Linear Transformations and Matrix Algebra
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Equivalence of A-Approximate Continuity for Self-Adjoint
Equivalence of A-Approximate Continuity for Self-Adjoint Expansive Linear Maps a,1 b, ,2 Sz. Gy. R´ev´esz , A. San Antol´ın ∗ aA. R´enyi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, P.O.B. 127, 1364 Hungary bDepartamento de Matem´aticas, Universidad Aut´onoma de Madrid, 28049 Madrid, Spain Abstract Let A : Rd Rd, d 1, be an expansive linear map. The notion of A-approximate −→ ≥ continuity was recently used to give a characterization of scaling functions in a multiresolution analysis (MRA). The definition of A-approximate continuity at a point x – or, equivalently, the definition of the family of sets having x as point of A-density – depend on the expansive linear map A. The aim of the present paper is to characterize those self-adjoint expansive linear maps A , A : Rd Rd for which 1 2 → the respective concepts of Aµ-approximate continuity (µ = 1, 2) coincide. These we apply to analyze the equivalence among dilation matrices for a construction of systems of MRA. In particular, we give a full description for the equivalence class of the dyadic dilation matrix among all self-adjoint expansive maps. If the so-called “four exponentials conjecture” of algebraic number theory holds true, then a similar full description follows even for general self-adjoint expansive linear maps, too. arXiv:math/0703349v2 [math.CA] 7 Sep 2007 Key words: A-approximate continuity, multiresolution analysis, point of A-density, self-adjoint expansive linear map. 1 Supported in part in the framework of the Hungarian-Spanish Scientific and Technological Governmental Cooperation, Project # E-38/04. -
Introduction to Linear Bialgebra
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N. -
LECTURES on PURE SPINORS and MOMENT MAPS Contents 1
LECTURES ON PURE SPINORS AND MOMENT MAPS E. MEINRENKEN Contents 1. Introduction 1 2. Volume forms on conjugacy classes 1 3. Clifford algebras and spinors 3 4. Linear Dirac geometry 8 5. The Cartan-Dirac structure 11 6. Dirac structures 13 7. Group-valued moment maps 16 References 20 1. Introduction This article is an expanded version of notes for my lectures at the summer school on `Poisson geometry in mathematics and physics' at Keio University, Yokohama, June 5{9 2006. The plan of these lectures was to give an elementary introduction to the theory of Dirac structures, with applications to Lie group valued moment maps. Special emphasis was given to the pure spinor approach to Dirac structures, developed in Alekseev-Xu [7] and Gualtieri [20]. (See [11, 12, 16] for the more standard approach.) The connection to moment maps was made in the work of Bursztyn-Crainic [10]. Parts of these lecture notes are based on a forthcoming joint paper [1] with Anton Alekseev and Henrique Bursztyn. I would like to thank the organizers of the school, Yoshi Maeda and Guiseppe Dito, for the opportunity to deliver these lectures, and for a greatly enjoyable meeting. I also thank Yvette Kosmann-Schwarzbach and the referee for a number of helpful comments. 2. Volume forms on conjugacy classes We will begin with the following FACT, which at first sight may seem quite unrelated to the theme of these lectures: FACT. Let G be a simply connected semi-simple real Lie group. Then every conjugacy class in G carries a canonical invariant volume form. -
21. Orthonormal Bases
21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else. -
NOTES on DIFFERENTIAL FORMS. PART 3: TENSORS 1. What Is A
NOTES ON DIFFERENTIAL FORMS. PART 3: TENSORS 1. What is a tensor? 1 n Let V be a finite-dimensional vector space. It could be R , it could be the tangent space to a manifold at a point, or it could just be an abstract vector space. A k-tensor is a map T : V × · · · × V ! R 2 (where there are k factors of V ) that is linear in each factor. That is, for fixed ~v2; : : : ;~vk, T (~v1;~v2; : : : ;~vk−1;~vk) is a linear function of ~v1, and for fixed ~v1;~v3; : : : ;~vk, T (~v1; : : : ;~vk) is a k ∗ linear function of ~v2, and so on. The space of k-tensors on V is denoted T (V ). Examples: n • If V = R , then the inner product P (~v; ~w) = ~v · ~w is a 2-tensor. For fixed ~v it's linear in ~w, and for fixed ~w it's linear in ~v. n • If V = R , D(~v1; : : : ;~vn) = det ~v1 ··· ~vn is an n-tensor. n • If V = R , T hree(~v) = \the 3rd entry of ~v" is a 1-tensor. • A 0-tensor is just a number. It requires no inputs at all to generate an output. Note that the definition of tensor says nothing about how things behave when you rotate vectors or permute their order. The inner product P stays the same when you swap the two vectors, but the determinant D changes sign when you swap two vectors. Both are tensors. For a 1-tensor like T hree, permuting the order of entries doesn't even make sense! ~ ~ Let fb1;:::; bng be a basis for V . -
Enhancing Self-Reflection and Mathematics Achievement of At-Risk Urban Technical College Students
