Seismic Hazard Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guideline for Extraction of Ground Motion Parameters for Scientific Hydraulic Fracturing Review Panel
Guideline for Extraction of Ground Motion Parameters for Scientific Hydraulic Fracturing Review Panel Alireza Babaie Mahani Ph.D. P.Geo. Mahan Geophysical Consulting Inc. Victoria, BC Email: [email protected] Website: www.mahangeo.com Executive Summary The Scientific Review of Hydraulic Fracturing in British Columbia (2019) provides the key findings of a scientific panel on the topic of hydraulic fracturing in British Columbia and the associated environmental risks. As indicated in the report, the panel recommends preparation of guidelines for standard calculation of earthquake magnitude and ground motion parameters. Since Babaie Mahani and Kao (2019 and 2020) have addressed the methodology for calculation of local magnitude in two publications, this report deals with standard methodologies for extraction of ground motion parameters from recorded earthquake waveforms. The guidelines include data from both types of seismic sensors that are used for induced seismicity monitoring; seismometers that record ground motion velocities and accelerometers that are designed to record strong ground accelerations at short distances. Waveforms from the November 30, 2018 induced earthquake with moment magnitude (Mw) of 4.6 that occurred in northeast British Columbia within the Montney unconventional resource play are presented for better understanding of the processing steps. Data Formats The standard format that is used to archive earthquake data is called the SEED format (Standard for the Exchange of Earthquake Data; https://ds.iris.edu/ds/nodes/dmc/data/formats/seed/). When both the time series data and metadata are archived in one file, the name full-SEED is also used. miniSEED is the stripped down version of SEED that only includes waveform data (https://ds.iris.edu/ds/nodes/dmc/data/formats/miniseed/). -
A Review of the Seismic Hazard Zonation in National Building Codes in the Context of Eurocode 8
A REVIEW OF THE SEISMIC HAZARD ZONATION IN NATIONAL BUILDING CODES IN THE CONTEXT OF EUROCODE 8 Support to the implementation, harmonization and further development of the Eurocodes G. Solomos, A. Pinto, S. Dimova EUR 23563 EN - 2008 A REVIEW OF THE SEISMIC HAZARD ZONATION IN NATIONAL BUILDING CODES IN THE CONTEXT OF EUROCODE 8 Support to the implementation, harmonization and further development of the Eurocodes G. Solomos, A. Pinto, S. Dimova EUR 23563 EN - 2008 The mission of the JRC is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of EU policies. As a service of the European Commission, the JRC functions as a reference centre of science and technology for the Union. Close to the policy-making process, it serves the common interest of the Member States, while being independent of special interests, whether private or national. European Commission Joint Research Centre Contact information Address: JRC, ELSA Unit, TP 480, I-21020, Ispra(VA), Italy E-mail: [email protected] Tel.: +39-0332-789989 Fax: +39-0332-789049 http://www.jrc.ec.europa.eu Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 48352 EUR 23563 EN ISSN 1018-5593 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2008 Reproduction is authorised provided the source is acknowledged Printed in Italy Executive Summary The Eurocodes are envisaged to form the basis for structural design in the European Union and they should enable engineering services to be used across borders for the design of construction works. -
USGS Open File Report 2007-1365
Investigation of the M6.6 Niigata-Chuetsu Oki, Japan, Earthquake of July 16, 2007 Robert Kayen, Brian Collins, Norm Abrahamson, Scott Ashford, Scott J. Brandenberg, Lloyd Cluff, Stephen Dickenson, Laurie Johnson, Yasuo Tanaka, Kohji Tokimatsu, Toshimi Kabeyasawa, Yohsuke Kawamata, Hidetaka Koumoto, Nanako Marubashi, Santiago Pujol, Clint Steele, Joseph I. Sun, Ben Tsai, Peter Yanev, Mark Yashinsky, Kim Yousok Open File Report 2007–1365 2007 U.S. Department of the Interior U.S. Geological Survey 1 U.S. Department of the Interior Dirk Kempthorne, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Kayen, R., Collins, B.D., Abrahamson, N., Ashford, S., Brandenberg, S.J., Cluff, L., Dickenson, S., Johnson, L., Kabeyasawa, T., Kawamata, Y., Koumoto, H., Marubashi, N., Pujol, S., Steele, C., Sun, J., Tanaka, Y., Tokimatsu, K., Tsai, B., Yanev, P., Yashinsky , M., and Yousok, K., 2007. Investigation of the M6.6 Niigata-Chuetsu Oki, Japan, Earthquake of July 16, 2007: U.S. Geological Survey, Open File Report 2007-1365, 230pg; [available on the World Wide Web at URL http://pubs.usgs.gov/of/2007/1365/]. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. -
