Revised Soil Erodibility K-Factor for Soils in the Czech Republic

Total Page:16

File Type:pdf, Size:1020Kb

Revised Soil Erodibility K-Factor for Soils in the Czech Republic Soil & Water Res., 2, 2007 (1): 1–9 Revised Soil Erodibility K-factor for Soils in the Czech Republic JAN VOPRAVIL, MILOSLAV JANEČEK and MARTIN TIPPL Research Institute for Soil and Water Conservation, Prague, Czech Republic Abstract: In the territory of the Czech Republic there are more than 50% of agricultural soils exposed to water erosion; it is a very urgent problem both at present and for the future. It must be solved now when there is still something to be protected. It is rather complicated to describe the soil properties in terms of soil susceptibility to water erosion because it is a complex relation in which many factors participate. For the complex evaluation of all main factors participating in erosion origination it is possible to apply the Universal Soil Loss Equation (USLE). It consists of six factors interacting with each other and participating in the origination of soil erosion. One of these factors is the soil erodibility factor (K-factor), the revision of which for soil conditions of the CR is the subject of this study. In total ca. 5000 soil pits from the whole territory of the country were processed and evaluated in detail. The main results of this study are K-factor values (means and variances) for the soil types, subtypes and varieties (represented in the database) according to the Taxonomic Classification System of Soils of the Czech Republic. Keywords: water erosion; soil erodibility; soil structure; permeability; soil texture; organic matter In the Czech Republic there is more than 50% so called Universal Soil Loss Equation (hereinaf- of agricultural land exposed to water erosion ter USLE), can be used. It consists of six factors, (JANEČEK et al. 2002). It is a very urgent problem taking part, through their interactions, in the at present and mainly for the future. The problem origination of soil erosion. The soil erodibility must be solved now when there is still something factor (K-factor) is one of them and its determi- to protect. It is rather complicated to describe nation for soil conditions of the CR is the subject soil properties in relation to soil susceptibility to of this paper. water erosion because the relation is a complex one and because of many factors participating METHOD in it. For comprehensive evaluation of all main factors participating in erosion origination, the The procedure for K-factor determination ac- most frequently used and best-known equation, cording to WISCHMEIER and SMITH (1978) was that according to WISCHMEIER and SMITH (1978), used. Supported by the Ministry of Agriculture of the Czech Republic, Projects No. QF 3098, No. QF 3094 and Re- search Plan No. 0002704901. 1 Soil & Water Res., 2, 2007 (1): 1–9 The main background data for K-factor deter- Basic equation for the evaluation of K-factor mination were obtained by the evaluation of the (WISCHMEIER & SMITH 1978) computer database of special soil pits (Sp pits) and a part of selective soil pits (Se pits) from 100K = 2.1M1.1410–4(12–a) + 3.25(b – 2) + 2.5(c – 3) the Comprehensive Survey of Agricultural Soils of Czechoslovakia. This database (NOVÁK et al. where: 2005) currently contains ca. 1200 Sp pits and ca. M – expresses the effect of topsoil texture and is calcu- × 3700 Se pits. The database of Sp pits is complete lated as (% silt + % silty sand) (100% – % clay) and covers the whole territory of the country. The a – % of topsoil organic matter (humus) database of Se pits presently contains soil pits b – class of topsoil structure from the districts Náchod, Pardubice, Rychnov c – class of soil profile permeability nad Kněžnou, Ústí nad Orlicí, Blansko, Brno-Town and Brno-Countryside, Zlín, Hodonín, Jihlava Evaluation of topsoil textural analysis – M and České Budějovice (part). The latter values were used to provide supplementary information To evaluate the soil texture, the percentage of for the statistical processing of K-factor values. clay, silt and silty sand particles were used. In The database consists of two parts. The first textural analyses performed in the past in the CR, part contains general information on the soil pit the percentage of clay was defined as the content and its location, e.g. geographic coordinates, data of grains < 0.001 mm. In the methodology for on soil erosion, data on groundwater table, land K-factor evaluation, however, the content of clay is use – crop, date of sampling, natural conditions delimited by the grain size < 0.002 mm. The limits of of the site (precipitation, temperature, altitude, the grain size of silt and silty sand (0.002–0.1 mm) slope …) and other climatic and agricultural data. are also different from the original limits used in All these items comprise both the original values Czech analyses (0.001–0.01 mm for medium and (ca. 40 years old) and the newly acquired values fine silt, 0.01–0.05 mm for coarse silt, 0.05 to from recent field samplings. The second part 0.25 mm for fine sand, 0.25–2.0 mm for medium of the database contains complete