4a and 4b from July 3rd to 7th, 1941, beginning at noon. 22 FIG. 7. Emergence polygons of representative species at station 1 in 1938 and 1939, showing the effect of the drying up of the stream on July 17th, 1938, on the insect emergence 31 FIG. 8. Relationship of numbers of species of insects and temperature of the water. 56 FIG. 9. Seasonal distribution of the emergence of representative Plecop- tera at station 4 in 1939 and 1940. 59 FIG. 10. Seasonal distribution of the emergence of representative Ephe- meroptera at station 2 in 1939. 62 FIG. 11. Seasonal distribution of the emergence of representative species of Trichoptera at Station 4 in 1938 and 1939. 66 AN ECOLOGICAL INVESTIGATION OF STREAM INSECTS IN ALGONQUIN PARK, ONTARIO ABSTRACT The effect of several ecological factors on the qualitative and quantitative dis- tribution of stream insects in Algonquin Park, Ontario, was determined from data obtained by use of the cage-trap method of sampling the emergence of in- sects from unit areas in streams, at regular daily intervals. Incidents that induced significant alterations in the physical nature of the streams were accompanied by marked reductions in the total insect population and a change in the faunal composition of the affected areas. Such incidents included a severe freshet, cessation of flow and subsequent desiccation of the stream bed, and transformation of a shallow rocky riffle into a deep sedimented pool by construction of a beaver dam. A correlation .was found between the total number of species in rocky riffle areas at different distances from the source, and the average water temperatures. The linear distribution of species was delimited by the water temperatures ob- taining in different sections of the stream and this was correlated with the thermal tolerance of the immature stages. Within the limits set by tempera:ture the distribution of species was affected by other factors including rate of flow and nature of the bottom, two factors which are closely interrelated and fundamentally inseparable. The diversity of the fauna decreased from rubble, through gravel, and muck, to sand as the variety of util- izable microhabitats decreased. The observed distribution on different types of bottom was related to habitat preference and associated morphological adaptations in the species. The seasonal emergence periods of
Recommended publications
  • Research Report110
    ~ ~ WISCONSIN DEPARTMENT OF NATURAL RESOURCES A Survey of Rare and Endangered Mayflies of Selected RESEARCH Rivers of Wisconsin by Richard A. Lillie REPORT110 Bureau of Research, Monona December 1995 ~ Abstract The mayfly fauna of 25 rivers and streams in Wisconsin were surveyed during 1991-93 to document the temporal and spatial occurrence patterns of two state endangered mayflies, Acantha­ metropus pecatonica and Anepeorus simplex. Both species are candidates under review for addition to the federal List of Endang­ ered and Threatened Wildlife. Based on previous records of occur­ rence in Wisconsin, sampling was conducted during the period May-July using a combination of sampling methods, including dredges, air-lift pumps, kick-nets, and hand-picking of substrates. No specimens of Anepeorus simplex were collected. Three specimens (nymphs or larvae) of Acanthametropus pecatonica were found in the Black River, one nymph was collected from the lower Wisconsin River, and a partial exuviae was collected from the Chippewa River. Homoeoneuria ammophila was recorded from Wisconsin waters for the first time from the Black River and Sugar River. New site distribution records for the following Wiscon­ sin special concern species include: Macdunnoa persimplex, Metretopus borealis, Paracloeodes minutus, Parameletus chelifer, Pentagenia vittigera, Cercobrachys sp., and Pseudiron centra/is. Collection of many of the aforementioned species from large rivers appears to be dependent upon sampling sand-bottomed substrates at frequent intervals, as several species were relatively abundant during only very short time spans. Most species were associated with sand substrates in water < 2 m deep. Acantha­ metropus pecatonica and Anepeorus simplex should continue to be listed as endangered for state purposes and receive a biological rarity ranking of critically imperiled (S1 ranking), and both species should be considered as candidates proposed for listing as endangered or threatened as defined by the Endangered Species Act.