Psychological Test and Assessment Modeling, Volume 53, 2011 (1), 108-127 Enhancing self-reflection and mathematics achievement of at-risk urban technical college students Barry J. Zimmerman1, Adam Moylan2, John Hudesman3, Niesha White3, & Bert Flugman3 Abstract A classroom-based intervention study sought to help struggling learners respond to their academic grades in math as sources of self-regulated learning (SRL) rather than as indices of personal limita- tion. Technical college students (N = 496) in developmental (remedial) math or introductory col- lege-level math courses were randomly assigned to receive SRL instruction or conventional in- struction (control) in their respective courses. SRL instruction was hypothesized to improve stu- dents’ math achievement by showing them how to self-reflect (i.e., self-assess and adapt to aca- demic quiz outcomes) more effectively. The results indicated that students receiving self-reflection training outperformed students in the control group on instructor-developed examinations and were better calibrated in their task-specific self-efficacy beliefs before solving problems and in their self- evaluative judgments after solving problems. Self-reflection training also increased students’ pass- rate on a national gateway examination in mathematics by 25% in comparison to that of control students. Key words: self-regulation, self-reflection, math instruction 1 Correspondence concerning this article should be addressed to: Barry Zimmerman, PhD, Graduate Center of the City University of New York and Center for Advanced Study in Education, 365 Fifth Ave- nue, New York, NY 10016, USA; email: [email protected] 2 Now affiliated with the University of California, San Francisco, School of Medicine 3 Graduate Center of the City University of New York and Center for Advanced Study in Education Enhancing self-reflection and math achievement 109 Across America, faculty and policy makers at two-year and technical colleges have been deeply troubled by the low academic achievement and high attrition rate of at-risk stu- dents. -
What's in a Name? the Matrix As an Introduction to Mathematics
St. John Fisher College Fisher Digital Publications Mathematical and Computing Sciences Faculty/Staff Publications Mathematical and Computing Sciences 9-2008 What's in a Name? The Matrix as an Introduction to Mathematics Kris H. Green St. John Fisher College, [email protected] Follow this and additional works at: https://fisherpub.sjfc.edu/math_facpub Part of the Mathematics Commons How has open access to Fisher Digital Publications benefited ou?y Publication Information Green, Kris H. (2008). "What's in a Name? The Matrix as an Introduction to Mathematics." Math Horizons 16.1, 18-21. Please note that the Publication Information provides general citation information and may not be appropriate for your discipline. To receive help in creating a citation based on your discipline, please visit http://libguides.sjfc.edu/citations. This document is posted at https://fisherpub.sjfc.edu/math_facpub/12 and is brought to you for free and open access by Fisher Digital Publications at St. John Fisher College. For more information, please contact [email protected]. What's in a Name? The Matrix as an Introduction to Mathematics Abstract In lieu of an abstract, here is the article's first paragraph: In my classes on the nature of scientific thought, I have often used the movie The Matrix to illustrate the nature of evidence and how it shapes the reality we perceive (or think we perceive). As a mathematician, I usually field questions elatedr to the movie whenever the subject of linear algebra arises, since this field is the study of matrices and their properties. So it is natural to ask, why does the movie title reference a mathematical object? Disciplines Mathematics Comments Article copyright 2008 by Math Horizons. -
Multivector Differentiation and Linear Algebra 0.5Cm 17Th Santaló
Multivector differentiation and Linear Algebra 17th Santalo´ Summer School 2016, Santander Joan Lasenby Signal Processing Group, Engineering Department, Cambridge, UK and Trinity College Cambridge [email protected], www-sigproc.eng.cam.ac.uk/ s jl 23 August 2016 1 / 78 Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. 2 / 78 Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. 3 / 78 Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. 4 / 78 Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... 5 / 78 Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary 6 / 78 We now want to generalise this idea to enable us to find the derivative of F(X), in the A ‘direction’ – where X is a general mixed grade multivector (so F(X) is a general multivector valued function of X). Let us use ∗ to denote taking the scalar part, ie P ∗ Q ≡ hPQi. Then, provided A has same grades as X, it makes sense to define: F(X + tA) − F(X) A ∗ ¶XF(X) = lim t!0 t The Multivector Derivative Recall our definition of the directional derivative in the a direction F(x + ea) − F(x) a·r F(x) = lim e!0 e 7 / 78 Let us use ∗ to denote taking the scalar part, ie P ∗ Q ≡ hPQi. -
Reflection Invariant and Symmetry Detection
