Myoporum Montanum R.Br. Family: Scrophulariaceae Brown, R

Total Page:16

File Type:pdf, Size:1020Kb

Myoporum Montanum R.Br. Family: Scrophulariaceae Brown, R Australian Tropical Rainforest Plants - Online edition Myoporum montanum R.Br. Family: Scrophulariaceae Brown, R. (1810) Prodromus Florae Novae Hollandiae : 515. Type: Port Jackson - Hunter R., R. Brown; holo: BM?. Common name: Boobialla; Myrtle, Native; Native Myrtle; Water Bush; Western Boobialla Stem Usually flowers and fruits as a shrub about 2-3 m tall. Leaves Oil dots numerous, very variable in size, only the larger oil dots visible to the naked eye. Leaf blades about 3.5-14 x 0.8-1.8 cm, quite brittle when folded. Petioles about 1 cm long. Venation not very Leaves, flowers and fruit. © obvious on either the upper or lower surface of the leaf blades. Terminal buds and young shoots CSIRO glabrous. Flowers Corolla about 3-4.5 mm long and about 3-4 mm diam. Corolla tube and lobes hairy on the inner surface. Large oil dots visible on the corolla lobes. Style sparsely hairy. Fruit Fruits about 4 mm diam. Endocarp thick and hard. Embryo small, cotyledons about as wide as the radicle. Seedlings Cotyledons about 9-12 x 3-4 mm. First pair of leaves glabrous, margins toothed, oil dots yellowish. At the tenth leaf stage: stem marked by numerous small warty bumps and the leaf blade with Flowers [not vouchered]. CC-BY numerous large oil dots. Seed germination time 373 to 449 days. J.L. Dowe Distribution and Ecology Occurs in WA, NT, CYP, NEQ, CEQ and southwards as far as Victoria. Altitudinal range from near sea level to 900 m. Grows in a variety of habitats ranging from beach or dune vegetation, beach forest, open forest, wet sclerophyll forest to rain forest margins. Sometimes found in disturbed areas in upland or mountain rain forest. Also occurs in New Guinea. Natural History & Notes This species may be poisonous but this needs conformation. Synonyms Myoporum acuminatum var. angustifolium Benth., Flora Australiensis 5: 4(1870), Type: Port Fruit [not vouchered]. CC-BY J.L. Jackson and Mount Hunter, R. Brown, but chiefly in the interior of Queensland and N.S. Wales. Dowe Holo: ?. Myoporum cunninghamii Benth., Enumeratio Plantarum .. Huegel : 78(1837), Type: Queensland. Moreton Bay (A. Cunningham) Holo: ?. RFK Code 3140 Scale bar 10mm. © CSIRO Copyright © CSIRO 2020, all rights reserved. Cotyledon stage, epigeal germination. © CSIRO 10th leaf stage. © CSIRO Web edition hosted at https://apps.lucidcentral.org/rainforest.
Recommended publications
  • Lake Pinaroo Ramsar Site
    Ecological character description: Lake Pinaroo Ramsar site Ecological character description: Lake Pinaroo Ramsar site Disclaimer The Department of Environment and Climate Change NSW (DECC) has compiled the Ecological character description: Lake Pinaroo Ramsar site in good faith, exercising all due care and attention. DECC does not accept responsibility for any inaccurate or incomplete information supplied by third parties. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. Readers should seek appropriate advice about the suitability of the information to their needs. © State of New South Wales and Department of Environment and Climate Change DECC is pleased to allow the reproduction of material from this publication on the condition that the source, publisher and authorship are appropriately acknowledged. Published by: Department of Environment and Climate Change NSW 59–61 Goulburn Street, Sydney PO Box A290, Sydney South 1232 Phone: 131555 (NSW only – publications and information requests) (02) 9995 5000 (switchboard) Fax: (02) 9995 5999 TTY: (02) 9211 4723 Email: [email protected] Website: www.environment.nsw.gov.au DECC 2008/275 ISBN 978 1 74122 839 7 June 2008 Printed on environmentally sustainable paper Cover photos Inset upper: Lake Pinaroo in flood, 1976 (DECC) Aerial: Lake Pinaroo in flood, March 1976 (DECC) Inset lower left: Blue-billed duck (R. Kingsford) Inset lower middle: Red-necked avocet (C. Herbert) Inset lower right: Red-capped plover (C. Herbert) Summary An ecological character description has been defined as ‘the combination of the ecosystem components, processes, benefits and services that characterise a wetland at a given point in time’.
