Ruthenium Catalysts for the Synthesis of Quinolines and Enol Esters

Total Page:16

File Type:pdf, Size:1020Kb

Ruthenium Catalysts for the Synthesis of Quinolines and Enol Esters Faculty of Science Department of Inorganic and Physical Chemistry Centre for Ordered Materials, Organometallics and Catalysis Ruthenium catalysts for the synthesis of quinolines and enol esters Hans Vander Mierde Promoter: Prof. Dr. F. Verpoort Proefschrift voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen: Scheikunde ii Members of the jury Prof. Dr. F. Verpoort (Promoter) Prof. Dr. P. Van Der Voort Prof. Dr. J. Van der Eycken Prof. Dr. R. Willem Prof. Dr. Ir. C. Stevens Dr. R. Drozdzak Prof. Dr. K. Strubbe (Chairman) iii Science only starts to get interesting at the point where it stops. Wetenschap wordt eigenlijk pas interessant op het punt waar ze ophoudt. Dankwoord/Acknowledgements “PLOF!!” Daar ligt hij dan: mijn doctoraatsproefschrift, de exponent van jaren puffen, zwoe- gen en zweten. Gelukkig heb ik al die jaren kunnen rekenen op de onvoorwaardelijke steun van een heleboel mensen. Hier komen hun welverdiende ‘two pages of fame’. Mijn eerste ‘dankjewel’ zou ik willen richten aan mijn promotor, professor Francis Verpoort, om mij de mogelijkheid te geven dit onderzoek te verrichten. Ook in de moeilijke eerste jaren met tegenvallende resultaten, die soms eigen zijn aan wetenschappelijk onderzoek, wist hij mij steeds te verrassen met nieuwe idee¨en. Uiteraard mag ik ook de financi¨ele steun van de Universiteit Gent niet vergeten. In mijn job als assistent heb ik niet alleen studenten iets proberen bij te brengen, maar heb ik ook zelf enorm veel geleerd. Verder ben ik dank verschuldigd aan de leden van de jury, voor het kritisch lezen en beoordelen van dit werk. Al die jaren heb ik het geluk gehad te kunnen samenwerken met fantastische colle- ga’s. In het bijzonder wil ik Bart, Nele en Carl bedanken voor hun wetenschappelijk bijdragen, de uitstekende sfeer in het labo en de zomerse ijsjes. Natuurlijk mag ik Stijn, Jeroen, Fu, Steven, Siegfried en David niet overslaan. De samenwerking met de groep van professor Pascal Van Der Voort verliep zeer vlot. De nieuwe lichting doctorandi Els, Ilke, Matthias, Frederik en Karen zorgden voor een aangename frisse wind in het schrijflokaal wat het extra jammer maakt dat “Welkom” zo snel plaats moet maken voor “Tot ziens”. Ook bedankt aan ‘vaste stoffers’ Klaartje, Veerle en Jonas en alle andere mensen die ik hier niet persoonlijk vermeld heb, voor de vele leuke momenten en losse bab- bels . Verder verdienen ook alle ATP’ers en praktijkassistenten hun plaatsje op deze pa- gina. Bedankt Pat voor de constructie van mijn aluminium ‘multi-mini-kolom- filtratie-houder’ en Danny voor assistentie en onderhoud van het GC toestel. Een speciaal woordje van dank gaat uit naar Claudine, ‘moeder van alle doctoraatsstu- denten’ voor een luisterend oor bij grote en kleine zorgen. Daarnaast wil ik ook Marc Schelfaut bedanken van de onderzoeksgroep Chroma- tografie voor het uitvoeren van GC-MS metingen. Mieke, liefste Mieke. Hoeveel van onze conversaties gingen niet als volgt: “Wacht