These Highlights Do Not Include All the Information Needed to Use SPIRONOLACTONE TABLETS Safely and Effectively

Total Page:16

File Type:pdf, Size:1020Kb

These Highlights Do Not Include All the Information Needed to Use SPIRONOLACTONE TABLETS Safely and Effectively SPIRONOLACTONE- spironolactone tablet REMEDYREPACK INC. ---------- HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use SPIRONOLACTONE TABLETS safely and effectively. See full prescribing information for SPIRONOLACTONE TABLETS. SPIRONOLACTONE tablets, for oral use Initial U.S. Approval: 1960 INDICATIONS AND USAGE Spironolactone is an aldosterone antagonist indicated for: The treatment of NYHA Class III-IV heart failure and reduced ejection fraction to increase survival, manage edema, and to reduce the need for hospitalization for heart failure ( 1.1) Use as an add-on therapy for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions ( 1.2) The management of edema in adult patients who are cirrhotic when edema is not responsive to fluid and sodium restrictions and in the setting of nephrotic syndrome when treatment of the underlying disease, restriction of fluid and sodium intake, and the use of other diuretics produce an inadequate response ( 1.3). Treatment of primary hyperaldosternism for: ( 1.4) Short-term preoperative treatment Long-term maintenance for patients with discrete aldosterone-producing adrenal adenomas who are not candidates for surgery and patients with bilateral micro or macronodular adrenal hyperplasia DOSAGE AND ADMINISTRATION Heart Failure: Initiate treatment at 25 mg once daily ( 2.2). Hypertension: Initiate treatment at 25 mg to 100 mg daily in either single or divided doses ( 2.3). Edema: Initiate therapy in a hospital setting and titrate slowly. The recommended initial daily dose is 100 mg in single or divided doses ( 2.4). Primary hyperaldosteronism: Initiate treatment at 100 mg to 400 mg in preparation for surgery. In patients unsuitable for surgery use the lowest effective dosage determined for the individual patient ( 2.5). DOSAGE FORMS AND STRENGTHS Tablets: 25 mg, 50 mg, and 100 mg (3) (3) CONTRAINDICATIONS Spironolactone tablets are contraindicated in patients with (4): (4) Hyperkalemia Addison's disease Concomitant use of eplerenone WARNINGS AND PRECAUTIONS Hyperkalemia: Monitor serum potassium within one week of initiation and regularly thereafter ( 5.1). Hypotension and Worsening Renal Function: Monitor volume status and renal function periodically ( 5.2). Electrolyte and Metabolic Abnormalities: Monitor serum electrolytes, uric acid and blood glucose periodically ( 5.3). Gynecomastia: Spironolactone can cause gynecomastia ( 5.4). ADVERSE REACTIONS The most common adverse reaction with spironolactone treatment is gynecomastia ( 5.4, 6). To report SUSPECTED ADVERSE REACTIONS, contact Zydus Pharmaceuticals USA Inc. at 1- 877-993-8779 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch. 877-993-8779 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch. DRUG INTERACTIONS Agents increasing serum potassium: Concomitant administration can lead to hyperkalemia ( 5.1, 7.1). Lithium: Increased risk of lithium toxicity ( 7.2). NSAIDs: May reduce the diuretic, natriuretic and antihypertensive effect of spironolactone ( 7.3). Digoxin: Spironolactone can interfere with radioimmunologic assays of digoxin exposure ( 7.4). Cholestyramine: Hyperkalemic metabolic acidosis has been reported with concomitant use ( 7.5). Acetylsalicylic Acid (ASA): ASA may reduce the efficacy of spironolactone ( 7.6). USE IN SPECIFIC POPULATIONS Pregnancy: Based on animal data, spironolactone may affect sex differentiation of the male during embryogenesis ( 8.1) See 17 for PATIENT COUNSELING INFORMATION. Revised: 8/2021 FULL PRESCRIBING INFORMATION: CONTENTS* 1 INDICATIONS AND USAGE 1.1 Heart Failure 1.2 Hypertension 1.3 Edema Associated with Hepatic Cirrhosis or Nephrotic Syndrome 1.4 Primary Hyperaldosteronism 2 DOSAGE AND ADMINISTRATION 2.1 General Considerations 2.2 Treatment of Heart Failure 2.3 Treatment of Essential Hypertension 2.4 Treatment of Edema 2.5 Treatment of Primary Hyperaldosteronism 3 DOSAGE FORMS AND STRENGTHS 4 CONTRAINDICATIONS 5 WARNINGS AND PRECAUTIONS 5.1 Hyperkalemia 5.2 Hypotension and Worsening Renal Function 5.3 Electrolyte and Metabolic Abnormalities 5.4 Gynecomastia 6 ADVERSE REACTIONS 7 DRUG INTERACTIONS 7.1 Drugs and Supplements Increasing Serum Potassium 7.2 Lithium 7.3 Nonsteroidal anti-inflammatory drugs (NSAIDs) 7.4 Digoxin 7.5 Cholestyramine 7.6 Acetylsalicylic Acid 8 USE IN SPECIFIC POPULATIONS 8.1 Pregnancy 8.2 Lactation 8.4 Pediatric Use 8.5 Geriatric Use 8.6 Use in Renal Impairment 8.7 Use in Hepatic Impairment 10 