    [Show full text]
  • West Wyalong Solar Project
    WEST WYALONG SOLAR PROJECT Biodiversity Development Assessment Report Prepared for: Lightsource Development Services Australia Pty Ltd c/- Urbis Tower 2, Level 23 Darling Park, 201 Sussex St SYDNEY NSW 2000 SLR Ref: 610.18343-R01 Version No: -v4.0 March 2019 PREPARED BY SLR Consulting Australia Pty Ltd ABN 29 001 584 612 10 Kings Road New Lambton NSW 2305 Australia (PO Box 447 New Lambton NSW 2305 Australia) T: +61 2 4037 3200 E: [email protected] www.slrconsulting.com BASIS OF REPORT This report has been prepared by SLR Consulting Australia Pty Ltd with all reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with Lightsource Development Services Australia Pty Ltd (the Client). Information reported herein is based on the interpretation of data collected, which has been accepted in good faith as being accurate and valid. This report is for the exclusive use of the Client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR SLR disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work. DOCUMENT CONTROL Reference Date Prepared Checked Authorised 610.18343-R01-v4.0 26 March 2019 Gilbert Whyte Jeremy Pepper Jeremy Pepper Page ii Lightsource Development Services Australia Pty Ltd SLR Ref No: 610.18343-R01-v4.0_20190326.docx West Wyalong Solar Project March 2019 Biodiversity Development Assessment Report EXECUTIVE SUMMARY Lightsource Development Services Australia Pty Ltd is proposing the development of a Solar Farm Project to be located to the north-east of West Wyalong in Western NSW.
    [Show full text]
  • Universidad Católica De Santa María
    UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA ESCUELA DE POSGRADO UNIDAD DE POSGRADO DE LA FACULTAD DE INGENIERIA DE PROCESOS “EVALUACIÓN DE LOS NIVELES DE FORESTACIÓN EN LAS PRINCIPALES VÍAS DE CIRCULACIÓN EN LA CIUDAD DE AREQUIPA 2015” Tesis presentado por Bachiller: CRUZ LAURA EDWARD SANTOS Para optar al Grado Académico de Maestro en Ciencias: con mención en Seguridad y Medio Ambiente. ASESOR: Dr. Edwin Bocardo Delgado AREQUIPA-PERÚ 2015 AGRADECIMIENTOS Dedico esta tesis A DIOS, A LA VIRGEN MARÍA, JG, quienes guían mis pasos en mi vida personal y profesional. A mi Familia; A mis amigos, Maestros y esta prestigiosa casa de estudios, que sin su ayuda y apoyo no hubiera podido lograr mis objetivos. Página 2 de 78 CONTENIDO RESUMEN ...................................................................................................................... 4 ABSTRACT .................................................................................................................... 5 INTRODUCCIÓN ........................................................................................................... 6 OBJETIVOS ................................................................................................................... 8 CAPITULO I GENERALIDADES ....................................................................................................... 9 1.1. Planteamiento del Problema ......................................................................... 9 1.2. Justificación .....................................................................................................