schat, ik zal je helpen met wassen/strijken/poetsen/...” waarop jij evenveel keer antwoordde “Nee hoor, dat is niet nodig. Werk jij maar hard door aan je doc- toraat.” Duizendmaal dank voor alle steun en begrip tijdens die zware laatste v vi maanden. Gelukkig waren er ook nog de ontspanningsmomenten met goede vrienden Bram en Valerie om eens een kaartje te leggen of op een zonnige avond te keuvelen over de dingen des levens. Af en toe moest de frustratie er ook een keer uit en dat zul- len David en Sven geweten hebben tijdens onze badmintonwedstrijdjes. Gelukkig waren het vooral de pluimpjes die het moesten ontgelden. Eindigen doe ik met een woordje van lof voor mijn ouders. Tijdens mijn univer- sitaire ‘carriere’ stonden zij steeds op de eerste rij om voor mij te supporteren. Hun tomeloze inzet en grenzeloze liefde waren steeds een stuwende kracht in mijn leven. Hopelijk kan ik hen daarvan met het volbrengen van dit werk een stukje teruggeven. Table of Contents Dankwoord/Acknowledgements v Table of Contents vii Preface: Setting the stage xi Outline xiii List of abbreviations xv List of numbered compounds xvii 1 Introduction to quinoline synthesis 1 1.1 What is quinoline? . 1 1.2 Traditional methods of synthesis . 2 1.2.1 Skraup/Doebner-von Miller reaction . 2 1.2.2 Combes quinoline synthesis . 3 1.2.3 Friedlander quinoline synthesis . 3 1.2.4 Other named reactions . 4 1.2.5 Classic organic synthesis . 5 1.3 Transition metal-catalyzed approaches . 5 1.3.1 The modified Friedlander quinoline synthesis . 6 1.3.2 Other transition metal catalyzed methods . 8 1.4 The development of the modified Friedlander method . 15 1.4.1 Introduction . 15 1.4.2 Catalytic transfer hydrogenation . 15 1.4.3 Extension to the Friedlander reaction . 17 2 Ruthenium catalyzed synthesis of quinolines 21 2.1 Introduction . 21 2.2 Ruthenium catalysts . 22 2.2.1 Synthesis of Ruthenium-arene complexes . 22 2.2.2 Quinoline synthesis with Ru-arene complexes . 26 2.2.3 Quinoline synthesis with Ru-carbene complexes . 28 2.2.4 Quinoline synthesis from other ketones . 31 2.2.5 Isolation and characterization of the quinolines . 33 2.3 Influence of the base . 34 2.4 Solvent preparation: flushing with argon . 36 vii viii TABLE OF CONTENTS 2.5 Turn-over number and turn-over frequency . 37 2.6 The influence of a hydrogen acceptor . 39 2.7 Reaction mechanism . 42 2.7.1 General reaction scheme . 42 2.7.2 Reaction mechanism concerning the catalyst . 44 2.8 Synthesis of 3-substituted quinolines . 45 2.8.1 Introduction . 45 2.8.2 Development of a new method for the synthesis of 3-substituted quinolines . 47 2.8.3 Optimization of the reaction parameters . 48 2.8.4 Reaction mechanism . 50 2.9 Conclusions on Ru-catalyzed quinoline synthesis . 52 3 Base-mediated synthesis of quinolines 55 3.1 Introduction . 55 3.2 Synthesis of quinolines from ketones . 57 3.3 Reaction mechanism . 61 3.4 Synthesis of 3-substituted quinolines . 62 3.5 Conclusions on the base-mediated synthesis of quinolines . 63 4 Introduction to enol esters 65 4.1 Definition . 65 4.2 Applications of enol esters . 66 4.3 Synthesis of enol esters . 68 4.3.1 Addition of carboxylic acids to alkynes . 