Approximating the Smallest Grammar: Kolmogorov Complexity in Natural Models

Total Page:16

File Type:pdf, Size:1020Kb

Approximating the Smallest Grammar: Kolmogorov Complexity in Natural Models Approximating the Smallest Grammar: Kolmogorov Complexity in Natural Models Moses Charikar∗ Eric Lehmany Ding Liu∗ Rina Panigrahyz Princeton University MIT Princeton University Cisco Systems Manoj Prabhakaran∗ April Rasalay Amit Sahai∗ abhi shelaty Princeton University MIT Princeton University MIT February 20, 2002 Abstract 1 Introduction This paper addresses the smallest grammar problem; We consider the problem of finding the smallest context- namely, what is the smallest context-free grammar that free grammar that generates exactly one given string of generates exactly one given string σ? For example, the length n. The size of this grammar is of theoretical in- smallest context-free grammar generating the string: terest as an efficiently computable variant of Kolmogorov complexity. The problem is of practical importance in ar- eas such as data compression and pattern extraction. σ = a rose is a rose is a rose The smallest grammar is known to be hard to approxi- is as follows: mate to within a constant factor, and an o(log n=log log n) approximation would require progress on a long-standing S BBA algebraic problem [10]. Previously, the best proved ap- A ! a rose 1=2 proximation ratio was O(n ) for the BISECTION algo- B ! A is rithm [8]. Our main result is an exponential improvement ! of this ratio; we give an O(log(n=g∗)) approximation al- The size of a grammar is defined to be the total number gorithm, where g∗ is the size of the smallest grammar. of symbols on the right sides of all rules. The small- We then consider other computable variants of Kolo- est grammar is known to be hard to approximate within 2 a small constant factor. Further, even for a very re- mogorov complexity. In particular we give an O(log n) approximation for the smallest non-deterministic finite stricted class of strings, approximating the smallest gram- log n automaton with advice that produces a given string. We mar within a factor of o log log n would require progress also apply our techniques to “advice-grammars” and on a well-studied algebraic problem [10]. Previously, the “edit-grammars”, two other natural models of string com- best proven approximation ratio was O(n1=2) for the BI- plexity. SECTION algorithm [8]. Our main result is an exponential improvement of this ratio. Several rich lines of research connect this elegant prob- lem to fields such as Kolmogorov complexity, data com- ∗e-mail: fmoses,dingliu,mp,[email protected] ye-mail: fe lehman,arasala,[email protected] pression, pattern identification, and approximation algo- ze-mail: [email protected] rithms for hierarchical problems. 1 The size of the smallest context-free grammar generat- tifying important patterns in a string, since such patterns ing a given string is a natural, but more tractable variant naturally correspond to nonterminals in a compact gram- of Kolmogorov complexity. (The Kolmogorov complex- mar. In fact, an original motivation for the problem was to ity of a string is the description length of the smallest Tur- identify regularities in DNA sequences [11]. Since then, ing machine that outputs that string.) The Turing machine smallest grammar algorithms have been used to highlight model for representing strings is too powerful to be ex- patterns in musical scores and uncover properties of lan- ploited effectively; in general, the Kolmogorov complex- guage from example texts [4]. All this is possible because ity of a string is uncomputable. However, weakening the a string represented by a context-free grammar remains model from Turing machines to context-free grammars re- relatively comprehensible. This comprehensibility is an duces the complexity of the problem from the realm of un- important attraction of grammar-based compression rela- decidability to mere intractability. How well the smallest tive to otherwise competitive compression schemes. For grammar can be approximated remains an open question. example, the best pattern matching algorithm that oper- In this work we make significant progress toward an an- ates on a string compressed as a grammar is asymptoti- swer: our main result is that the “grammar complexity” cally faster than the equivalent for LZ77 [6]. of a string is O(log(n=g∗))-approximable in polynomial Finally, work on the smallest grammar problem extends time, where g∗ is the size of the smallest grammar. the study of approximation algorithms to hierarchical ob- This perspective on the smallest grammar problem sug- jects, such as grammars, as opposed to “flat” objects, such gests a general direction of inquiry: can the complex- as graphs, CNF-formulas, etc. This is a significant shift, ity of a string be determined or approximated with re- since many real-world problems have a hierarchical na- spect to other natural models? Along this line, we con- ture, but standard approximation techniques such as lin- sider the problem of optimally representing an input string ear and semi-definite programming are not easily applied by a non-deterministic finite automaton guided by an ad- to this new domain. vice string. We show that the optimal representation of The remainder of this paper is organized as follows. 