    [Show full text]
  • Goulburn Valley Environment Group4.72 MB
    LC EPC Inquiry into Ecosystem Decline in Victoria Submission 717 This submission describes a case study in which the decline of 39 threatened plant species in the eastern Northern Plains is recorded and reasons for their decline were investigated. Threatened Plants of the eastern Northern Plains, 2020 is a pamphlet that provides an overview of the project and describes the plants and places that were assessed (File attached). More than twenty years ago, as consultants for Goulburn Valley Environment Group (GVEG), we undertook two major assessments of the conservation status of flora and fauna in the Eastern Northern Plains of Victoria, publishing two reports: Natural Values of the Public Lands Along the Broken, Boosey and Nine Mile Creeks of Northeast Victoria, 1996 https://static1.squarespace.com/static/5d3987f9db867f0001b1bb82/t/5d7d776f9a3d416fbae148f3/156850367649 5/Natural+Values.pdf Priorities for Nature Conservation Reservation and Management in the Eastern Northern Plains of Victoria, 1998 https://static1.squarespace.com/static/5d3987f9db867f0001b1bb82/t/5d7d7930a0accb2d2c9fcdac/156850411967 4/PRIORITIES+FOR+NATURE+CONSERVATION.pdf In the years since, many of the recommended changes to conservation status have been achieved, notably the creation of Barmah National Park, Lower Goulburn National Park, Warby-Ovens National Park and Broken-Boosey State Park. As well, many practical conservation actions such as fencing, woody weed control, pest control, planting and signage were undertaken by community groups, ParksVictoria and the Goulburn Broken Catchment Authority on these sites over that time. In 2017 GVEG received a Victorian Government Biodiversity On-ground Action Grant – Community and Volunteer (BOA2017CA373) to look at how the threatened flora populations identified in those 1990s studies had responded to the changed land tenure and changed management.
    [Show full text]
  • Towards Resolving Lamiales Relationships
    Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales.
    [Show full text]
  • 'Soils' and 'Vegetation'?
    Is there a close association between ‘soils’ and ‘vegetation’? A case study from central western New South Wales M.O. Rankin1, 3, W.S Semple2, B.W. Murphy1 and T.B. Koen1 1 Department of Natural Resources, PO Box 445, Cowra, NSW 2794, AUSTRALIA 2 Department of Natural Resources, PO Box 53, Orange, NSW 2800, AUSTRALIA 3 Corresponding author, email: [email protected] Abstract: The assumption that ‘soils’ and ‘vegetation’ are closely associated was tested by describing soils and vegetation along a Travelling Stock Reserve west of Grenfell, New South Wales (lat 33° 55’S, long 147° 45’E). The transect was selected on the basis of (a) minimising the effects of non-soil factors (human interference, climate and relief) on vegetation and (b) the presence of various soil and vegetation types as indicated by previous mapping. ‘Soils’ were considered at three levels: soil landscapes (a broad mapping unit widely used in central western NSW), soil types (according to a range of classifications) and soil properties (depth, pH, etc.). ‘Vegetation’ was considered in three ways: vegetation type (in various classifications), density/floristic indices (density of woody species, abundance of native species, etc.) and presence/absence of individual species. Sites along the transect were grouped according to soil landscapes or soil types and compared to vegetation types or indices recorded at the sites. Various measures indicated low associations between vegetation types and soil landscapes or soil types. Except for infrequent occurrences of a soil type or landscape, any one soil type or landscape was commonly associated with a number of vegetation types and any one vegetation type was associated with a number of soil landscapes or soil types.
    [Show full text]
  • New Taxa and Combinations in the Myoporaceae
    J. Adelaide Bot. Gard (15)1 75-79 (1992) NEW TAXA AND COMBINATIONS IN THE MYOPORACEAE R.J. Chinnock State Herbarium, Botanic Gardens, North Terrace, Adelaide, 5000. Abstract Two new subspecies in Myoporum, M. boninerzse subsp. australe and M. platycarpum subsp. perbellum and two new subspecies in Eremophiia, Eremophila bowmanii subsp nutans and E. divaricata subsp. ccdlewatta are described. The following new combinations are made: Eremophila debilis, Eremophila bowmanii subsp. latifolia, Eremophila oppositifolia subsp. rubra and Eremophila latrobei subsp. glabra. In preparation for the Myoporaceae treatment in volume 3 of the Flora of New South Wales expected to appear soon the following new subspecies are described and new combinations made. 1. Myoporum boninense subsp. australe Chinnock, subsp. nov. Fig. 1.A Pogonia glabra Andr., Bot. Repos. 4: t. 283 (1803). Type: Bot. Repos. 4: t. 283. Myoporum ellipticum R. Br., Prod. 515 (1810), nom. Meg. Type: R. Brown s.n. [Bennett No. 28021, Port Jackson, no date (BM, K). Myoporum acuminatum var. ellipticum (R. Br.)Benth. based on Myoporum Myoporum insulare sensu Beadle, Carotin & Evans, FI. Syd. Region edn 3: 507 (1982). a subsp. boninensi corolla intra hirsuta, floribus (1-) 2-5 (-8) in axillis differt. Type: north side of Batemans Bay, New South Wales, R.J. Chinnock 6654, 8.ii.1986 (holotype: AD; isotypes: BRI, NSW, TI). Notes The cultivated plant upon which Andrews based Pogonia glabra originated from New Holland and was first raised from seed in England by a Mr Robertson in 1790. The plant depicted in Andrew's plate was drawn at the Hammersmith Nursery and as far as I can determine no pressed specimen was preserved.