68 4.3.2 Enol esters via enolates . 75 4.3.3 Other methods for the synthesis of enol esters . 76 4.3.4 Reaction mechanism of the ruthenium-catalyzed synthesis of enol esters . 77 5 Ruthenium catalyzed synthesis of enol esters 79 5.1 Introduction . 79 5.2 Screening of ruthenium catalysts . 80 5.2.1 Model reaction 1: phenylacetylene and acetic acid . 80 5.2.2 Model reaction 2: 1-octyne and acetic acid . 85 5.2.3 Phenylacetylene and the dimerization problem . 88 5.3 Broadening the scope of the reaction . 90 5.3.1 Phenylacetylene and trichloroacetic acid . 91 5.3.2 Phenylacetylene and benzoic acid . 91 5.3.3 1-Octyne and trichloroacetic acid . 93 5.3.4 1-Octyne and benzoic acid . 93 5.3.5 3,3-Dimethyl-1-butyne and acetic acid . 95 5.3.6 3,3-Dimethyl-1-butyne and trichloroacetic acid . 95 5.3.7 3,3-Dimethyl-1-butyne and benzoic acid . 95 5.3.8 Cyclic enol esters from 4-pentynoic acid (Lactones) . 96 5.3.9 The alkynes 4-octyne and 2-methyl-3-butyn-2-ol . 98 5.3.10 Influence of the pKa on the stereochemistry . 99 5.4 Tweaking the reaction conditions . 100 TABLE OF CONTENTS ix 5.4.1 Introduction . 100 5.4.2 Sodium acetate instead of acetic acid . 100 5.4.3 The addition of NHC ligands . 100 5.4.4 The addition of bases . 102 5.5 Mechanistical considerations for the synthesis of enol esters. 103 5.6 Conclusions on ruthenium-catalyzed synthesis of enol esters . 105 6 General conclusions and outlook 107 7 Experimental 111 7.1 General remarks . 111 7.1.1 Chemical compounds and synthesis . 111 7.1.2 Experimental techniques and analysis . 111 7.2 Synthesis of Schiff base ligands . 112 7.2.1 Schiff base SB1 .......................... 112 7.2.2 Schiff base SBN1 ........................ 112 7.2.3 Schiff base SB2 .......................... 113 7.2.4 Schiff bases SB6 ......................... 113 7.2.5 Schiff bases SBN2, SB3, SBN3, SB4, SBN4, SB5, SBN5 and SBN6 ............................ 113 7.3 Synthesis of the Schiff base thallium salts . 114 7.4 Synthesis of the catalysts . 114 7.4.1 Synthesis of RuCl(p-cymene)SchiffBase complex . 114 7.5 Ru-catalyzed quinoline synthesis from ketones . 117 7.5.1 General experimental procedure . 117 7.5.2 Isolation of quinolines . 117 7.5.3 Properties and spectral data of quinolines . 117 7.5.4 Synthesis of 3-phenylpropiophenone . 119 7.6 Ruthenium-catalyzed synthesis of 3-substituted quinolines . 119 7.6.1 Method A: slow addition of the aldehyde . 119 7.6.2 Method B: oxazine formation followed by ring closing . 120 7.6.3 Spectral data of oxazines . 120 7.6.4 Properties and spectral data of quinolines . 121 7.7 Base-mediated quinoline synthesis . 122 7.7.1 Procedure for quinoline synthesis from ketones . 122 7.7.2 Procedure for the synthesis of 3-substituted quinolines . 122 7.7.3 Synthesis of 2-acetamidobenzyl acetate (ABA”)....... 122 7.7.4 Self-condensation of 2-heptanone . 123 7.8 Ruthenium-catalyzed synthesis of enol esters . 123 7.8.1 General experimental procedure . 123 7.8.2 Procedure for the addition of NHC ligands . 123 7.8.3 Procedure for the addition of bases . 124 7.8.4 Isolation of enol esters . 124 7.8.5 Properties and spectral data of enol esters .