OVERDOSAGE 11 DESCRIPTION 12 CLINICAL PHARMACOLOGY 12.1 Mechanism of Action 12.2 Pharmacodynamics 12.3 Pharmacokinetics 13 NONCLINICAL TOXICOLOGY 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility 14 CLINICAL STUDIES 14.1 Heart Failure 14.2 Hypertension 16 HOW SUPPLIED/STORAGE AND HANDLING 17 PATIENT COUNSELING INFORMATION * Sections or subsections omitted from the full prescribing information are not listed. FULL PRESCRIBING INFORMATION 1 INDICATIONS AND USAGE 1.1 Heart Failure Spironolactone tablets are indicated for treatment of NYHA Class III-IV heart failure and reduced ejection fraction to increase survival, manage edema, and reduce the need for hospitalization for heart failure. Spironolactone tablets are usually administered in conjunction with other heart failure therapies. 1.2 Hypertension Spironolactone tablets are indicated as add-on therapy for the treatment of hypertension, to lower blood pressure in patients who are not adequately controlled on other agents. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes. Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program's Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC). Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly. Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal. Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy. 1.3 Edema Associated with Hepatic Cirrhosis or Nephrotic Syndrome Spironolactone tablets are indicated for the management of edema in the following settings: Cirrhosis of the liver when edema is not responsive to fluid and sodium restriction. Nephrotic syndrome when treatment of the underlying disease, restriction of fluid and sodium intake, and the use of other diuretics produce an inadequate response. Because it increases serum potassium, spironolactone may be useful for treating edema when administration of other diuretics has caused hypokalemia. 1.4 Primary Hyperaldosteronism Spironolactone tablets are indicated in the following settings: Short-term preoperative treatment of patients with primary hyperaldosteronism. Long-term maintenance therapy for patients with discrete aldosterone-producing adrenal adenomas who are not candidates for surgery. Long-term maintenance therapy for patients with bilateral micro or macronodular adrenal hyperplasia (idiopathic hyperaldosteronism). 2 DOSAGE AND ADMINISTRATION 2.1 General Considerations Spironolactone can be taken with or without food, but should be taken consistently with respect to food [ see Clinical Pharmacology (12.3)] . 2.2 Treatment of Heart Failure In patients with serum potassium ≤5.0 mEq/L and eGFR >50 mL/min/1.73 m 2, initiate treatment at 25 mg once daily. Patients who tolerate 25 mg once daily may have their dosage increased to 50 mg once daily as clinically indicated. Patients who develop hyperkalemia on 25 mg once daily may have their dosage reduced to 25 mg every other day [ see Warnings and Precautions (5.1)] . In patients with an eGFR between 30 and 50 mL/min/1.73 m 2, consider
Recommended publications
  • COVID-19—The Potential Beneficial Therapeutic Effects of Spironolactone During SARS-Cov-2 Infection
    pharmaceuticals Review COVID-19—The Potential Beneficial Therapeutic Effects of Spironolactone during SARS-CoV-2 Infection Katarzyna Kotfis 1,* , Kacper Lechowicz 1 , Sylwester Drozd˙ zal˙ 2 , Paulina Nied´zwiedzka-Rystwej 3 , Tomasz K. Wojdacz 4, Ewelina Grywalska 5 , Jowita Biernawska 6, Magda Wi´sniewska 7 and Miłosz Parczewski 8 1 Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; [email protected] 2 Department of Pharmacokinetics and Monitored Therapy, Pomeranian Medical University, 70-111 Szczecin, Poland; [email protected] 3 Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; [email protected] 4 Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, 71-252 Szczecin, Poland; [email protected] 5 Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] 6 Department of Anesthesiology and Intensive Therapy, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; [email protected] 7 Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland; [email protected] 8 Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland; [email protected] * Correspondence: katarzyna.kotfi[email protected]; Tel.: +48-91-466-11-44 Abstract: In March 2020, coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 was declared Citation: Kotfis, K.; Lechowicz, K.; a global pandemic by the World Health Organization (WHO). The clinical course of the disease is Drozd˙ zal,˙ S.; Nied´zwiedzka-Rystwej, unpredictable but may lead to severe acute respiratory infection (SARI) and pneumonia leading to P.; Wojdacz, T.K.; Grywalska, E.; acute respiratory distress syndrome (ARDS).