GEOTECHNICAL RECONNAISSANCE of the 2011 CHRISTCHURCH, NEW ZEALAND EARTHQUAKE Version 1: 15 August 2011
GEOTECHNICAL RECONNAISSANCE OF THE 2011 CHRISTCHURCH, NEW ZEALAND EARTHQUAKE Version 1: 15 August 2011 (photograph by Gillian Needham) EDITORS Misko Cubrinovski – NZ Lead (University of Canterbury, Christchurch, New Zealand) Russell A. Green – US Lead (Virginia Tech, Blacksburg, VA, USA) Liam Wotherspoon (University of Auckland, Auckland, New Zealand) CONTRIBUTING AUTHORS (alphabetical order) John Allen – (TRI/Environmental, Inc., Austin, TX, USA) Brendon Bradley – (University of Canterbury, Christchurch, New Zealand) Aaron Bradshaw – (University of Rhode Island, Kingston, RI, USA) Jonathan Bray – (UC Berkeley, Berkeley, CA, USA) Misko Cubrinovski – (University of Canterbury, Christchurch, New Zealand) Greg DePascale – (Fugro/WLA, Christchurch, New Zealand) Russell A. Green – (Virginia Tech, Blacksburg, VA, USA) Rolando Orense – (University of Auckland, Auckland, New Zealand) Thomas O’Rourke – (Cornell University, Ithaca, NY, USA) Michael Pender – (University of Auckland, Auckland, New Zealand) Glenn Rix – (Georgia Tech, Atlanta, GA, USA) Donald Wells – (AMEC Geomatrix, Oakland, CA, USA) Clint Wood – (University of Arkansas, Fayetteville, AR, USA) Liam Wotherspoon – (University of Auckland, Auckland, New Zealand) OTHER CONTRIBUTORS (alphabetical order) Brady Cox – (University of Arkansas, Fayetteville, AR, USA) Duncan Henderson – (University of Canterbury, Christchurch, New Zealand) Lucas Hogan – (University of Auckland, Auckland, New Zealand) Patrick Kailey – (University of Canterbury, Christchurch, New Zealand) Sam Lasley – (Virginia Tech, Blacksburg, VA, USA) Kelly Robinson – (University of Canterbury, Christchurch, New Zealand) Merrick Taylor – (University of Canterbury, Christchurch, New Zealand) Anna Winkley – (University of Canterbury, Christchurch, New Zealand) Josh Zupan – (University of California at Berkeley, Berkeley, CA, USA) TABLE OF CONTENTS 1.0 INTRODUCTION 2.0 SEISMOLOGICAL ASPECTS 3.0 GEOLOGICAL ASPECTS 4.0 LIQUEFACTION AND LATERAL SPREADING 5.0 IMPROVED GROUND 6.0 STOPBANKS 7.0 BRIDGES 8.0 LIFELINES 9.0 LANDSLIDES AND ROCKFALLS 1. -
U. S. Department of the Interior Geological Survey
U. S. DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY USGS SPECTRAL RESPONSE MAPS AND THEIR RELATIONSHIP WITH SEISMIC DESIGN FORCES IN BUILDING CODES OPEN-FILE REPORT 95-596 1995 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. COVER: The zone type map is based on the 0.3 sec spectral response acceleration with a 10 percent chance of being exceeded in 50 year. Contours are based on Figure B1 in this report. Each zonal increase in darkness indicates a factor two increase in earthquake demand. The lightest shade indicates a demand < 5% g. The next shade is for demand > 10% g. Subsequent shades are for > 20% g, > 40% g, and > 80% g respectively. U. S. DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY USGS SPECTRAL RESPONSE MAPS AND THEIR RELATIONSHIP WITH SEISMIC DESIGN FORCES IN BUILDING CODES by E. V. Leyendecker1 , D. M. Perkins2, S. T. Algermissen3, P. C. Thenhaus4, and S. L. Hanson5 OPEN-FILE REPORT 95-596 1995 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1 Research Civil Engineer, U.S. Geological Survey, MS 966, Box 25046, DFC, Denver, CO, 80225 2 Geophysicist, U.S. Geological Survey, MS 966, Box 25046, DFC, Denver, CO, 80225 3 Associate and Senior Consultant, EQE International, 2942 Evergreen Parkway, Suite 302, Evergreen, CO, 80439 (with the U. -
Predicting Ground Motion from Induced Earthquakes In