2 a string is O(log n)-approximable in this model. Then Section 2 defines terms and notation. Section 3 con- we consider context-free grammars with multiple produc- tains our main result, an O(log(n=g∗)) approximation al- tions per nonterminal, again guided by an advice string. gorithm for the smallest grammar problem. Section 4 This modified grammar model turns out, unexpectedly, to follows up the Kolmogorov complexity connection and be essentially equivalent to the original. includes the results on the complexity measure in other The smallest grammar problem is also important in the models. We conclude with some open problems and new area of data compression. Instead of storing a long string, directions. one can store a small grammar that generates it, provided such a grammar can be found. This line of thought has led to a flurry of research [8, 12, 16, 7, 1, 9] in the data com- pression community. Kieffer and Yang show that a good 2 Definitions solution to the grammar problem leads to a good uni- A grammar is a 4-tuple (Σ; Γ; S; ∆), where Σ is a set versal compression algorithm for finite Markov sources G [7]. Empirical results indicate that grammar-based data of terminals, Γ is a set of nonterminals, S Γ is the start symbol, and ∆ is a set of rules of the form T2 (Σ Γ)∗. compression is competitive with other techniques in prac- ! [ tice [8, 12]. Surprisingly, however, the most prominent A symbol may be either a terminal or nonterminal. The algorithms for the smallest grammar problem have been size of a grammar is defined to be the total number of shown to exploit the grammar model poorly [10]. In par- symbols on the right sides of all rules. Note that a gram- ticular, the SEQUITUR [12], BISECTION [8], LZ78 [16], mar of size g can be readily encoded using O(g log g) bits, 1 and SEQUENTIAL [14] algorithms all have approximation and so our measure is close to this natural alternative. ratios that are Ω(n1=3). In this paper, we achieve a loga- 1More sophisticated ways to encode a grammar [7, 14] relate the rithmic ratio. encoding size in bits to the above definition of the size of a grammar in The smallest grammar problem is also relevant to iden- a closer manner, and give theoretical justification to this definition. 2 Since generates exactly one finite string, there is ex- a single terminal. If pi = 0, then the pair represents a actly oneGrule in ∆ defining each nonterminal in Γ. Fur- portion of the prefix of σ6 that is represented by the pre- thermore, is acyclic; that is, there exists an ordering ceding i 1 pairs; namely, the l terminals beginning at G − i of the nonterminals in Γ such that each nonterminal pre- position pi in σ. Note that, unlike in the standard LZ77, cedes all nonterminals in its definition. The expansion of we require that the substring referred to by (pi; li) be fully a string of symbols η is obtained by replacing each non- contained within the prefix of σ generated by the previous terminal in η by its definition until only terminals remain. pairs. The size of the LZ77 representation of a string is s, The expansion of η is denoted η , and the length of η the number of pairs employed. The smallest LZ77 repre- is denoted [η]. h i h i sentation can be easily found using a greedy algorithm in Throughout, symbols (terminals and nonterminals) are polynomial time. More efficient algorithms are possible; uppercase, and strings of symbols are lowercase Greek. for example, [5] gives an O(n log n) time algorithm for We use σ for the input string, n for its length, g for the our variant of LZ77. size of a grammar that generates σ, and g∗ for the size of As observed in [12], a grammar for a string can be the smallest such grammar. converted in a simple way to an LZG77 representation. It denotes the size of grammar minus number of non- is not hard to see that this transformation gives an LZ77 terminals.jGj Without loss of generalily we do not allow list of at most + 1 pairs. Thus we have: jGj unary rules of the form A B; then is at least half the size of . ! jGj Lemma 1 The size of the smallest grammar for a string G is lower bounded by the size of the smallest LZ77 repre- sentation for that string. 3 An Approximation O(log(n=g∗)) Our O(log(n=g∗))-approximation algorithm essen- Algorithm tially inverts this process, mapping an LZ77 sequence to a grammar.