    [Show full text]
  • List of Plant Species List of Plant Species
    List of plant species List of Plant Species Contents Amendment history .......................................................................................................................... 2 1 Introduction ...................................................................................................................................... 3 1.1 Application ........................................................................................................................... 3 1.2 Relationship with planning scheme ..................................................................................... 3 1.3 Purpose ............................................................................................................................... 3 1.4 Aim ...................................................................................................................................... 3 1.5 Who should use this manual? ............................................................................................. 3 2 Special consideration ....................................................................................................................... 3 3 Variations ......................................................................................................................................... 4 4 Relationship ..................................................................................................................................... 4 Appendix A – Explanatory notes & definitions .......................................................................................
    [Show full text]
  • Barmah–Millewa Forest Environmental Water Management Plan
    MURRAY-DARLING BASIN AUTHORITY Barmah–Millewa Forest Environmental Water Management Plan February 2012 Barmah–Millewa Forest Environmental Water Management Plan February 2012 Murray–Darling Basin Authority © Copyright Murray–Darling Basin Authority (MDBA), Murray–Darling Basin Authority on behalf of the Commonwealth of Australia 2012. Postal Address: GPO Box 1801, Canberra ACT 2601 This work is copyright. With the exception of Office location: Level 4, 51 Allara Street, photographs, any logo or emblem, and any Canberra City, Australian Capital Territory trademarks, the work may be stored, retrieved and reproduced in whole or in part, provided that it is not Tel: (02) 6279 0100, international + 61 2 6279 0100 sold or used in any way for commercial benefit, and Fax: (02) 6248 8053, international + 61 2 6248 8053 that the source and author of any material used is E‑mail: [email protected] acknowledged. Website: <www.mdba.gov.au> Apart from any use permitted under the Copyright Act For further information contact the Murray‑Darling Basin 1968 or above, no part of this work may be reproduced Authority office on (02) 6279 0100 by any process without prior written permission from the Commonwealth. Requests and inquiries Cover image: Flood marks on giant rush at Barmah Lake concerning reproduction and rights should be showing flood levels. addressed to the Commonwealth Photographer: Keith Ward, Goulburn Broken CMA Copyright Administration, Attorney General’s Department, National Circuit, Barton ACT 2600 This report may be cited as: Barmah–Millewa Forest: or posted at http://www.ag.gov.au/cca. Environmental Water Management Plan 2012 The views, opinions and conclusions expressed by MDBA Publication No.
    [Show full text]
  • Riparian Vegetation of the River Murray COVER: Healthy Red Gum in the Kex)Ndrook State Forest Near Barham N.S.W
    Riparian Vegetation of The River Murray COVER: Healthy red gum in the Kex)ndrook State Forest near Barham N.S.W. Background, black box silhouette. PHOTO: D. Eastburn ISBN 1 R75209 02 6 RIVER MURRAY RIPARIAN VEGET ION STUDY PREPARED FOR: MURRAY-DARLING BASIN COMMISSION BY: MARGULES AND PARTNERS PTY LTD PAND J SMITH ECOLOGICAL CONSULTANTS DEPARTMENT OF CONSERVATION FORESTS AND LANDS VICTORIA January 1990 SUMMARY AND CONCLUSIONS The River Murray Riparian Vegetation Survey was initiated by the Murray­ Darling Basin Commission t9 assessJhe present status ofthe vegetationalong the Murray, to identify causes ofdegradation, and to develop solutions for its rehabilitation and long term stability. The study area was the floodplain of the Murray River and its anabranches, including the Edward-Wakool system, from below Hume Dam to the upper end of Lake Alexandrina. The components of the study were: · Literature Review A comprehensive bibliography was compiled on the floodplain vegeta­ tion, its environment and the impact ofman's activities. The literature was reviewed and summarised. · Floristic Survey A field survey was carried out, visiting 112 sites throughout the study area and collecting vegetation data from 335 plots. Data collected were the species present, their relative abundance, the condition of the eucalypts, the amount ofeucalypt regeneration and indices ofgrazing pressure. Brief studies were made of the effects of river regulation and salinisation at specific sites. Thirty-seven plant communities were identified from a numerical analyis ofthe floristic survey data. The differences reflect environmental changes both along the river and across the floodplain. The most important factors were identified as soil salinity levels and flooding frequency.