Recommended publications
  • Tautomer Identification and Tautomer Structure Generation Based on The
    J. Chem. Inf. Model. 2010, 50, 1223–1232 1223 Tautomer Identification and Tautomer Structure Generation Based on the InChI Code Torsten Thalheim,†,‡ Armin Vollmer,† Ralf-Uwe Ebert,† Ralph Ku¨hne,† and Gerrit Schu¨u¨rmann*,†,‡ UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany, and Institute for Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Strasse 29, 09596 Freiberg, Germany Received March 27, 2010 An algorithm is introduced that enables a fast generation of all possible prototropic tautomers resulting from the mobile H atoms and associated heteroatoms as defined in the InChI code. The InChI-derived set of possible tautomers comprises (1,3)-shifts for open-chain molecules and (1,n)-shifts (with n being an odd number >3) for ring systems. In addition, our algorithm includes also, as extension to the InChI scope, those larger (1,n)-shifts that can be constructed from joining separate but conjugated InChI sequences of tautomer-active heteroatoms. The developed algorithm is described in detail, with all major steps illustrated through explicit examples. Application to ∼72 500 organic compounds taken from EINECS (European Inventory of Existing Commercial Chemical Substances) shows that around 11% of the substances occur in different heteroatom-prototropic tautomeric forms. Additional QSAR (quantitative structure-activity relationship) predictions of their soil sorption coefficient and water solubility reveal variations across tautomers up to more than two and 4 orders of magnitude, respectively. For a small subset of nine compounds, analysis of quantum chemically predicted tautomer energies supports the view that among all tautomers of a given compound, those restricted to H atom exchanges between heteroatoms usually include the thermodynamically most stable structures.
    [Show full text]
  • Determination of Solvent Effects on Ketoðenol Equilibria of 1,3-Dicarbonyl Compounds Using NMR: Revisiting a Classic Physical C
    In the Laboratory Determination of Solvent Effects on Keto–Enol Equilibria W of 1,3-Dicarbonyl Compounds Using NMR Revisiting a Classic Physical Chemistry Experiment Gilbert Cook* and Paul M. Feltman Department of Chemistry, Valparaiso University, Valparaiso, IN 46383; *[email protected] “The influence of solvents on chemical equilibria was discovered in 1896, simultaneously with the discovery of keto–enol tautomerism in 1,3-dicarbonyl compounds” (1). The solvents were divided into two groups according to their ability to isomerize compounds. The study of the keto–enol tautomerism of β-diketones and β-ketoesters in a variety of solvents using proton NMR has been utilized as a physical Figure 1. The β-dicarbonyl compounds studied in the experiment. chemistry experiment for many years (2, 3). The first reported use of NMR keto–enol equilibria determination was by Reeves (4). This technique has been described in detail in an experiment by Garland, Nibler, and Shoemaker (2). panded (i) to give an in-depth analysis of factors influencing The most commonly used β-diketone for these experi- solvent effects in tautomeric equilibria and (ii) to illustrate ments is acetylacetone (Scheme I). Use of proton NMR is a the use of molecular modeling in determining the origin of viable method for measuring this equilibrium because the a molecule’s polarity. The experiment’s original benefits of tautomeric keto–enol equilibrium is slow on the NMR time using proton NMR as a noninvasive method of evaluating scale, but enol (2a)–enol (2b) tautomerism is fast on this scale equilibrium are maintained. (5). It has been observed that acyclic β-diketones and β- Experimental Procedure ketoesters follow Meyer’s rule of a shift in the tautomeric equi- librium toward the keto tautomer with increasing solvent Observations of the solvent effects for three other 1,3- polarity (6).