    [Show full text]
  • Effect of Dehydroepiandrosterone and Testosterone Supplementation on Systemic Lipolysis
    ORIGINAL ARTICLE Effect of Dehydroepiandrosterone and Testosterone Supplementation on Systemic Lipolysis Ana E. Espinosa De Ycaza, Robert A. Rizza, K. Sreekumaran Nair, and Michael D. Jensen Division of Endocrinology, Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55905 Downloaded from https://academic.oup.com/jcem/article/101/4/1719/2804555 by guest on 24 September 2021 Context: Dehydroepiandrosterone (DHEA) and T hormones are advertised as antiaging, antiobe- sity products. However, the evidence that these hormones have beneficial effects on adipose tissue metabolism is limited. Objective: The objective of the study was to determine the effect of DHEA and T supplementation on systemic lipolysis during a mixed-meal tolerance test (MMTT) and an iv glucose tolerance test (IVGTT). Design: This was a 2-year randomized, double-blind, placebo-controlled trial. Setting: The study was conducted at a general clinical research center. Participants: Sixty elderly women with low DHEA concentrations and 92 elderly men with low DHEA and bioavailable T concentrations participated in the study. Interventions: Elderly women received 50 mg DHEA (n ϭ 30) or placebo (n ϭ 30). Elderly men received 75 mg DHEA (n ϭ 30),5mgT(nϭ 30), or placebo (n ϭ 32). Main Outcome Measures: In vivo measures of systemic lipolysis (palmitate rate of appearance) during a MMTT or IVGTT. Results: At baseline there was no difference in insulin suppression of lipolysis measured during MMTT and IVGTT between the treatment groups and placebo. For both sexes, a univariate analysis showed no difference in changes in systemic lipolysis during the MMTT or IVGTT in the DHEA group and T group when compared with placebo.
    [Show full text]
  • Reproductive DHEA-S
    Reproductive DHEA-S Analyte Information - 1 - DHEA-S Introduction DHEA-S, DHEA sulfate or dehydroepiandrosterone sulfate, it is a metabolite of dehydroepiandrosterone (DHEA) resulting from the addition of a sulfate group. It is the sulfate form of aromatic C19 steroid with 10,13-dimethyl, 3-hydroxy group and 17-ketone. Its chemical name is 3β-hydroxy-5-androsten-17-one sulfate, its summary formula is C19H28O5S and its molecular weight (Mr) is 368.5 Da. The structural formula of DHEA-S is shown in (Fig.1). Fig.1: Structural formula of DHEA-S Other names used for DHEA-S include: Dehydroisoandrosterone sulfate, (3beta)-3- (sulfooxy), androst-5-en-17-one, 3beta-hydroxy-androst-5-en-17-one hydrogen sulfate, Prasterone sulfate and so on. As DHEA-S is very closely connected with DHEA, both hormones are mentioned together in the following text. Biosynthesis DHEA-S is the major C19 steroid and is a precursor in testosterone and estrogen biosynthesis. DHEA-S originates almost exclusively in the zona reticularis of the adrenal cortex (Fig.2). Some may be produced by the testes, none is produced by the ovaries. The adrenal gland is the sole source of this steroid in women, whereas in men the testes secrete 5% of DHEA-S and 10 – 20% of DHEA. The production of DHEA-S and DHEA is regulated by adrenocorticotropin (ACTH). Corticotropin-releasing hormone (CRH) and, to a lesser extent, arginine vasopressin (AVP) stimulate the release of adrenocorticotropin (ACTH) from the anterior pituitary gland (Fig.3). In turn, ACTH stimulates the adrenal cortex to secrete DHEA and DHEA-S, in addition to cortisol.