    [Show full text]
  • Isoperla Bilineata (Group)
    Steven R Beaty Biological Assessment Branch North Carolina Division of Water Resources [email protected] 2 DISCLAIMER: This manual is unpublished material. The information contained herein is provisional and is intended only to provide a starting point for the identification of Isoperla within North Carolina. While many of the species treated here can be found in other eastern and southeastern states, caution is advised when attempting to identify Isoperla outside of the study area. Revised and corrected versions are likely to follow. The user assumes all risk and responsibility of taxonomic determinations made in conjunction with this manual. Recommended Citation Beaty, S. R. 2015. A morass of Isoperla nymphs (Plecoptera: Perlodidae) in North Carolina: a photographic guide to their identification. Department of Environment and Natural Resources, Division of Water Resources, Biological Assessment Branch, Raleigh. Nymphs used in this study were reared and associated at the NCDENR Biological Assessment Branch lab (BAB) unless otherwise noted. All photographs in this manual were taken by the Eric Fleek (habitus photos) and Steve Beaty (lacinial photos) unless otherwise noted. They may be used with proper credit. 3 Keys and Literature for eastern Nearctic Isoperla Nymphs Frison, T. H. 1935. The Stoneflies, or Plecoptera, of Illinois. Illinois Natural History Bulletin 20(4): 281-471. • while not containing species of isoperlids that occur in NC, it does contain valuable habitus and mouthpart illustrations of species that are similar to those found in NC (I. bilineata, I richardsoni) Frison, T. H. 1942. Studies of North American Plecoptera with special reference to the fauna of Illinois. Illinois Natural History Bulletin 22(2): 235-355.
    [Show full text]
  • TB142: Mayflies of Maine: an Annotated Faunal List
    The University of Maine DigitalCommons@UMaine Technical Bulletins Maine Agricultural and Forest Experiment Station 4-1-1991 TB142: Mayflies of aine:M An Annotated Faunal List Steven K. Burian K. Elizabeth Gibbs Follow this and additional works at: https://digitalcommons.library.umaine.edu/aes_techbulletin Part of the Entomology Commons Recommended Citation Burian, S.K., and K.E. Gibbs. 1991. Mayflies of Maine: An annotated faunal list. Maine Agricultural Experiment Station Technical Bulletin 142. This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Technical Bulletins by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. ISSN 0734-9556 Mayflies of Maine: An Annotated Faunal List Steven K. Burian and K. Elizabeth Gibbs Technical Bulletin 142 April 1991 MAINE AGRICULTURAL EXPERIMENT STATION Mayflies of Maine: An Annotated Faunal List Steven K. Burian Assistant Professor Department of Biology, Southern Connecticut State University New Haven, CT 06515 and K. Elizabeth Gibbs Associate Professor Department of Entomology University of Maine Orono, Maine 04469 ACKNOWLEDGEMENTS Financial support for this project was provided by the State of Maine Departments of Environmental Protection, and Inland Fisheries and Wildlife; a University of Maine New England, Atlantic Provinces, and Quebec Fellow­ ship to S. K. Burian; and the Maine Agricultural Experiment Station. Dr. William L. Peters and Jan Peters, Florida A & M University, pro­ vided support and advice throughout the project and we especially appreci­ ated the opportunity for S.K. Burian to work in their laboratory and stay in their home in Tallahassee, Florida.
    [Show full text]
  • AN ECOLOGICAL INVESTIGA Tlon of STREAM INSECTSIN
    62 EFFECTS OFTHE ENVIRONMENTON ANIMAL ACTIVITY UNIVERSITYOF TORONTO STUDIES BIOLOGICAL SERIES, No. 56 MELLANB~, K. 1940.Temperature coefficients and acclimatization. ~ature 14 165-166. 6: Pxxrrx, C. F. A. 1923. On the physiology of amoeboid movement II. The elf of temperature, Brit. J. Exp. Bio!. 1: 519-538. eet POLnIAXTI, O. 1914. Uber die Asphyxie der See-und Susswasserfische an d Luft und uber die postrespiratorische Dauer der Herzpulsationen.. At: AN ECOLOGICAL INVESTIGA TlON OF Anat. u. Physiol. Abt. 436-519. EiiTTER,A. 1914. Temperaturkoeffizienten. Zeits. aJlg. Physio!. 16: 574-627. STREAM INSECTS IN ALGONQUIN PARKI REYXOLDSOYT, . B. 1943. A comparative account of the life cycles of Lumbricil/ u s lineazus Mul!. and Enclvytraeus albidus Henle in relation to temperature. AIlIl ONTARIO Appl.BioI. 30: 60-66. Scorr, G. W. ms. 1943. Certain aspects of the behaviour of frog tadpoles and fish with respect to temperature. Doctor's thesis in the library of the Uni- versity of Toronto. By SPE..'lCER,W. P. 1939. Diurnal activity rhythms in fresh-water fishes. Ohio J. Sci. 39: 119-132. Wm. M. SPRULES Su"MNER, F. B. and P. DOUDOROFF. 1938. Some experiments upon temperature (From the Department of Zoology, acclimatization and respiratory metabolism in fishes. Biol, BuJl. 74: 403-429. University of Toronto) TANG, PEl-SUNG. 1938. On the rate of oxygen consumption of tissues and lower organisms asa function of oxygen tension. Quart. Rev. Bio!. 8: 260-274. TCHANG-SI and YUNG-Prn Lro. 1946. On the artificial propagation of Tsing-fish (Matsya sinensis (Bleeker» from Yang- Tsung lake, Yunnan Province, China.