    [Show full text]
  • Mechanisms of Carbonyl Activation by BINOL N-Triflylphosphoramides
    Mechanisms of Carbonyl Activation by BINOL N-Triflylphosphoramides Enantioselective Nazarov Cyclizations Lovie-toon, Joseph P.; Tram, Camilla Mia; Flynn, Bernard L.; Krenske, Elizabeth H. Published in: ACS Catalysis DOI: 10.1021/acscatal.7b00292 Publication date: 2017 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Lovie-toon, J. P., Tram, C. M., Flynn, B. L., & Krenske, E. H. (2017). Mechanisms of Carbonyl Activation by BINOL N-Triflylphosphoramides: Enantioselective Nazarov Cyclizations . ACS Catalysis, 7(5), 3466-3476. https://doi.org/10.1021/acscatal.7b00292 Download date: 09. Apr. 2020 This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Research Article pubs.acs.org/acscatalysis Mechanisms of Carbonyl Activation by BINOL N‑Triflylphosphoramides: Enantioselective Nazarov Cyclizations Joseph P. Lovie-Toon,† Camilla Mia Tram,†,‡,∥ Bernard L. Flynn,§ and Elizabeth H. Krenske*,† † School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia ‡ University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark § Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia *S Supporting Information ABSTRACT: BINOL N-triflylphosphoramides are versatile organocatalysts for reactions of carbonyl compounds. Upon activation
    [Show full text]
  • New Investigations in the Interrupted Nazarov Reaction by Owen Scadeng a Thesis Submitted in Partial Fulfillment of the Requirem
    New Investigations in the Interrupted Nazarov Reaction by Owen Scadeng A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemistry University of Alberta © Owen Scadeng, 2014 Abstract The five-membered carbocycle is a structural motif found in a plethora of natural products and bioactive compounds. The Nazarov reaction has emerged as an effective method to synthesize cyclopentenones and acts as a tool for adding structural complexity to molecular frameworks. This dissertation will discuss several projects involving the Nazarov cyclization and its use to build functionality to the cyclopentanoid framework. Chapter 1 provides a detailed recount of recent advances in Nazarov chemistry. Focus on methods to induce enantioselectivity, the use of alternative substrates as Nazarov reaction precursors, and the use of the Nazarov reaction in total synthesis is presented. Chapter 2 describes the formation of bridged bicyclic compounds via a [3+3]-cycloaddition between organoazides and the Nazarov intermediate. These cycloadducts were also found to thermally decompose to produce ring-enlarged dihydropyridones and 6-methylenepiperidinones. In Chapter 3, details the attempted development of a domino Nazarov cyclization/Baeyer-Villiger oxidation are provided. While the desired 3,4- dihydropyra-2-one was formed with the use of bis(trimethylsilyl)peroxide as the oxidant, optimization of the transformation failed to produce synthetically useful yields. Chapter 4 divulges the findings of Nazarov cyclizations of 2-hydroxyalkyl- 1,4-diene-3-ones. Originally proposed as substrates that could undergo domino Nazarov cyclization/semipinacol rearrangements, these compounds were found to readily produce alkylidene cyclopentenones under Lewis acid conditions.
    [Show full text]
  • Tautomer-Selective Spectroscopy of Nucleobases, Isolated in the Gas Phase Mattanjah S
    177 7 Tautomer-Selective Spectroscopy of Nucleobases, Isolated in the Gas Phase Mattanjah S. de Vries 7.1 Introduction In his book The Double Helix, James Watson describes an early proposal for DNA structure in which equal bases pair with each other. He writes: ‘‘My scheme was torn to shreds the following noon. Against me was the awkward chemical fact that I had chosen the wrong tautomeric forms for guanine and thymine.’’ This fact was pointed out to him by the American crystallographer Jerry Donahue who ‘‘ ... protested that the idea would not work. The tautomeric forms I had copied out of Davidson’s book were, in Jerry’s opinion, incorrectly assigned. My immediate retort that several other texts also pictured guanine and thymine in the enol form cut no ice with Jerry. Happily he let out that for years organic chemists have been arbitrarily favoring particular tautomeric forms over the alternatives on only the flimsiest of grounds’’ [1]. Without the correct keto form of these bases, Watson and Crick could not have arrived at their successful structure of DNA. In fact, for each of the bases, the keto tautomer is the form normally occurring in DNA. The rare imino and enol forms can lead to alternate base-pair combinations and thus cause mutations in replication. This type of mutation is called a tautomeric shift [2, 3]. Possible mismatches include iminoC–A, enolT–G, C–iminoA, and T–enolG. Tautomerization can occur in DNA by single or double proton transfer. In solution equilibrium, generally the keto form dominates, complicating efforts to study the properties of the individual forms.