information sand). Therefore, it was necessary to convert old on individual genetic horizons of each profile textural categories into the new ones. The contents (in fact, it is an ancillary database to the first of the new categories were evaluated graphically part), mainly the results of chemical and physi- by the computer program MS EXCEL from the cal analyses and other, mainly quantitative data grain size curve to the nearest 0.5%. (soil structure, living organisms, root systems, new formations, compaction, profile gleyization, Percentage of topsoil organic matter colours of horizons and their depths, horizon (humus content) – a classification according to several classification systems such as FAO, etc.). Like the first part, The percentage of humus content computed the second part of the database contains both the by multiplication with a constant from the total original values and the newly acquired ones. The oxidisable carbon content (Cox) is a good enough whole database is administered by the database to estimate the parameter a for Czech soils. Cox program MS Access and its statistical outputs are was multiplied by the value 1.724, which is Welte’s processed by the UNISTAT program. coefficient based on the assumption of 58% carbon content in humus (VALLA et al. 2000). Method of evaluation The percentage of humus content is a standard part of the database of Sp pits. For Se pits, the For the adequate determination of K-factor val- percentage of humus content was computed from ues from the basic equation according to WIS- Cox, using the Welte’s coefficient. CHMEIER and SMITH (1978), it was necessary to define for each soil pit the limits of topsoil texture Class of topsoil structure – b categories, the percentage of organic matter in topsoil (percentage of humus content), the class The stability of soil structure is currently an of topsoil structure and the class of soil profile urgent problem mainly due to the intensive agricul- permeability. ture, its disturbance being directly connected with 2 Soil & Water Res., 2, 2007 (1): 1–9 Table 1. Classes of topsoil structure Table 3. Parent rocks classified as light Class of topsoil structure Topsoil structure granites (mainly coarse-grained) 1 granular Igneous rocks quartz porphyries 2 crumb rhyolites Metamorphic rocks gneisses (mainly orthogneisses) 3 lumpy (terrace, lake, sea, aeolian) sands 4 laminar, compact sandstones Sediments arkoses soil compaction. Heavy-duty machines, producing breccias high specific pressures, destroy the soil structure conglomerates after repeated wheel traffic, increase the bulk den- sity of soil, decrease its porosity and permeability, and reduce the life in the soil. Heavier-textured For the other types of soil structure, not ap- soils are more susceptible to compaction. The pearing in Table 1, or for soils without recog- consequences are reduced groundwater recharge, nisable structure (structureless horizons), the acceleration of surface runoff and water erosion, soil type and geology base were also considered deterioration of conditions for plant rooting and (Table 2 and 3). Light soils (p – sandy, hp – loam- reduction of soil productivity (NOVÁK 2000). sandy) were placed into class 1, medium soils (ph For the calculation of K-factor according to WIS- – sandy-loam, h – loamy) into class 3, medium CHMEIER and SMITH (1978), four classes of topsoil soils on light substrates into class 1 and heavy structure are used (Table 1). soils (jh – clay-loamy, jv, j – clay) into class 4. This The type of soil structure is described by means classification was done on the basis of common of a code in the database of Sp pits. If the struc- knowledge of the formation of various types of ture type in the database was identical to that soil structure in relation to soil type and soil- in Table 1, the corresponding class number was forming substrate. attributed to it for the purpose of the K-factor calculation formula. Class of soil profile permeability – c Table 2. Classification of the other types of soil structure To estimate the infiltration capacity and per- in topsoil meability of soils, the following information was Class of topsoil used: Topsoil texture Note structure – The categorisation of Main Soil Units (MSU) into Light soils: p/hp 1 Hydrological Groups (KURÁŽ & VÁŠKA 1998). All agricultural soils of the Czech Republic are 3 grouped into 78 MSU, according to soil clas- Medium soils: ph/h on light parent 1 sification unit (soil type, subtype, variety...), rocks (Table 3) texture composition, water and air regime, parent Heavy soils: jh/jv/j 4 material, skeleton content and the depth of soil Table 4. The categories of infiltration capacity and soil profile permeability used for K-factor determination Class Main soil units 1 04, 05, 17, 21, 31, 32, 37, 40, 55 2 13, 16, 18, 22, 27, 30, 34, 38, 41 3 01, 02, 08, 09, 10, 12, 14, 15, 23, 26, 28, 29, 35, 36, 51, 56 4 03, 06, 11, 19, 24, 25, 33, 42, 43, 44, 45, 46, 48, 50, 52, 58, 60 5 07, 20, 39, 47, 49, 57, 59, 62, 64, 65, 75, 77, 78 6 53, 54, 61, 63, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76 3 Soil & Water Res., 2, 2007 (1): 1–9 profile.