Bulletin of the Seismological Society of America, Vol. 103, No. 3, pp. 1875–1897, June 2013, doi: 10.1785/0120120197 Ⓔ Predicting Ground Motion from Induced Earthquakes in Geothermal Areas by John Douglas, Benjamin Edwards, Vincenzo Convertito, Nitin Sharma, Anna Tramelli, Dirk Kraaijpoel, Banu Mena Cabrera, Nils Maercklin, and Claudia Troise Abstract Induced seismicity from anthropogenic sources can be a significant nui- sance to a local population and in extreme cases lead to damage to vulnerable struc- tures. One type of induced seismicity of particular recent concern, which, in some cases, can limit development of a potentially important clean energy source, is that associated with geothermal power production. A key requirement for the accurate assessment of seismic hazard (and risk) is a ground-motion prediction equation (GMPE) that predicts the level of earthquake shaking (in terms of, for example, peak ground acceleration) of an earthquake of a certain magnitude at a particular distance. Few such models currently exist in regard to geothermal-related seismicity, and con- sequently the evaluation of seismic hazard in the vicinity of geothermal power plants is associated with high uncertainty. Various ground-motion datasets of induced and natural seismicity (from Basel, Geysers, Hengill, Roswinkel, Soultz, and Voerendaal) were compiled and processed, and moment magnitudes for all events were recomputed homogeneously. These data are used to show that ground motions from induced and natural earthquakes cannot be statistically distinguished. Empirical GMPEs are derived from these data; and, although they have similar characteristics to recent GMPEs for natural and mining- related seismicity, the standard deviations are higher. To account for epistemic uncer- tainties, stochastic models subsequently are developed based on a single corner frequency and with parameters constrained by the available data. -
SEISMIC ANALYSIS of SLIDING STRUCTURES BROCHARD D.- GANTENBEIN F. CEA Centre D'etudes Nucléaires De Saclay, 91
n 9 COMMISSARIAT A L'ENERGIE ATOMIQUE CENTRE D1ETUDES NUCLEAIRES DE 5ACLAY CEA-CONF —9990 Service de Documentation F9II9I GIF SUR YVETTE CEDEX Rl SEISMIC ANALYSIS OF SLIDING STRUCTURES BROCHARD D.- GANTENBEIN F. CEA Centre d'Etudes Nucléaires de Saclay, 91 - Gif-sur-Yvette (FR). Dept. d'Etudes Mécaniques et Thermiques Communication présentée à : SMIRT 10.' International Conference on Structural Mechanics in Reactor Technology Anaheim, CA (US) 14-18 Aug 1989 SEISHIC ANALYSIS OF SLIDING STRUCTURES D. Brochard, F. Gantenbein C.E.A.-C.E.N. Saclay - DEHT/SMTS/EHSI 91191 Gif sur Yvette Cedex 1. INTRODUCTION To lirait the seism effects, structures may be base isolated. A sliding system located between the structure and the support allows differential motion between them. The aim of this paper is the presentation of the method to calculate the res- ponse of the structure when the structure is represented by its elgenmodes, and the sliding phenomenon by the Coulomb friction model. Finally, an application to a simple structure shows the influence on the response of the main parameters (friction coefficient, stiffness,...). 2. COULOMB FRICTION HODEL Let us consider a stiff mass, layed on an horizontal support and submitted to an external force Fe (parallel to the support). When Fg is smaller than a limit force ? p there is no differential motion between the support and the mass and the friction force balances the external force. The limit force is written: Fj1 = \x Fn where \i is the friction coefficient and Fn the modulus of the normal force applied by the mass to the support (in this case, Fn is equal to the weight of the mass). -
PRELIMINARY GEOTECHNICAL EVALUATION WASHINGTON PARK RESERVOIR IMPROVEMENTS Portland, Oregon