Recommended publications
  • Lecture 24 1 Kolmogorov Complexity
    6.441 Spring 2006 24-1 6.441 Transmission of Information May 18, 2006 Lecture 24 Lecturer: Madhu Sudan Scribe: Chung Chan 1 Kolmogorov complexity Shannon’s notion of compressibility is closely tied to a probability distribution. However, the probability distribution of the source is often unknown to the encoder. Sometimes, we interested in compressibility of specific sequence. e.g. How compressible is the Bible? We have the Lempel-Ziv universal compression algorithm that can compress any string without knowledge of the underlying probability except the assumption that the strings comes from a stochastic source. But is it the best compression possible for each deterministic bit string? This notion of compressibility/complexity of a deterministic bit string has been studied by Solomonoff in 1964, Kolmogorov in 1966, Chaitin in 1967 and Levin. Consider the following n-sequence 0100011011000001010011100101110111 ··· Although it may appear random, it is the enumeration of all binary strings. A natural way to compress it is to represent it by the procedure that generates it: enumerate all strings in binary, and stop at the n-th bit. The compression achieved in bits is |compression length| ≤ 2 log n + O(1) More generally, with the universal Turing machine, we can encode data to a computer program that generates it. The length of the smallest program that produces the bit string x is called the Kolmogorov complexity of x. Definition 1 (Kolmogorov complexity) For every language L, the Kolmogorov complexity of the bit string x with respect to L is KL (x) = min l(p) p:L(p)=x where p is a program represented as a bit string, L(p) is the output of the program with respect to the language L, and l(p) is the length of the program, or more precisely, the point at which the execution halts.
    [Show full text]
  • Shannon Entropy and Kolmogorov Complexity
    Information and Computation: Shannon Entropy and Kolmogorov Complexity Satyadev Nandakumar Department of Computer Science. IIT Kanpur October 19, 2016 This measures the average uncertainty of X in terms of the number of bits. Shannon Entropy Definition Let X be a random variable taking finitely many values, and P be its probability distribution. The Shannon Entropy of X is X 1 H(X ) = p(i) log : 2 p(i) i2X Shannon Entropy Definition Let X be a random variable taking finitely many values, and P be its probability distribution. The Shannon Entropy of X is X 1 H(X ) = p(i) log : 2 p(i) i2X This measures the average uncertainty of X in terms of the number of bits. The Triad Figure: Claude Shannon Figure: A. N. Kolmogorov Figure: Alan Turing Just Electrical Engineering \Shannon's contribution to pure mathematics was denied immediate recognition. I can recall now that even at the International Mathematical Congress, Amsterdam, 1954, my American colleagues in probability seemed rather doubtful about my allegedly exaggerated interest in Shannon's work, as they believed it consisted more of techniques than of mathematics itself. However, Shannon did not provide rigorous mathematical justification of the complicated cases and left it all to his followers. Still his mathematical intuition is amazingly correct." A. N. Kolmogorov, as quoted in [Shi89]. Kolmogorov and Entropy Kolmogorov's later work was fundamentally influenced by Shannon's. 1 Foundations: Kolmogorov Complexity - using the theory of algorithms to give a combinatorial interpretation of Shannon Entropy. 2 Analogy: Kolmogorov-Sinai Entropy, the only finitely-observable isomorphism-invariant property of dynamical systems.