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET SECTION 1: PRODUCT IDENTIFICATION PRODUCT NAME DHEA (Prasterone) (Micronized) PRODUCT CODE 0733 SUPPLIER MEDISCA Inc. Tel.: 1.800.932.1039 | Fax.: 1.855.850.5855 661 Route 3, Unit C, Plattsburgh, NY, 12901 3955 W. Mesa Vista Ave., Unit A-10, Las Vegas, NV, 89118 6641 N. Belt Line Road, Suite 130, Irving, TX, 75063 MEDISCA Pharmaceutique Inc. Tel.: 1.800.665.6334 | Fax.: 514.338.1693 4509 Rue Dobrin, St. Laurent, QC, H4R 2L8 21300 Gordon Way, Unit 153/158, Richmond, BC V6W 1M2 MEDISCA Australia PTY LTD Tel.: 1.300.786.392 | Fax.: 61.2.9700.9047 Unit 7, Heritage Business Park 5-9 Ricketty Street, Mascot, NSW 2020 EMERGENCY PHONE CHEMTREC Day or Night Within USA and Canada: 1-800-424-9300 NSW Poisons Information Centre: 131 126 USES Adjuvant; Androgen SECTION 2: HAZARDS IDENTIFICATION GHS CLASSIFICATION Toxic to Reproduction (Category 2) PICTOGRAM SIGNAL WORD Warning HAZARD STATEMENT(S) Reproductive effector, prohormone. Suspected of damaging fertility or the unborn child. May cause harm to breast-fed children. Causes serious eye irritation. Causes skin and respiratory irritation. Very toxic to aquatic life with long lasting effects. AUSTRALIA-ONLY HAZARDS Not Applicable. PRECAUTIONARY STATEMENT(S) Prevention Wash thoroughly after handling. Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Do not breathe dusts or mists. Do not eat, drink or smoke when using this product. Avoid contact during pregnancy/while nursing. Wear protective gloves, protective clothing, eye protection, face protection. Avoid release to the environment. Response IF ON SKIN (HAIR): Wash with plenty of water.
    [Show full text]
  • A10 Anabolic Steroids Hardcore Info
    CONTENTS GENERAL INFORMATION 3 Anabolic steroids – What are they? 4 How do they Work? – Aromatisation 5 More molecules – More problems 6 The side effects of anabolic steroids 7 Women and anabolic steroids 8 Injecting steroids 9 Abscesses – Needle Exchanges 10 Intramuscular injection 11 Injection sites 12 Oral steroids – Cycles – Stacking 13 Diet 14 Where do steroids come from? Spotting a counterfeit 15 Drug Information – Drug dosage STEROIDS 16 Anadrol – Andriol 17 Anavar – Deca-Durabolin 18 Dynabolon – Durabolin – Dianabol 19 Esiclene – Equipoise 20 Primobolan Depot – Proviron – Primobolan orals – Pronobol 21 Sustanon – Stromba, Strombaject – Testosterone Cypionate Testosterone Enanthate 22 Testosterone Propionate – Testosterone Suspension 23 Trenbolone Acetate – Winstrol OTHER DRUGS 24 Aldactone – Arimidex 25 Clenbuterol – Cytomel 26 Ephedrine Hydrochloride – GHB 27 Growth Hormone 28 Insulin 30 Insulin-Like Growth Factor-1 – Human Chorionic Gonadotrophin 31 Tamoxifen – Nubain – Recreational Drugs 32 Steroids and the Law 34 Glossary ANABOLIC STEROIDS People use anabolic steroids for various reasons, some use them to build muscle for their job, others just want to look good and some use them to help them in sport or body building. Whatever the reason, care needs to be taken so that as little harm is done to the body as possible because despite having muscle building effects they also have serious side effects especially when used incorrectly. WHAT ARE THEY? Anabolic steroids are man made versions of the hormone testosterone. Testosterone is the chemical in men responsible for facial hair, deepening of the voice and sex organ development, basically the masculine things Steroids are in a man. used in medicine to treat anaemia, muscle weakness after These masculine effects surgery etc, vascular are called the androgenic disorders and effects of testosterone.