APPENDIX H PRELIMINARY GEOTECHNICAL EVALUATION WASHINGTON PARK RESERVOIR IMPROVEMENTS Portland, Oregon REPORT July 2011 CORNFORTH Black & Veatch CONSULTANTS APPENDIX H Report to: Portland Water Bureau 1120 SW 5th Avenue Portland, Oregon 97204-1926 and Black and Veatch 5885 Meadows Road, Suite 700 Lake Oswego, Oregon 97035 PRELIMINARY GEOTECHNICAL EVALUATION WASHINGTON PARK RESERVOIR IMPROVEMENTS PORTLAND, OREGON July 2011 Submitted by: Cornforth Consultants, Inc. 10250 SW Greenburg Road, Suite 111 Portland, OR 97223 APPENDIX H 2114 TABLE OF CONTENTS Page EXECUTIVE SUMMARY .................................................................................................................. iv 1. INTRODUCTION .................................................................................................................... 1 1.1 General .......................................................................................................................... 1 1.2 Site and Project Background ......................................................................................... 1 1.3 Scope of Work .............................................................................................................. 1 2. PROJECT DESCRIPTION ...................................................................................................... 3 2.1 General .......................................................................................................................... 3 2.2 Companion Studies ...................................................................................................... -
Application of Response Spectrum Analysis in Historical Buildings
Transactions on the Built Environment vol 15, © 1995 WIT Press, www.witpress.com, ISSN 1743-3509 Application of response spectrum analysis in historical buildings M.E. Stavroulaki, B. Leftheris Institute of Applied Mechanics, Department of Engineering Greece Abstract The basic concepts and assumptions used in the response spectrum analysis method is reviewed in this paper with respect to its application in historical buildings. More specifically, the methodology of modeling and the applica- tion of the response spectrum analysis is described and discussed through our work with the Lighthouse at the Venetian Harbor of Chania. 1 Introduction The main cause of damage in building structures during an earthquake is usually their response to ground induced motions. In order to evaluate the behaviour of the structure for this type of loading condition, the princip- les of structural dynamics must be applied to determine the stresses and deflections generated in the structure. The dynamic characteristics of the building is established by its natu- ral frequencies, modes and damping: the analysis is based on linear-elastic behaviour of materials and the ground input motion is a smoothed de- sign spectrum in order to calculate the maximum values of the structural response. In this work we describe the application of response spectrum analysis to the Lighthouse at the Venetian Harbour of Chania. We use the example, however, to discuss the requirements of response spectrum analy- sis for historical buildings in general. The Lighthouse is a masonry structure built by the Egyptians in 1838. Transactions on the Built Environment vol 15, © 1995 WIT Press, www.witpress.com, ISSN 1743-3509 94 Dynamics, Repairs & Restoration 2 Finite Element modeling of masonry structures The finite element method of analysis requires the selection of an appro- priate model that would sufficiently represent the real structure. -
Lecture 18: Earthquake-Response Spectra
53/58:153 Lecture 18 Fundamental of Vibration ______________________________________________________________________________ Lecture 18: Earthquake-Response Spectra Reading materials: Sections 6.4, and 6.5 1. Introduction The most direct description of an earthquake motion in time domain is provided by accelerograms that are recorded by instruments called Strong Motion Accelerographs. The accelerograph records three orthogonal components of ground acceleration at a certain location. The peak ground acceleration, duration, and frequency content of earthquake can be obtained from an accelerograms. An accelerogram can be integrated to obtain the time variations of the ground velocity and ground displacement. A response spectrum is used to provide the most descriptive representation of the influence of a given earthquake on a structure or machine. - 1 - 53/58:153 Lecture 18 Fundamental of Vibration ______________________________________________________________________________ 2. Structures subject to earthquake It is similar to a vehicle moving on the ground. In both cases there is relative movement between the vibrating system (structures or machines) and the ground. ug(t) is the ground motion, while u(t) is the motion of the mass relative to ground. If the ground acceleration from an earthquake is known, the response of the structure can be computed via using the Newmark’s method. Example: determine the following structure’s response to the 1940 El Centro earthquake. 