    [Show full text]
  • Information Theory
    Information Theory Professor John Daugman University of Cambridge Computer Science Tripos, Part II Michaelmas Term 2016/17 H(X,Y) I(X;Y) H(X|Y) H(Y|X) H(X) H(Y) 1 / 149 Outline of Lectures 1. Foundations: probability, uncertainty, information. 2. Entropies defined, and why they are measures of information. 3. Source coding theorem; prefix, variable-, and fixed-length codes. 4. Discrete channel properties, noise, and channel capacity. 5. Spectral properties of continuous-time signals and channels. 6. Continuous information; density; noisy channel coding theorem. 7. Signal coding and transmission schemes using Fourier theorems. 8. The quantised degrees-of-freedom in a continuous signal. 9. Gabor-Heisenberg-Weyl uncertainty relation. Optimal \Logons". 10. Data compression codes and protocols. 11. Kolmogorov complexity. Minimal description length. 12. Applications of information theory in other sciences. Reference book (*) Cover, T. & Thomas, J. Elements of Information Theory (second edition). Wiley-Interscience, 2006 2 / 149 Overview: what is information theory? Key idea: The movements and transformations of information, just like those of a fluid, are constrained by mathematical and physical laws. These laws have deep connections with: I probability theory, statistics, and combinatorics I thermodynamics (statistical physics) I spectral analysis, Fourier (and other) transforms I sampling theory, prediction, estimation theory I electrical engineering (bandwidth; signal-to-noise ratio) I complexity theory (minimal description length) I signal processing, representation, compressibility As such, information theory addresses and answers the two fundamental questions which limit all data encoding and communication systems: 1. What is the ultimate data compression? (answer: the entropy of the data, H, is its compression limit.) 2.
    [Show full text]
  • Paper 1 Jian Li Kolmold
    KolmoLD: Data Modelling for the Modern Internet* Dmitry Borzov, Huawei Canada Tim Tingqiu Yuan, Huawei Mikhail Ignatovich, Huawei Canada Jian Li, Futurewei *work performed before May 2019 Challenges: Peak Traffic Composition 73% 26% Content: sizable, faned-out, static Streaming Services Everything else (Netflix, Hulu, Software File storage (Instant Messaging, YouTube, Spotify) distribution services VoIP, Social Media) [1] Source: Sandvine Global Internet Phenomena reports for 2009, 2010, 2011, 2012, 2013, 2015, 2016, October 2018 [1] https://qz.com/1001569/the-cdn-heavy-internet-in-rich-countries-will-be-unrecognizable-from-the-rest-of-the-worlds-in-five-years/ Technologies to define the revolution of the internet ChunkStream Founded in 2016 Video codec Founded in 2014 Content-addressable Based on a 2014 MIT Browser-targeted Runtime Content-addressable network protocol based research paper network protocol based on cryptohash naming on cryptohash naming scheme Implemented and supported by all major scheme Based on the Open source project cryptohash naming browsers, an IETF standard Founding company is a P2P project scheme YCombinator graduate YCombinator graduate with backing of high profile SV investors Our Proposal: A data model for interoperable protocols KolmoLD Content addressing through hashes has become a widely-used means of Addressable: connecting layer, inspired by connecting data in distributed the principles of Kolmogorov complexity systems, from the blockchains that theory run your favorite cryptocurrencies, to the commits that back your code, to Compossible: sending data as code, where the web’s content at large. code efficiency is theoretically bounded by Kolmogorov complexity Yet, whilst all of these tools rely on Computable: sandboxed computability by some common primitives, their treating data as code specific underlying data structures are not interoperable.
    [Show full text]
  • Maximizing T-Complexity 1. Introduction
    Fundamenta Informaticae XX (2015) 1–19 1 DOI 10.3233/FI-2012-0000 IOS Press Maximizing T-complexity Gregory Clark U.S. Department of Defense gsclark@ tycho. ncsc. mil Jason Teutsch Penn State University teutsch@ cse. psu. edu Abstract. We investigate Mark Titchener’s T-complexity, an algorithm which measures the infor- mation content of finite strings. After introducing the T-complexity algorithm, we turn our attention to a particular class of “simple” finite strings. By exploiting special properties of simple strings, we obtain a fast algorithm to compute the maximum T-complexity among strings of a given length, and our estimates of these maxima show that T-complexity differs asymptotically from Kolmogorov complexity. Finally, we examine how closely de Bruijn sequences resemble strings with high T- complexity. 1. Introduction How efficiently can we generate random-looking strings? Random strings play an important role in data compression since such strings, characterized by their lack of patterns, do not compress well. For prac- tical compression applications, compression must take place in a reasonable amount of time (typically linear or nearly linear time). The degree of success achieved with the classical compression algorithms of Lempel and Ziv [9, 21, 22] and Welch [19] depend on the complexity of the input string; the length of the compressed string gives a measure of the original string’s complexity. In the same monograph in which Lempel and Ziv introduced the first of these algorithms [9], they gave an example of a succinctly describable class of strings which yield optimally poor compression up to a logarithmic factor, namely the class of lexicographically least de Bruijn sequences for each length.