    [Show full text]
  • Predicting Tautomer Ratios in Solution
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.24.353318; this version posted October 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. October 24, 2020 1 Fitting quantum machine learning 2 potentials to experimental free energy 3 data: Predicting tautomer ratios in 4 solution 5 Marcus Wieder* (0000-0003-2631-8415)1*, Josh Fass* (0000-0003-3719-266X)1,2, John D. Chodera 6 (0000-0003-0542-119X)1 7 *contributed equally to this work; 1Computational and Systems Biology Program, Sloan Kettering Institute, Memorial 8 Sloan Kettering Cancer Center, New York, NY 10065, USA; 2Tri-Institutional PhD Program in Computational Biology and 9 Medicine, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA 10 *For correspondence: 11 [email protected] (MW) 12 13 Abstract The computation of tautomer rations of druglike molecules is enormously important in computer- 14 aided drug discovery, as over a quarter of all approved drugs can populate multiple tautomeric species in so- 15 lution. Unfortunately, accurate calculations of aqueous tautomer ratios—the degree to which these species 16 must be penalized in order to correctly account for tautomers in modeling binding for computer-aided drug 17 discovery—is surprisingly difficult. While quantum chemical approaches to computing aqueous tautomer 18 ratios using continuum solvent models and rigid-rotor harmonic-oscillator thermochemistry are currently 19 state of the art, these methods are still surprisingly inaccurate despite their enormous computational ex- 20 pense.
    [Show full text]
  • A Novel Aza-Nazarov Cyclization of Quinazolinonyl Enones: a Facile Access to C- Ring Substituted Vasicinones and Luotonins
    A Novel Aza-Nazarov Cyclization of Quinazolinonyl Enones: A Facile Access to C- Ring Substituted Vasicinones and Luotonins Sivappa Rasapalli,a* Vamshikrishna Reddy Sammeta,a Zachary F. Murphy,a Yanchang Huang,a Jeffrey A. Boertha, James A. Golena and Sergey N. Savinovb a Department of Chemistry and Biochemistry, University of Massachusetts, 287 Old Westport Rd, N. Dartmouth, MA-02747, USA. b Department of Biochemistry and Molecular Biology. UMass Amherst, Amherst, MA-01003, USA [email protected] Received Date (will be automatically inserted after manuscript is accepted) ABSTRACT: A facile four-step synthetic access to C-ring substituted luotonins and vasicinones has been realized via a novel super acid mediated aza-Nazarov cyclization of quinazolinonyl enones. The regioselectivity of the cyclization is highly dependent on proton availability and overall polarity of the reaction medium. Quinazolinone is one of the most privileged through inhibition of topoisomerase-I (topo-I), through pharmacophores in medicinal chemistry.1, 2 There are mechanism of action analogous to camptothecin (CPT) more than 20 drugs that are currently in market (3),8 which attracted the attention of medchem and containing thequinazolinone core.3 Additionally, synchem communities alike.9 This increased attention is pharmacologically important natural products harboring partly due to toxic side effects associated with CPT and the quinazolinone core are also abundant and are known its analogs, due to hydrolysis of the E-ring in basic pH to possess wide range of
    [Show full text]
  • Enolate Chemistry
    Prof. Dr. Burkhard König, Institut für Organische Chemie, Uni Regensburg 1 Enolate Chemistry 1. Some Basics In most cases the equilibrium lies almost completely on the side of the ketone. The ketone tautomer is electrophilic and reacts with nucleophiles: The enol tautomer is nucleophilic and reacts with electrophiles. There are two possible products - enols are ambident nucleophiles: The nucleophilic enol tautomer (and especially the enolate variant) is one of the most important reactive species for C-C bond formation. Treat a ketone with an appropriate base and can get deprotonation at the α-position to form an enolate: Enolates are synthetically much more useful than enols (although they react analogously). Imine anions and eneamines are synthetic equivalents of enolate anions. Li N N H H Imine anion eneamine By knowing the pKa values of the relevant acidic protons it is possible to predict suitable bases for forming the corresponding enolates. Prof. Dr. Burkhard König, Institut für Organische Chemie, Uni Regensburg 2 Some Important pKa Values - - - O O HC N HC3 NO2 H2CN+ 2 + O O pKa ~ 10 - Enolates are nucleophiles and ketones are electrophiles - therefore there is always the potential problem for self condensation. If this is desirable we need to use a base which does not completely deprotonate the carbonyl compound i.e. set up an equilibrium. This is best achieved when the pKa of the carbonyl group and conjugate acid (of the base) are similar: Prof. Dr. Burkhard König, Institut für Organische Chemie, Uni Regensburg 3 pKa (tBuOH) ~ 18. A stronger base. pKa difference of 2. Ratio of ketone to enolate will be of the order 100:1 i.e.