    [Show full text]
  • DHEA Sulfate, and Aging: Contribution of the Dheage Study to a Sociobiomedical Issue
    Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: Contribution of the DHEAge Study to a sociobiomedical issue Etienne-Emile Baulieua,b, Guy Thomasc, Sylvie Legraind, Najiba Lahloue, Marc Rogere, Brigitte Debuiref, Veronique Faucounaug, Laurence Girardh, Marie-Pierre Hervyi, Florence Latourj, Marie-Ce´ line Leaudk, Amina Mokranel, He´ le` ne Pitti-Ferrandim, Christophe Trivallef, Olivier de Lacharrie` ren, Stephanie Nouveaun, Brigitte Rakoto-Arisono, Jean-Claude Souberbiellep, Jocelyne Raisonq, Yves Le Boucr, Agathe Raynaudr, Xavier Girerdq, and Franc¸oise Foretteg,j aInstitut National de la Sante´et de la Recherche Me´dicale Unit 488 and Colle`ge de France, 94276 Le Kremlin-Biceˆtre, France; cInstitut National de la Sante´et de la Recherche Me´dicale Unit 444, Hoˆpital Saint-Antoine, 75012 Paris, France; dHoˆpital Bichat, 75877 Paris, France; eHoˆpital Saint-Vincent de Paul, 75014 Paris, France; fHoˆpital Paul Brousse, 94804 Villejuif, France; gFondation Nationale de Ge´rontologie, 75016 Paris, France; hHoˆpital Charles Foix, 94205 Ivry, France; iHoˆpital de Biceˆtre, 94275 Biceˆtre, France; jHoˆpital Broca, 75013 Paris, France; kCentre Jack-Senet, 75015 Paris, France; lHoˆpital Sainte-Perine, 75016 Paris, France; mObservatoire de l’Age, 75017 Paris, France; nL’Ore´al, 92583 Clichy, France; oInstitut de Sexologie, 75116 Paris, France; pHoˆpital Necker, 75015 Paris, France; qHoˆpital Broussais, 75014 Paris, France; and rHoˆpital Trousseau, 75012 Paris, France Contributed by Etienne-Emile Baulieu, December 23, 1999 The secretion and the blood levels of the adrenal steroid dehydro- number of consumers. Extravagant publicity based on fantasy epiandrosterone (DHEA) and its sulfate ester (DHEAS) decrease pro- (‘‘fountain of youth,’’ ‘‘miracle pill’’) or pseudoscientific asser- foundly with age, and the question is posed whether administration tion (‘‘mother hormone,’’ ‘‘antidote for aging’’) has led to of the steroid to compensate for the decline counteracts defects unfounded radical assertions, from superactivity (‘‘keep young,’’ associated with aging.
    [Show full text]
  • Treated with Steroids Derived from Dehydroepiandrosterone
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 6617-6619, July 1995 Medical Sciences Ergosteroids: Induction of thermogenic enzymes in liver of rats treated with steroids derived from dehydroepiandrosterone HENRY LARDY, BRUCE PARTRIDGE, NANCY KNEER, AND YONG WEI Institute for Enzyme Research, University of Wisconsin, 1710 University Avenue, Madison, WI 53705 Contributed by Henry Lardy, April 24, 1995 ABSTRACT Dehydroepiandrosterone (DHEA), an inter- above normal concentrations (16); they become hirsute and mediate in the biosynthesis of testosterone and estrogens, exhibit other signs of masculinization. exerts several physiological effects not involving the sex It was demonstrated by Tagliaferro et al. (20) that feeding hormones. When fed to rats it induces the thermogenic DHEA to rats enhanced heat production and decreased enzymes mitochondrial sn-glycerol-3-phosphate dehydroge- efficiency of food utilization. We therefore measured its effect nase and cytosolic malic enzyme in their livers. Animals and on the production of liver mitochondrial sn-glycerol-3- humans, and their excised tissues, are known to hydroxylate phosphate dehydrogenase and cytosolic malic enzyme, two DHEA at several positions and to interconvert 7a-hydroxy- enzymes that had been demonstrated (21-24) to be induced by DHEA, 7,8-hydroxy-DHEA, 7-oxo-DHEA, and the correspond- a classic thermogenic agent, the thyroid hormone. Both en- ing derivatives of androst-5-enediol. We report here that these zymes were increased severalfold in livers of rats fed a diet 7-oxygenated derivatives are active inducers of these thermo- containing 0.2-0.5% DHEA for 6 days (25, 26). A possible genic enzymes in rats and that the 7-oxo derivatives are more mechanism by which these enzymes function to decrease active than the parent steroids.