Recommended publications
  • Soil Properties and Pre-Columbian Settlement Patterns in The
    SOIL, 1, 65–81, 2015 www.soil-journal.net/1/65/2015/ doi:10.5194/soil-1-65-2015 SOIL © Author(s) 2015. CC Attribution 3.0 License. Soil properties and pre-Columbian settlement patterns in the Monumental Mounds Region of the Llanos de Moxos, Bolivian Amazon U. Lombardo1,2, S. Denier1, and H. Veit1 1Universität Bern, Geographisches Institut, Hallerstrasse 12, 3012 Bern, Switzerland 2CaSeS research group, IMF-CSIC, C/Egipciaques, 15-08001 Barcelona, Spain Correspondence to: U. Lombardo ([email protected]) Received: 5 May 2014 – Published in SOIL Discuss.: 15 May 2014 Revised: – – Accepted: 26 September 2014 – Published: 6 January 2015 Abstract. In the present paper we explore to what degree soil properties might have influenced pre-Columbian settlement patterns in the Monumental Mounds Region (MMR) of the Llanos de Moxos (LM), Bolivian Amazon. Monumental mounds are pre-Hispanic earth buildings and were preferentially built on mid- to late Holocene palaeolevees of the Grande River (here denominated PR1), while levees of older palaeorivers (PR0) were only sparsely occupied. We dug two transects across PR0 and PR1 levee–backswamp catenas and analysed them for grain size, pH, cation exchange capacity (CEC) and Corg. Our data show that PR1 soils, where the density of mounds is higher, have far greater agricultural potential than PR0 soils, which are affected by aluminium toxicity in the backswamps and by high levels of exchangeable sodium in the levees. This study provides new data on the soil properties of the south-eastern Bolivian Amazon and reinforces the hypothesis that environmental constraints and opportunities exerted an important role on pre-Columbian occupation patterns and the population density reached in the Bolivian Amazon.
    [Show full text]
  • Plant Uptake of Radionuclides in Lysimeter Experiments
    AT9900006 Plant uptake of radionuclides in lysimeter experiments M.H. Gerzabek F. Strebl B. Temmel June 1998 OEFZS—4820 SEIBERSDORF 30-20 / OEFZS-4820 June 1998 Plant uptake of radionuclides in lysimeter experiments In: Environmental Pollution 99 (1998) 93-103 M.H. Gerzabek, F. Strebl, B. Temmel Department of Environmental Research Division of Life Sciences ENVIRONMENTAL POLLUTION ELSEVIER Environmental Pollution 99 (1998) 93-103 Plant uptake of radionuclides in lysimeter experiments M.H. Gerzabek*, F. Strebl, B. Temmel Austrian Research Centre Seibersdorf, Division of Life Sciences, A-2444 Seibersdorf Austria Received 20 June 1997; accepted 15 October 1997 Abstract The results of seven years lysimeter experiments to determine the uptake of 60 Co, 137Cs and 226 Ra into agricultural crops (endive, maize, wheat, mustard, sugarbeet, potato, Faba bean, rye grass) are described. The lysimeter consists of twelve monolithic soil profiles (four soil types and three replicates) and is located in Seibersdorf/Austria, a region with a pannonian climate (pronounced differences between hot and semi-arid summers and humid winter conditions, annual mean of precipitation: 517 mm, mean annual temperature: 9.8°C). Besides soil-to-plant transfer factors (TF), fluxes were calculated taking into account biomass production and growth time. Total median values of TF’s (dry matter basis) for the three radionuclides decreased from 226 Ra (0.068 kg kg" 1) to ,37Cs (0.043 kg kg" 1) and 60 Co (0.018 kg kg" 1); flux values exhibited the same ranking. The varying physical and chemical proper­ ties of the four experimental soils resulted in statistically significant differences in transfer factors or fluxes between the investigated soils for l37Cs and 226 Ra, but not for 60 Co.