    [Show full text]
  • Diversity and Ecosystem Services of Trichoptera
    Review Diversity and Ecosystem Services of Trichoptera John C. Morse 1,*, Paul B. Frandsen 2,3, Wolfram Graf 4 and Jessica A. Thomas 5 1 Department of Plant & Environmental Sciences, Clemson University, E-143 Poole Agricultural Center, Clemson, SC 29634-0310, USA; [email protected] 2 Department of Plant & Wildlife Sciences, Brigham Young University, 701 E University Parkway Drive, Provo, UT 84602, USA; [email protected] 3 Data Science Lab, Smithsonian Institution, 600 Maryland Ave SW, Washington, D.C. 20024, USA 4 BOKU, Institute of Hydrobiology and Aquatic Ecology Management, University of Natural Resources and Life Sciences, Gregor Mendelstr. 33, A-1180 Vienna, Austria; [email protected] 5 Department of Biology, University of York, Wentworth Way, York Y010 5DD, UK; [email protected] * Correspondence: [email protected]; Tel.: +1-864-656-5049 Received: 2 February 2019; Accepted: 12 April 2019; Published: 1 May 2019 Abstract: The holometabolous insect order Trichoptera (caddisflies) includes more known species than all of the other primarily aquatic orders of insects combined. They are distributed unevenly; with the greatest number and density occurring in the Oriental Biogeographic Region and the smallest in the East Palearctic. Ecosystem services provided by Trichoptera are also very diverse and include their essential roles in food webs, in biological monitoring of water quality, as food for fish and other predators (many of which are of human concern), and as engineers that stabilize gravel bed sediment. They are especially important in capturing and using a wide variety of nutrients in many forms, transforming them for use by other organisms in freshwaters and surrounding riparian areas.
    [Show full text]
  • A Phylogenetic Review of the Species Groups of Phylocentropus Banks (Trichoptera: Dipseudopsidae)
    Zoosymposia 18: 143–152 (2020) ISSN 1178-9905 (print edition) https://www.mapress.com/j/zs ZOOSYMPOSIA Copyright © 2020 · Magnolia Press ISSN 1178-9913 (online edition) https://doi.org/10.11646/zoosymposia.18.1.18 http://zoobank.org/urn:lsid:zoobank.org:pub:964C864A-89AC-4ECC-B4D2-F5ACD9F2C05C A phylogenetic review of the species groups of Phylocentropus Banks (Trichoptera: Dipseudopsidae) JOHN S. WEAVER USDA, 230-59 International Airport Cen. Blvd., Bldg. C, Suite 100, Rm 109, Jamaica, New York, 11431, USA. [email protected]; https://orcid.org/0000-0002-5684-0899 ABSTRACT A phylogenetic review of the three species groups of the caddisfly genus Phylocentropus Banks, proposed by Ross (1965), is provided. The Phylocentropus auriceps Species Group contains 9 species: †P. antiquus, P. auriceps, †P. cretaceous, †P. gelhausi, †P. ligulatus, †P. simplex, †P. spiniger, †P. succinolebanensis, and †P. swolenskyi,; the P. placidus Species Group, 4 species: P. carolinus, P. harrisi, P. lucidus, and P. placidus; and the P. orientalis Species Group, 7 species: P. anas, P. narumonae, P. ngoclinh, P. orientalis, P. shigae, P. tohoku, and P. vietnamellus. A hypothetical phylogenetic tree of the genus is presented along with its historic biogeography. Keywords: Trichoptera, Dipseudopsidae, Phylocentropus, amber, systematics, phylogeny, biogeography, Cretaceous, Eocene Ross (1965) proposed three species groups for the genus Phylocentropus which at the time contained 10 spe- cies: 6 extant species (4 from eastern North America and 2 from eastern Asia) and 4 extinct species from Baltic amber. Since then 10 additional species of Phylocentropus have been discovered: 6 extant species (1 from southeastern North America and 5 from Southeast Asia) and 4 fossil species from New Jersey and Lebanese amber.