1 Reflection Invariant and Symmetry Detection Erbo Li and Hua Li Abstract—Symmetry detection and discrimination are of fundamental meaning in science, technology, and engineering. This paper introduces reflection invariants and defines the directional moments(DMs) to detect symmetry for shape analysis and object recognition. And it demonstrates that detection of reflection symmetry can be done in a simple way by solving a trigonometric system derived from the DMs, and discrimination of reflection symmetry can be achieved by application of the reflection invariants in 2D and 3D. Rotation symmetry can also be determined based on that. Also, if none of reflection invariants is equal to zero, then there is no symmetry. And the experiments in 2D and 3D show that all the reflection lines or planes can be deterministically found using DMs up to order six. This result can be used to simplify the efforts of symmetry detection in research areas,such as protein structure, model retrieval, reverse engineering, and machine vision etc. Index Terms—symmetry detection, shape analysis, object recognition, directional moment, moment invariant, isometry, congruent, reflection, chirality, rotation F 1 INTRODUCTION Kazhdan et al. [1] developed a continuous measure and dis- The essence of geometric symmetry is self-evident, which cussed the properties of the reflective symmetry descriptor, can be found everywhere in nature and social lives, as which was expanded to 3D by [2] and was augmented in shown in Figure 1. It is true that we are living in a spatial distribution of the objects asymmetry by [3] . For symmetric world. Pursuing the explanation of symmetry symmetry discrimination [4] defined a symmetry distance will provide better understanding to the surrounding world of shapes. -
Appendix a Spinors in Four Dimensions
Appendix A Spinors in Four Dimensions In this appendix we collect the conventions used for spinors in both Minkowski and Euclidean spaces. In Minkowski space the flat metric has the 0 1 2 3 form ηµν = diag(−1, 1, 1, 1), and the coordinates are labelled (x ,x , x , x ). The analytic continuation into Euclidean space is madethrough the replace- ment x0 = ix4 (and in momentum space, p0 = −ip4) the coordinates in this case being labelled (x1,x2, x3, x4). The Lorentz group in four dimensions, SO(3, 1), is not simply connected and therefore, strictly speaking, has no spinorial representations. To deal with these types of representations one must consider its double covering, the spin group Spin(3, 1), which is isomorphic to SL(2, C). The group SL(2, C) pos- sesses a natural complex two-dimensional representation. Let us denote this representation by S andlet us consider an element ψ ∈ S with components ψα =(ψ1,ψ2) relative to some basis. The action of an element M ∈ SL(2, C) is β (Mψ)α = Mα ψβ. (A.1) This is not the only action of SL(2, C) which one could choose. Instead of M we could have used its complex conjugate M, its inverse transpose (M T)−1,or its inverse adjoint (M †)−1. All of them satisfy the same group multiplication law. These choices would correspond to the complex conjugate representation S, the dual representation S,and the dual complex conjugate representation S. We will use the following conventions for elements of these representations: α α˙ ψα ∈ S, ψα˙ ∈ S, ψ ∈ S, ψ ∈ S. -
Tensor Products
Tensor products Joel Kamnitzer April 5, 2011 1 The definition Let V, W, X be three vector spaces. A bilinear map from V × W to X is a function H : V × W → X such that H(av1 + v2, w) = aH(v1, w) + H(v2, w) for v1,v2 ∈ V, w ∈ W, a ∈ F H(v, aw1 + w2) = aH(v, w1) + H(v, w2) for v ∈ V, w1, w2 ∈ W, a ∈ F Let V and W be vector spaces. A tensor product of V and W is a vector space V ⊗ W along with a bilinear map φ : V × W → V ⊗ W , such that for every vector space X and every bilinear map H : V × W → X, there exists a unique linear map T : V ⊗ W → X such that H = T ◦ φ. In other words, giving a linear map from V ⊗ W to X is the same thing as giving a bilinear map from V × W to X. If V ⊗ W is a tensor product, then we write v ⊗ w := φ(v ⊗ w). Note that there are two pieces of data in a tensor product: a vector space V ⊗ W and a bilinear map φ : V × W → V ⊗ W . Here are the main results about tensor products summarized in one theorem. Theorem 1.1. (i) Any two tensor products of V, W are isomorphic. (ii) V, W has a tensor product. (iii) If v1,...,vn is a basis for V and w1,...,wm is a basis for W , then {vi ⊗ wj }1≤i≤n,1≤j≤m is a basis for V ⊗ W . -
Linear Independence, Span, and Basis of a Set of Vectors What Is Linear Independence?
LECTURENOTES · purdue university MA 26500 Kyle Kloster Linear Algebra October 22, 2014 Linear Independence, Span, and Basis of a Set of Vectors What is linear independence? A set of vectors S = fv1; ··· ; vkg is linearly independent if none of the vectors vi can be written as a linear combination of the other vectors, i.e. vj = α1v1 + ··· + αkvk. Suppose the vector vj can be written as a linear combination of the other vectors, i.e. there exist scalars αi such that vj = α1v1 + ··· + αkvk holds. (This is equivalent to saying that the vectors v1; ··· ; vk are linearly dependent). We can subtract vj to move it over to the other side to get an expression 0 = α1v1 + ··· αkvk (where the term vj now appears on the right hand side. In other words, the condition that \the set of vectors S = fv1; ··· ; vkg is linearly dependent" is equivalent to the condition that there exists αi not all of which are zero such that 2 3 α1 6α27 0 = v v ··· v 6 7 : 1 2 k 6 . 7 4 . 5 αk More concisely, form the matrix V whose columns are the vectors vi. Then the set S of vectors vi is a linearly dependent set if there is a nonzero solution x such that V x = 0. This means that the condition that \the set of vectors S = fv1; ··· ; vkg is linearly independent" is equivalent to the condition that \the only solution x to the equation V x = 0 is the zero vector, i.e. x = 0. How do you determine if a set is lin.