    [Show full text]
  • 1 Tautomerism: Introduction, History, and Recent Developments in Experimental and Theoretical Methods Peter J
    1 1 Tautomerism: Introduction, History, and Recent Developments in Experimental and Theoretical Methods Peter J. Taylor, Gert van der Zwan, and Liudmil Antonov 1.1 The Definition and Scope of Tautomerism: Principles and Practicalities Prototropic tautomerism, defined by one of its early investigators as ‘‘the addition of a proton at one molecular site and its removal from another’’ [1], and hence clearly distinguished from ionization, is one of the most important phenomena in organic chemistry despite the relatively small proportion of molecules in which it can occur. There are several reasons for this. Enantiomers, or cis and trans isomers, possess a formulaic identity just as tautomers do but are difficult to interconvert and hence easy to isolate. Tautomers are different. Tautomers are the chameleons of chemistry, capable of changing by a simple change of phase from an apparently established structure to another (not perhaps until then suspected), and then back again when the original conditions are restored, and of doing this in an instant: intriguing, disconcerting, perhaps at times exasperating. And a change in structure means changes in properties also. A base may be replaced by an acid and vice versa, or more to the point perhaps, a proton acceptor group by a proton donor, as, for instance, carbonyl by hydroxyl. Hence, if the major tautomer has biological activity, the replacement of this structure by another may result in a total mismatch in terms of receptor binding or the partition coefficient. It therefore becomes vital, on the most elementary level, to know which tautomer is the major one, since not only the structure but also the chemical properties are bound up with this.
    [Show full text]
  • Principles of Drug Action 1, Spring 2005, Aldehydes and Ketones
    Principles of Drug Action 1, Spring 2005, Aldehydes and Ketones ALDEHYDES AND KETONES Jack DeRuiter I. Introduction Aldehyde and ketones are "carbonyl" derivatives of the hydrocarbons. A carbonyl is defined as an organic functional group consisting of a carbon atom involved in a double-bonding (pi) arrangement with oxygen. Recall that carbon has a valence of four and thus requires four electrons or bonds to achieve and octet. Oxygen has a valence of six and thus requires two electrons or bonds to satisfy its octet. Thus carbon can form single bonds with oxygen (as in the alcohols and ethers) or double bond with oxygen (as in aldehydes and ketones) in the neutral state: O 2R + C + O C R R Organic compounds containing the carbonyl functional group can be classified as aldehydes or ketones depending on the relative position of the carbonyl moiety. In aldehyde the carbonyl is a "terminal" or end-carbon functionality; in aldehydes the carbonyl is bound to a carbon and a hydrogen atom. In ketones the carbonyl in contained within a hydrocarbon structure, and not on one terminus; the carbonyl carbon is bound to two other carbon atoms. The general structural difference between aldehydes and ketones is illustrated in the examples below. This difference is important in terms of the relative reactivity of these compounds as discussed in the sections that follow. O O C C CH3CH2 H CH3CH2 CH3 Aldehyde Ketone Carbonyl groups may be present in simple aliphatic compounds, in cycloaliphatics and as substitutents of aromatic systems. Again, the relative "placement" or bonding of a carbon within the greater organic structure is important for reactivity as discussed in the sections that follow: O O O C H C CH3CH2 CH3 Aliphatic ketone Cycloaliphatic ketone Aromatic Aldehyde It is important to note that other organic functional groups may also contain a carbonyl group, such as acids, esters and amides.