    [Show full text]
  • Improving Low Testosterone Naturally
    IMPROVING LOW TESTOSTERONE NATURALLY The following information is a summary of materials featured in the “Men’s Health” Whole Health overview. It is meant to be a quick reference for use at the point of care. For additional details and a list of helpful references, refer to the overview. Hormones change as we go through the life cycle. What is normal for a 20-year-old is not the same normal as for a 60-year-old. Although low testosterone ("low T") is a diagnosis being promoted by the makers of testosterone medications, it is not as simple as just prescribing hormone replacement. A low testosterone level can be due to many factors. A clinician must also take care not to add testosterone too quickly without exploring other therapies first, because once external testosterone is given, it inhibits the body's natural production of testosterone. Testosterone supplementation is also not without risks, and in terms of long-term use, there is much about safety that we do not yet know. KEY FACTORS IN OPTIMIZING MALE HORMONES MAINTAIN IDEAL BODY WEIGHT This is probably the most important thing a man can do. As belly fat increases, there is an increase in activity of the enzyme "aromatase" which converts testosterone in the fat cells to estrogen. This reduces testosterone and increases estrogen, which can increase fat deposition in typical female areas (breast, hips, thighs) and increase the risk of enlargement of the prostate and even prostate cancer. With every one-point drop in your body mass index (BMI) your testosterone level will increase by approximately 1 point.
    [Show full text]
  • Documentation, Codebook, and Frequencies
    Documentation, Codebook, and Frequencies Surplus Sera Laboratory Component: Racial/Ethnic Variation In Sex Steroid Hormone Concentrations Across Age In US Men Survey Years: 1988 to 1991 SAS Export File: SSHORMON.XPT First Published: October 2006 Last revised: N/A NHANES III Data Documentation Laboratory Assessment: Racial/Ethnic Variation in Sex Steroid Hormone Concentrations Across Age In US Men (NHANES III Surplus Sera) Years of Coverage: 1988-1991 First Published: October 2006 Last Revised: N/A Introduction It has been proposed that racial/ethnic variation in prostate cancer incidence may be, in part, due to racial/ethnic variation in sex steroid hormone levels. However, it remains unclear whether in the US population circulating concentrations of sex steroid hormones vary by race/ethnicity. To address this, concentrations of testosterone, sex hormone binding globulin, androstanediol glucuronide (a metabolite of dihydrotestosterone) and estradiol were measured in stored serum specimens from men examined in the morning sample of the first phase of NHANES III (1988-1991). This data file contains results of the testing of 1637 males age 12 or more years who participated in the morning examination of phase 1 of NHANES III and for whom serum was still available in the repository. Data Documentation for each of these four components is given in sections below. I. Testosterone Component Summary Description The androgen testosterone (17β -hydroxyandrostenone) has a molecular weight of 288 daltons. In men, testosterone is synthesized almost exclusively by the Leydig cells of the testes. The secretion of testosterone is regulated by luteinizing hormone (LH), and is subject to negative feedback via the pituitary and hypothalamus.