    [Show full text]
  • 1952 Washington UFO Sightings • Psychic Pets and Pet Psychics • the Skeptical Environmentalist Skeptical Inquirer the MAGAZINE for SCIENCE and REASON Volume 26,.No
    1952 Washington UFO Sightings • Psychic Pets and Pet Psychics • The Skeptical Environmentalist Skeptical Inquirer THE MAGAZINE FOR SCIENCE AND REASON Volume 26,.No. 6 • November/December 2002 ppfjlffl-f]^;, rj-r ci-s'.n.: -/: •:.'.% hstisnorm-i nor mm . o THE COMMITTEE FOR THE SCIENTIFIC INVESTIGATION OF CLAIMS OF THE PARANORMAL AT THE CENTER FOR INQUIRY-INTERNATIONAL (ADJACENT TO THE STATE UNIVERSITY OF NEW YORK AT BUFFALO) • AN INTERNATIONAL ORGANIZATION Paul Kurtz, Chairman; professor emeritus of philosophy. State University of New York at Buffalo Barry Karr, Executive Director Joe Nickell, Senior Research Fellow Massimo Polidoro, Research Fellow Richard Wiseman, Research Fellow Lee Nisbet Special Projects Director FELLOWS James E. Alcock,* psychologist. York Univ., Consultants, New York. NY Irmgard Oepen, professor of medicine Toronto Susan Haack. Cooper Senior Scholar in Arts (retired), Marburg, Germany Jerry Andrus, magician and inventor, Albany, and Sciences, prof, of philosophy, University Loren Pankratz, psychologist, Oregon Health Oregon of Miami Sciences Univ. Marcia Angell, M.D., former editor-in-chief. C. E. M. Hansel, psychologist. Univ. of Wales John Paulos, mathematician, Temple Univ. New England Journal of Medicine Al Hibbs, scientist, Jet Propulsion Laboratory Steven Pinker, cognitive scientist, MIT Robert A. Baker, psychologist. Univ. of Douglas Hofstadter, professor of human Massimo Polidoro, science writer, author, Kentucky understanding and cognitive science, executive director CICAP, Italy Stephen Barrett, M.D., psychiatrist, author. Indiana Univ. Milton Rosenberg, psychologist, Univ. of consumer advocate, Allentown, Pa. Gerald Holton, Mallinckrodt Professor of Chicago Barry Beyerstein,* biopsychologist, Simon Physics and professor of history of science, Wallace Sampson, M.D., clinical professor of Harvard Univ. Fraser Univ., Vancouver, B.C., Canada medicine, Stanford Univ., editor, Scientific Ray Hyman.* psychologist, Univ.
    [Show full text]
  • Marion REVOLLE
    Algorithmic information theory for automatic classification Marion Revolle, [email protected] Nicolas le Bihan, [email protected] Fran¸cois Cayre, [email protected] Main objective Files : any byte string in a computer (text, music, ..) & Similarity measure in a non-probabilist context : Similarity metric Algorithmic information theory : Kolmogorov complexity % 1.1 Complexity 1.2 GZIP 1.3 Examples GZIP : compression algorithm = DEFLATE + Huffman. Given x a file string of size jxj define on the alphabet Ax A- x = ABCA BCCB CABC of size αx. A- DEFLATE L(x) = 6 Z(-1! 1) A- Simple complexity Dictionary compression based on LZ77 : make ref- x : L(A) L(B) L(C) Z(-3!3) L(C) Z(-6!5) K(x) : Kolmogorov complexity : the length of a erences from the past. ABC ABCC BCABC shortest binary program to compute x. B- y = ABCA BCAB CABC DEFLATE(x) generate two kinds of symbol : L(x) : Lempel-Ziv complexity : the minimal number L(y) = 5 of operations making insert/copy from x's past L(a) : insert the element a in Ax = Literal. y : L(A) L(B) L(C) Z(-3!3) Z(-6!6) to generate x. Z(-i ! j) : paste j elements, i elements before = Refer- ABC ABC ABCABC ence of length j. L(yjx) = 2 yjx : Z(-12!6) Z(-12!6) B- Conditional complexity ABCABC ABCABC K(xjy) : conditional Kolmogorov complexity : the B- Complexity C- z = MNOM NOMN OMNO length of a shortest binary program to compute Number of symbols to compress x with DEFLATE L(z) = 5 x is y is furnished as an auxiliary input.