    [Show full text]
  • Density Functional Theoretical Study on the Acid Dissociation Constant of an Emissive Analogue of Guanine
    Notes Bull. Korean Chem. Soc. 2012, Vol. 33, No. 12 4255 http://dx.doi.org/10.5012/bkcs.2012.33.12.4255 Density Functional Theoretical Study on the Acid Dissociation Constant of an Emissive Analogue of Guanine Yong-Jae Lee, Yun Hee Jang,† Yongseong Kim,‡ and Sungu Hwang§,* Department of Horticultural Bioscience, Pusan National University, Miryang 627-706, Korea †Department of Materials Science and Engineering and Program for Integrated Molecular systems (PIMS), Gwangju Institute of Science and Technology, Gwangju 500-712, Korea ‡Department of Science Education, Kyungnam University, Masan 631-701, Korea §Department of Applied Nanoscience, Pusan National University, Miryang 627-706, Korea. *E-mail: [email protected] Received August 7, 2012, Accepted September 21, 2012 Key Words : DFT, Acid dissociation constant, Guanine Fluorescence spectroscopy has played an important role in tautomer of the conjugate base A−, the Gibbs energy of the modern research especially in biological areas.1 However, deprotonation reaction was calculated using the following the purine and pyrimidine bases in nucleic acids are practi- equation: cally nonemissive in physiological condition. Accordingly, 0,ij 0 − 0 + 0 ΔGdeprot, = ΔG ()A + ΔG ()−ΔH G ()HA (1) the emissive analogues of nucleic acid bases have been the aq aq j aq aq i ij target of extensive studies because they can facilitate the The corresponding micro pKa values are given by the fabrication of biophysical and discovery assays.1-3 Recently, following equation: a fluorescent guanine analogue, 2-aminothieno[3,4-d]pyri- ij 0,ij th 4 pKa = ΔGdeprot, /2.303RT ,(2) midine ( G), was developed. One of the essential criteria of aq a successful analogue is to minimize the structural and where R is the gas constant and T is 298.15 K.
    [Show full text]
  • David E. Scott
    Mechanism of iodine-catalyzed multicomponent cyclocondensation reactions: Synthesis of polysubstituted quinoline "archipelago" asphaltene mimics by David E. Scott A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemistry University of Alberta © David E. Scott, 2019 Abstract Asphaltenes constitute the heaviest and least understood sub-class of bitumen. The degree of difficulty regarding upgrading arises from the diverse and complex mixture of organic and organometallic molecules characteristic of heavy petroleum. It is hypothesized that these molecular constituents are entwined and tightly aggregated to form complex suprastructures. The numerous structural properties of asphaltenes (vast polycyclic aromatics, heteroatoms, polar functional groups, aliphatic segments and substituents, etc.) instigate inter- and intramolecular interactions causing irreversible aggregation. To increase the value and/or use of this material, efficient new upgrading procedures are required in order to address global, ever-expanding, energy needs. Significant achievements in analytical technology has surpassed the basic understanding of the bulk properties of bitumen. Analytical methods such as ICP-MS, VPO, SANS, ITC, and AFM/ STM have begun to intimately define the structural make-up of complex asphaltene molecules. Initial modeling of asphaltene components was limited to commercial aromatic compounds; however, rational molecular design and modern organic synthesis have begun to build a library of structural candidates, to accurately represent the supramolecular behaviour of native asphaltenes. This dissertation describes a new catalytic cyclocondensation procedure, allowing us to prepare a range of quinoline-core asphaltene model compounds. The concise synthetic methodology utilizes a multicomponent reaction (MCR) to build compounds that incorporate a basic nitrogen entity.
    [Show full text]