2% damping. - 2 - 53/58:153 Lecture 18 Fundamental of Vibration ______________________________________________________________________________ 1940 EL Centro, CA earthquake Only the bracing members resist the lateral load. Considering only the tension brace. - 3 - 53/58:153 Lecture 18 Fundamental of Vibration ______________________________________________________________________________ Neglecting the self weight of the members, the mass of the equivalent spring-mass system is equal to the total dead load. -
Multiple-Support Response Spectrum Analysis of the Golden Gate Bridge
"11111111111111111111111111111 PB93-221752 REPORT NO. UCB/EERC-93/05 EARTHQUAKE ENGINEERING RESEARCH CENTER MAY 1993 MULTIPLE-SUPPORT RESPONSE SPECTRUM ANALYSIS OF THE GOLDEN GATE BRIDGE by YUTAKA NAKAMURA ARMEN DER KIUREGHIAN DAVID L1U Report to the National Science Foundation -t~.l& T~ .- COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA AT BERKELEY Reproduced by: National Tectmcial Information Servjce u.s. Department ofComnrrce Springfield, VA 22161 For sale by the National Technical Information Service, U.S. Department of Commerce, Spring field, Virginia 22161 See back of report for up to date listing of EERC reports. DISCLAIMER Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation or the Earthquake Engineering Research Center, University of California at Berkeley. ,..", -101~ ~_ -------,r------------------,--------r-- - REPORT DOCUMENTATION IL REPORT NO. I%. 3. 1111111111111111111111111111111 PAGE NS F/ ENG-93001 PB93-221752 --- :.. Title ancl Subtitte 50. Report Data "Multiple-Support Response Spectrum Anaiysis of the Golden Gate May 1993 Bridge" T .............~\--------------------------------·~-L-....-fOi-"olnc--o-rp-n-ization--Rept.--No-.---t Yutaka Nakamura, Armen Der Kiureghian, and David Liu UCB/EERC~93/05 Earthquake Engineering Research Center University of California, Berkeley u. eomr.ct(Cl or Gnll.t(G) ...... 1301 So. 46th Street (C) Richmond, Calif. 94804 (G) BCS-9011112 I%. Sponsorinc Orpnlzatioft N_ and Add..... 13. Type 01 R~ & Period ea.-.d National Science Foundation 1800 G.Street, N.W. Washington, D.C. 20550 15. Su~ryNot.. 16. Abattac:t (Umlt: 200 wonts) The newly developed Multiple-Support Response Spectrum (MSRS) method is reviewed and applied to analysis of the Golden Gate Bridge. -
Chapter 12 – Geotechnical Seismic Analysis
Chapter 12 GEOTECHNICAL SEISMIC ANALYSIS GEOTECHNICAL DESIGN MANUAL January 2019 Geotechnical Design Manual GEOTECHNICAL SEISMIC ANALYSIS Table of Contents Section Page 12.1 Introduction ..................................................................................................... 12-1 12.2 Geotechnical Seismic Analysis ....................................................................... 12-1 12.3 Dynamic Soil Properties.................................................................................. 12-2 12.3.1 Soil Properties ..................................................................................... 12-2 12.3.2 Site Stiffness ....................................................................................... 12-2 12.3.3 Equivalent Uniform Soil Profile Period and Stiffness ........................... 12-3 12.3.4 V*s,H Variation Along a Project Site ...................................................... 12-5 12.3.5 South Carolina Reference V*s,H ........................................................... 12-6 12.4 Project Site Classification ............................................................................... 12-7 12.5 Depth-To-Motion Effects On Site Class and Site Factors ................................ 12-9 12.6 SC Seismic Hazard Analysis .......................................................................... 12-9 12.7 Acceleration Response Spectrum ................................................................. 12-10 12.7.1 Effects of Rock Stiffness WNA vs. ENA ...........................................