    [Show full text]
  • On One-Way Functions and Kolmogorov Complexity
    On One-way Functions and Kolmogorov Complexity Yanyi Liu Rafael Pass∗ Cornell University Cornell Tech [email protected] [email protected] September 24, 2020 Abstract We prove that the equivalence of two fundamental problems in the theory of computing. For every polynomial t(n) ≥ (1 + ")n; " > 0, the following are equivalent: • One-way functions exists (which in turn is equivalent to the existence of secure private-key encryption schemes, digital signatures, pseudorandom generators, pseudorandom functions, commitment schemes, and more); • t-time bounded Kolmogorov Complexity, Kt, is mildly hard-on-average (i.e., there exists a t 1 polynomial p(n) > 0 such that no PPT algorithm can compute K , for more than a 1 − p(n) fraction of n-bit strings). In doing so, we present the first natural, and well-studied, computational problem characterizing the feasibility of the central private-key primitives and protocols in Cryptography. ∗Supported in part by NSF Award SATC-1704788, NSF Award RI-1703846, AFOSR Award FA9550-18-1-0267, and a JP Morgan Faculty Award. This research is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via 2019-19-020700006. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein. 1 Introduction We prove the equivalence of two fundamental problems in the theory of computing: (a) the exis- tence of one-way functions, and (b) mild average-case hardness of the time-bounded Kolmogorov Complexity problem.
    [Show full text]
  • Complexity Measurement Based on Information Theory and Kolmogorov Complexity
    Leong Ting Lui** Complexity Measurement Based † Germán Terrazas on Information Theory and University of Nottingham Kolmogorov Complexity ‡ Hector Zenil University of Sheffield Cameron Alexander§ University of Nottingham Natalio Krasnogor*,¶ Abstract In the past decades many definitions of complexity Newcastle University have been proposed. Most of these definitions are based either on Shannonʼs information theory or on Kolmogorov complexity; these two are often compared, but very few studies integrate the two ideas. In this article we introduce a new measure of complexity that builds on both of these theories. As a demonstration of the concept, the technique is applied to elementary cellular automata Keywords and simulations of the self-organization of porphyrin molecules. Complex systems, measures of complexity, open-ended evolution, cellular automata, molecular computation 1 Introduction The notion of complexity has been used in various disciplines. However, the very definition of complexity1 is still without consensus. One of the reasons for this is that there are many intuitive interpretations to the concept of complexity that can be applied in different domains of science. For instance, the Lorentz attractor can be simply described by three interaction differential equations, but it is often seen as producing complex chaotic dynamics. The iconic fractal image generated by the Mandelbrot set can be seen as a simple mathematical algorithm having a com- plex phase diagram. Yet another characteristic of complex systems is that they consist of many interacting components such as genetic regulatory networks, electronic components, and ecological food chains. Complexity is also associated with processes that generate complex outcomes, evolution being the best example.