    [Show full text]
  • A New Species of Isoperla Banks (Plecoptera: Perlodidae) from the Southern Appalachians, with Notes on the I
    Verdone, C.J. and B.C. Kondratieff. 2017. A new species of Isoperla Banks (Plecoptera: Perlodidae) from the southern Appalachians, with notes on the I. montana group. Illiesia, 13(12):111-126. https://doi.org/10.25031/2017/13.12 http://zoobank.org/ urn:lsid:zoobank.org:pub:39554E35-3E42-4BC1-AF04-3DC5ABD92DAC A NEW SPECIES OF ISOPERLA BANKS (PLECOPTERA: PERLODIDAE) FROM THE SOUTHERN APPALACHIANS, WITH NOTES ON THE I. MONTANA GROUP Chris J. Verdone1 and Boris C. Kondratieff1 1 Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, 80523, U.S.A. E-mail: [email protected] E-mail: [email protected] ABSTRACT A new species, Isoperla dewalti Verdone & Kondratieff, 2017, is described from the Appalachian Mountains of North Carolina, Tennessee, and Virginia. The new species is proposed based on details of the male aedeagus, paraprocts, vesicle, general body coloration, female subgenital plate, and uniqueness of the ovum chorion. Supporting data includes color images and scanning electron micrographs. Isoperla smithi Szczytko and Kondratieff, 2015 is synonymized with I. nelsoni Szczytko and Kondratieff, 2015 based on examination of additional material. Previously unreported records of I. montana (Banks, 1898) and I. nelsoni are presented. Keywords: Plecoptera, stonefly, Perlodidae, Isoperla dewalti Verdone & Kondratieff, 2017, Appalachian Mountains, Great Smoky Mountain National Park, North Carolina, Tennessee, Virginia INTRODUCTION Remarkably, an additional undescribed species of Isoperla Banks is the most diverse Plecoptera Isoperla was recently discovered while studying the genus in the Nearctic Region with 84 described conservation status of stonefly species in the species (DeWalt et al. 2017). Szczytko and southern Appalachians of North Carolina, Kondratieff (2015) recently described 22 new species Tennessee, and Virginia.
    [Show full text]
  • Changes to the Fossil Record of Insects Through Fifteen Years of Discovery
    This is a repository copy of Changes to the Fossil Record of Insects through Fifteen Years of Discovery. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/88391/ Version: Published Version Article: Nicholson, David Blair, Mayhew, Peter John orcid.org/0000-0002-7346-6560 and Ross, Andrew J (2015) Changes to the Fossil Record of Insects through Fifteen Years of Discovery. PLosOne. e0128554. https://doi.org/10.1371/journal.pone.0128554 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ RESEARCH ARTICLE Changes to the Fossil Record of Insects through Fifteen Years of Discovery David B. Nicholson1,2¤*, Peter J. Mayhew1, Andrew J. Ross2 1 Department of Biology, University of York, York, United Kingdom, 2 Department of Natural Sciences, National Museum of Scotland, Edinburgh, United Kingdom ¤ Current address: Department of Earth Sciences, The Natural History Museum, London, United Kingdom * [email protected] Abstract The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009.
    [Show full text]
  • Bibliographia Trichopterorum
    Entry numbers checked/adjusted: 23/10/12 Bibliographia Trichopterorum Volume 4 1991-2000 (Preliminary) ©Andrew P.Nimmo 106-29 Ave NW, EDMONTON, Alberta, Canada T6J 4H6 e-mail: [email protected] [As at 25/3/14] 2 LITERATURE CITATIONS [*indicates that I have a copy of the paper in question] 0001 Anon. 1993. Studies on the structure and function of river ecosystems of the Far East, 2. Rep. on work supported by Japan Soc. Promot. Sci. 1992. 82 pp. TN. 0002 * . 1994. Gunter Brückerman. 19.12.1960 12.2.1994. Braueria 21:7. [Photo only]. 0003 . 1994. New kind of fly discovered in Man.[itoba]. Eco Briefs, Edmonton Journal. Sept. 4. 0004 . 1997. Caddis biodiversity. Weta 20:40-41. ZRan 134-03000625 & 00002404. 0005 . 1997. Rote Liste gefahrdeter Tiere und Pflanzen des Burgenlandes. BFB-Ber. 87: 1-33. ZRan 135-02001470. 0006 1998. Floods have their benefits. Current Sci., Weekly Reader Corp. 84(1):12. 0007 . 1999. Short reports. Taxa new to Finland, new provincial records and deletions from the fauna of Finland. Ent. Fenn. 10:1-5. ZRan 136-02000496. 0008 . 2000. Entomology report. Sandnats 22(3):10-12, 20. ZRan 137-09000211. 0009 . 2000. Short reports. Ent. Fenn. 11:1-4. ZRan 136-03000823. 0010 * . 2000. Nattsländor - Trichoptera. pp 285-296. In: Rödlistade arter i Sverige 2000. The 2000 Red List of Swedish species. ed. U.Gärdenfors. ArtDatabanken, SLU, Uppsala. ISBN 91 88506 23 1 0011 Aagaard, K., J.O.Solem, T.Nost, & O.Hanssen. 1997. The macrobenthos of the pristine stre- am, Skiftesaa, Haeylandet, Norway. Hydrobiologia 348:81-94.