    [Show full text]
  • Testosterone C2270-A
    Drug and Biologic Coverage Criteria Effective Date: 04/12/2018 Last P&T Approval/Version: 07/28/2021 Next Review Due By: 08/2022 Policy Number: C2270-A Testosterone PRODUCTS AFFECTED ANDROID (methyltestosterone), ANDRODERM (testosterone topical), ANDROGEL (testosterone topical), AVEED (testosterone undecanoate), AXIRON (testosterone topical), DELATESTRYL (testosterone enanthate), DEPO-TESTOSTERONE (testosterone cypionate) FORTEST (testosterone topical), JATENZO (testosterone undeconoate), METHITEST (methyltestosterone), NATESTO (testosterone nasal gel),TESTIM* (testosterone topical), TESTOPEL (testosterone implant), TESTRED* (methyltestosterone), VOGELXO* (testosterone topical), XYOSTED (testosterone enanthate) COVERAGE POLICY Coverage for services, procedures, medical devices, and drugs are dependent upon benefit eligibility as outlined in the member's specific benefit plan. This Coverage Guideline must be read in its entirety to determine coverage eligibility, if any. This Coverage Guideline provides information related to coverage determinations only and does not imply that a service or treatment is clinically appropriate or inappropriate. The provider and the member are responsible for all decisions regarding the appropriateness of care. Providers should provide Molina Healthcare complete medical rationale when requesting any exceptions to these guidelines Documentation Requirements: Molina Healthcare reserves the right to require that additional documentation be made available as part of its coverage determination; quality improvement;
    [Show full text]
  • Aldactone® Spironolactone Tablets, USP
    NDA 12-151/S-062 Page 2 Aldactone® spironolactone tablets, USP WARNING Aldactone has been shown to be a tumorigen in chronic toxicity studies in rats (see Precautions). Aldactone should be used only in those conditions described under Indications and Usage. Unnecessary use of this drug should be avoided. DESCRIPTION Aldactone oral tablets contain 25 mg, 50 mg, or 100 mg of the aldosterone antagonist spironolactone, 17-hydroxy-7α-mercapto-3-oxo-17α-pregn-4-ene-21-carboxylic acid γ-lactone acetate, which has the following structural formula: Spironolactone is practically insoluble in water, soluble in alcohol, and freely soluble in benzene and in chloroform. Inactive ingredients include calcium sulfate, corn starch, flavor, hypromellose, iron oxide, magnesium stearate, polyethylene glycol, povidone, and titanium dioxide. ACTIONS / CLINICAL PHARMACOLOGY Mechanism of action: Aldactone (spironolactone) is a specific pharmacologic antagonist of aldosterone, acting primarily through competitive binding of receptors at the aldosterone-dependent sodium-potassium exchange site in the distal convoluted renal tubule. Aldactone causes increased amounts of sodium and water to be excreted, while potassium is retained. Aldactone acts both as a diuretic and as an antihypertensive drug by this mechanism. It may be given alone or with other diuretic agents which act more proximally in the renal tubule. Aldosterone antagonist activity: Increased levels of the mineralocorticoid, aldosterone, are present in primary and secondary hyperaldosteronism. Edematous states in which secondary aldosteronism is usually involved include congestive heart failure, hepatic cirrhosis, and the nephrotic syndrome. By competing with aldosterone for receptor sites, Aldactone provides effective therapy for the edema and ascites in those conditions.
    [Show full text]
  • Low Serum Levels of Dehydroepiandrosterone Sulfate
    www.nature.com/scientificreports OPEN Low serum levels of dehydroepiandrosterone sulfate and testosterone in Albanian female patients with allergic disease Violeta Lokaj‑Berisha 1*, Besa Gacaferri Lumezi1 & Naser Berisha2 Evidence from several unrelated animal models and some studies conducted in humans, points to the immunomodulatory efects of androgens on various components of the immune system, especially on allergic disorders. This study evaluated the serum concentrations of sex hormones in women with allergy. For this purpose, blood samples were obtained from 78 participants in order to detect serum IgE concentrations, total testosterone, estradiol, progesterone, and DHEA‑S. The majority of the subjects (54) in the study were consecutive patients with doctor‑diagnosed allergic pathologies: 32 with allergic rhinitis, 10 with asthma and rhinitis, and 12 with skin allergies. In addition, 24 healthy volunteers were included in the research as the control group. The average age of the subjects was 32.54 years (SD ± 11.08 years, range between 4–59 years). All participants stated that they had not used any medical treatment to alleviate any of their symptoms prior to taking part in the research. They all underwent skin‑prick tests for common aero‑allergens, which was used as criterion for subject selection. Hence, the subjects were selected if they reacted positively to at least one aero‑allergen. Their height and weight were measured in order to calculate the BMI. As a result, statistically signifcant diferences between controls and allergic women in serum concentrations of androgens (testosterone, p = 0.0017; DHEA‑S, p = 0.04) were found, which lead to the conclusion that the concentration of total serum testosterone and DHEA‑S was lower in female patients with allergic diseases compared to controls.
    [Show full text]