    [Show full text]
  • Kolmogorov Complexity and Its Applications
    CHAPTER 4 Kolmogorov Complexity and its Applications Ming LI Aiken Computation Laboratory, Han•ard University, Cambridge, MA 02138, USA Paul M.B. VIT ANYI Centrum voor Wiskunde en biformatica, Kruislaan 413, 1098 SJ Amsterdam, Netherlands, and Facu/teit Wiskunde en Jnjormatica, Universiteic van Amsterdam, Amsterdam, Netherlands Contents L Introduction 189 2. Mathematical theory 196 3. Applications of compressibility 214 4. Example of an application in mathematics: weak prime number theorems. 221 5. Applications of incompressibility: proving lower bounds 222 6. Resource-bounded Kolmogorov complexity and its applications 236 7. Conclusion 247 Acknowledgment 247 References :48 HANDBOOK OF THEORETICAL COMPUTER SCIENCE Edited by J. van Leeuwen ((' Elsevier Science Publishers B.V., 1990 KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS 189 t. Introduction In everyday language we identify the information in an individual object with the essentials of a description for it. We can formalize this by defining the amount of information in a finite object (like a string) as the size (i.e., number of bits) of the smallest program that, starting with a blank memory, outputs the string and then terminates. A similar definition can be given for infinite strings, but in this case the program produces element after element forever. Thus, 1n (a string of nones) contains little information because a program of size about log n outputs it (like "print n ls"). Likewise, the transcendental number rr = 3.1415 ... , an infinite sequence of seemingly "random" decimal digits, contains O(l) information. (There is a short program that produces the consecutive digits of rr forever.) Such a definition would appear to make the amount of information in a string depend on the particular programming language used.
    [Show full text]
  • Minimum Complexity Pursuit: Stability Analysis
    Minimum Complexity Pursuit: Stability Analysis Shirin Jalali Arian Maleki Richard Baraniuk Center for Mathematics of Information Department of Electrical Engineering Department of Electrical Engineering California Institute of Technology Rice University Rice University Pasadena, California, 91125 Houston, Texas, 77005 Houston, Texas, 77005 Abstract— A host of problems involve the recovery of struc- their linear measurements without having the knowledge of tured signals from a dimensionality reduced representation the underlying structure? Does this ignorance incur a cost in such as a random projection; examples include sparse signals the sampling rate? (compressive sensing) and low-rank matrices (matrix comple- tion). Given the wide range of different recovery algorithms In algorithmic information theory, Kolmogorov complex- developed to date, it is natural to ask whether there exist ity, introduced by Solomonoff [12], Kolmogorov [13], and “universal” algorithms for recovering “structured” signals from Chaitin [14], defines a universal notion of complexity for their linear projections. We recently answered this question in finite-alphabet sequences. Given a finite-alphabet sequence the affirmative in the noise-free setting. In this paper, we extend x, the Kolmogorov complexity of x, K(x), is defined as the our results to the case of noisy measurements. length of the shortest computer program that prints x and I. INTRODUCTION halts. In [15], extending the notion of Kolmogorov complex- ity to real-valued signals1 by their proper quantization, we Data compressors are ubiquitous in the digital world. They addressed some of the above questions. We introduced the are built based on the premise that text, images, videos, minimum complexity pursuit (MCP) algorithm for recover- etc.
    [Show full text]
  • Prefix-Free Kolmogorov Complexity
    Prefix-free complexity Properties of Kolmogorov complexity Information Theory and Statistics Lecture 7: Prefix-free Kolmogorov complexity Łukasz Dębowski [email protected] Ph. D. Programme 2013/2014 Project co-financed by the European Union within the framework of the European Social Fund Prefix-free complexity Properties of Kolmogorov complexity Towards algorithmic information theory In Shannon’s information theory, the amount of information carried by a random variable depends on the ascribed probability distribution. Andrey Kolmogorov (1903–1987), the founding father of modern probability theory, remarked that it is extremely hard to imagine a reasonable probability distribution for utterances in natural language but we can still estimate their information content. For that reason Kolmogorov proposed to define the information content of a particular string in a purely algorithmic way. A similar approach has been proposed a year earlier by Ray Solomonoff (1926–2009), who sought for optimal inductive inference. Project co-financed by the European Union within the framework of the European Social Fund Prefix-free complexity Properties of Kolmogorov complexity Kolmogorov complexity—analogue of Shannon entropy The fundamental object of algorithmic information theory is Kolmogorov complexity of a string, an analogue of Shannon entropy. It is defined as the length of the shortest program for a Turing machine such that the machine prints out the string and halts. The Turing machine itself is defined as a deterministic finite state automaton which moves along one or more infinite tapes filled with symbols from a fixed finite alphabet and which may read and write individual symbols. The concrete value of Kolmogorov complexity depends on the used Turing machine but many properties of Kolmogorov complexity are universal.
    [Show full text]