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]
  • Freshwater Biological Traits Database, (Report Title) Supporting Document
    Center for Applied Bioassessment & Biocriteria Midwest Biodiversity Institute P.O. Box 21561 Columbus, OH 43221-0561 Temporal Change in Regional Reference Condition as a Potential Indicator of Global Climate Change: Analysis of the Ohio Regional Reference Condition Database (1980-2006) Final Project Report to: Tetratech, Inc. Center for Ecological Sciences 400 Red Brook Blvd. Suite 200 Owings Mills, MD 21117 Anna Hamilton, Project Manager April 15, 2009 MBI Technical Report MBI/2009-2-1 Edward T. Rankin, Senior Research Associate Voinovich Center for Leadership and Public Affairs The Ridges, Building 22 Ohio University Athens, OH 45701 and Chris O. Yoder, Research Director Center for Applied Bioassessment and Biocriteria Midwest Biodiversity Institute P.O. Box 21541 Columbus, OH 43221-0541 MBI Ohio Reference Condition Trends April 15, 2009 List of Tables Table 1. Summary of Ohio EPA regional reference site network including original sites (1980-89) and updates via first (1990-99) and second round resampling (2000-06) that were used in our data analyses .................................................................................................. Table 2. Mayfly taxa from reference sites in Ohio that abruptly appeared (Later) or disappeared (Earlier) in the Ohio dataset and explanation for change. .......................... Table 3. Sub-components of the Ohio QHEI which were used to score a Hydro-QHEI and current and depth sub-scores. .......................................................................................... Table 4. Average and range of years represented by original reference site data and re- sampled (latest) data by Index and stream size category (for fish).... ................................ Table 5. Original Ohio biocriteria (O), recalculated biocriteria (R) using similar sites, and new biocriteria (N) using the latest data from re-sampling of original reference sites.
    [Show full text]
  • Ephemeroptera, Plecoptera, Megaloptera, and Trichoptera of Great Smoky Mountains National Park
    The Great Smoky Mountains National Park All Taxa Biodiversity Inventory: A Search for Species in Our Own Backyard 2007 Southeastern Naturalist Special Issue 1:159–174 Ephemeroptera, Plecoptera, Megaloptera, and Trichoptera of Great Smoky Mountains National Park Charles R. Parker1,*, Oliver S. Flint, Jr.2, Luke M. Jacobus3, Boris C. Kondratieff 4, W. Patrick McCafferty3, and John C. Morse5 Abstract - Great Smoky Mountains National Park (GSMNP), situated on the moun- tainous border of North Carolina and Tennessee, is recognized as one of the most highly diverse protected areas in the temperate region. In order to provide baseline data for the scientifi c management of GSMNP, an All Taxa Biodiversity Inventory (ATBI) was initiated in 1998. Among the goals of the ATBI are to discover the identity and distribution of as many as possible of the species of life that occur in GSMNP. The authors have concentrated on the orders of completely aquatic insects other than odonates. We examined or utilized others’ records of more than 53,600 adult and 78,000 immature insects from 545 locations. At present, 469 species are known from GSMNP, including 120 species of Ephemeroptera (mayfl ies), 111 spe- cies of Plecoptera (stonefl ies), 7 species of Megaloptera (dobsonfl ies, fi shfl ies, and alderfl ies), and 231 species of Trichoptera (caddisfl ies). Included in this total are 10 species new to science discovered since the ATBI began. Introduction Great Smoky Mountains National Park (GSMNP) is situated on the border of North Carolina and Tennessee and is comprised of 221,000 ha. GSMNP is recognized as one of the most diverse protected areas in the temperate region (Nichols and Langdon 2007).
    [Show full text]