    [Show full text]
  • MVG 8 Casuarina Forests and Woodlands DRAFT
    MVG 8 - CASUARINA FORESTS AND WOODLANDS Calcareous sandplain woodlands, western NSW (Photo: B. Pellow) Overview Casuarinas (the she-oaks) are a distinctive part of the Australian landscape. The name Casuarina is derived from the Malay Kasuari and alludes to the similarity between the drooping foliage of some species in the genus and that of the feathers of the cassowary bird (Boland et al., 1994). Casuarinas have a unique leaf structure, in which individual leaves are reduced to small teeth, the bases of which are fused and surround the stem. This gives the leaf-bearing branchlets the appearance of needles and the plant canopies a fine structure allowing permeability of more light than broad-leaf tree canopies. While several contrasting vegetation types are dominated by Casuarinas, most species of Allocasuarina are subordinate or subdominant members of mixed plant communities. MVG 8 includes vegetation dominated by Casuarina or Allocasuarina in contrasting environments such as arid sandplains, coastal floodplains and riparian corridors in humid landscapes (Keith 2004). Casuarina vegetation not included within MVG 8 includes: Allocasuarina decaisneana open woodland of the central deserts (included within MVG 31); coastal scrubs dominated by Allocasuarina equisetifolia (included within MVG 15); and small areas dominated by dense stands of Allocasuarina littoralis within dry sclerophyll eucalypt forests (included within MVG 3). Facts and figures Major Vegetation Group MVG 8 - Casuarina Forests and Woodlands Major Vegetation Subgroups ##. Eastern floodplain/estuarine forests NSW, QLD (number of NVIS descriptions) ##. River oak forests ACT, NSW, QLD 26. Calcareous sandplain woodlands NSW, VIC, SA Typical NVIS structural formations Woodland (tall, mid, low) Open woodland (mid, low) Number of IBRA regions 57 Most extensive in IBRA region Est.
    [Show full text]
  • Lesson 3 RECOGNISING PLANT FAMILIES and IDENTIFYING PLANTS Aim Distinguish Between Different Plant Families and to Become Profi
    Lesson 3 RECOGNISING PLANT FAMILIES AND IDENTIFYING PLANTS Aim Distinguish between different plant families and to become proficient at identifying plants. The best way to build your ability to identify plants is by working with or handling a variety of different plants on a daily basis. The first ten plant names you learn are always much more difficult than the next ninety. Similarly, the first 100 names are always much more difficult than the next 900. If you plan to be a skilled gardener, landscape designer, or horticulturist: you need to learn to identify hundreds of different plants. As you have seen earlier; there is a system in identifying plant names. BECOME FAMILIAR WITH PLANT FAMILIES If you can get to know the way the system works, and the broad categories, the whole thing starts to make a great deal more sense. Each new name you confront is able to be associated with things and remembered more easily. FOR EXAMPLE: “When I see a plant with a daisy flower, I immediately know that it is in the Asteraceae family. Even if the genus is new to me, I will be more likely to remember it because I’m not only thinking: This is the genus of this new plant , but I am also thinking: This new genus is in the Asteraceae family. In essence, my brain is registering two pieces of information instead of one and that doubles the likelihood of me remembering the plant. BECOME FAMILIAR WITH LATIN Plant naming is based on the ancient Roman language of Latin.
    [Show full text]