    [Show full text]
  • The Soil Map of the Flemish Region Converted to the 3 Edition of the World Reference Base for Soil Resources
    Ontwikkelen en toepassen van een methodiek voor de vertaling van de Belgische bodemclassificatie van de kustpolders naar het internationale WRB systeem en generaliseren van de WRB-bodemkaart voor gans Vlaanderen naar het 1 : 250 000 schaalniveau The soil map of the Flemish region converted to the 3 rd edition of the World Reference Base for soil resources Stefaan Dondeyne, Laura Vanierschot, Roger Langohr Eric Van Ranst and Jozef Deckers Oct. 2014 Opdracht van de Vlaamse Overheid Bestek nr. BOD/STUD/2013/01 Contents Contents............................................................................................................................................................3 Acknowledgement ...........................................................................................................................................5 Abstract............................................................................................................................................................7 Samenvatting ...................................................................................................................................................9 1. Background and objectives.......................................................................................................................11 2. The soil map of Belgium............................................................................................................................12 2.1 The soil survey project..........................................................................................................................12
    [Show full text]
  • Prairie Wetland Soils: Gleysolic and Organic Angela Bedard-Haughn Department of Soil Science, University of Saskatchewan
    PS&C Prairie Soils & Crops Journal Agricultural Soils of the Prairies Prairie Wetland Soils: Gleysolic and Organic Angela Bedard-Haughn Department of Soil Science, University of Saskatchewan Summary Gleysolic and Organic soils are collectively referred to as “wetland soils”. They are found in wet low-lying or level landscape positions. Gleysolic soils are found throughout the agricultural Prairies, in association with Chernozemic and Luvisolic soils. In semi-arid regions, they are frequently tilled in dry years and can be very productive due to their relatively high levels of soil moisture and nutrients. In the Prairie Provinces, Organic soils tend to be mostly associated with the Boreal transition zones at the northern and eastern perimeter of the Prairies. With proper management, these can also provide productive agricultural land, particularly for forages. Introduction Soils of the Gleysolic and Organic orders are collectively referred to as “wetland soils”. Soil maps of the agricultural region of the Canadian Prairies seldom have areas mapped as dominantly Gleysolic8 or Organic9; however, these soils are found throughout the region wherever climate and/or topography have led to persistent water-saturated conditions. Gleysols are mineral soils with colors that reflect intermittent or prolonged anaerobic (i.e., saturated, low oxygen) conditions (Fig. 1A). Organic soils reflect permanent anaerobic conditions, which lead to soils that are made up of variably decomposed plant residues, mostly from water-tolerant (i.e., hydrophytic) vegetation (Fig. 1B). Figure 1: A) Humic Luvic Gleysol, Saskatchewan and B) Typic Fibrisol (Organic), Manitoba7. Of the some 100,000,000 ha covered by the Canada Land Inventory (CLI) in the Prairie Provinces12, Gleysolic soils occupy less than 15% of the Prairie ecoregions and up to 40% in the Mid-Boreal (boreal = “northern”) Upland (Alberta) and Interlake Plain (Manitoba) ecoregions12.
    [Show full text]
  • World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
    ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Physical and Chemical Properties in Relation to Soil Permeability in the Area of the Velika Gorica Well Fi
    73 The Mining-Geology-Petroleum Engineering Bulletin Physical and chemical properties UDC: ͢͡͡Ǥ͟ǣ͢͡͡Ǥ͡ in relation to soil permeability DOI: 10.17794/rgn.2018.2.7 in the area of the Velika Gorica well Ƥ eld Original scientiƤ c paper Stanko Ruži«i©1; Zoran Kova«1; Dražen Tumara2 1Faculty of Mining, Geology and Petroleum Engineering (Pierottijeva 6, 10000 Zagreb, Croatia, Assistant Professor) 1Faculty of Mining, Geology and Petroleum Engineering (Pierottijeva 6, 10000 Zagreb, Croatia, Post-doctorand) 2Energy Institute Hrvoje Požar (Savska cesta 163, 10001 Zagreb, Croatia, Junior Researcher) Abstract Hydraulic parameters aơ ect the behaviour of various ions in soils. The goal of this paper is to get a better understanding of the relationship between physical and chemical properties and soil permeability at the location of the case study soil proƤ le Velika Gorica, based on physical and chemical data. The soil proƤ le is situated in the Eutric Cambisol of the Za- greb aquifer, Croatia. The Zagreb aquifer represents the only source of potable water for inhabitants of the City of Zagreb and the Zagreb County. Based on the data obtained from particle size analysis, soil hydraulic parameters and measured water content, unsaturated hydraulic conductivity values were calculated for the estimation of soil proƤ le permeability. Soil water retention curves and unsaturated hydraulic conductivities are very similar for all depths because soil texture does not change signiƤ cantly through the depth. Determination of major anions and cations on soil samples was per- formed using the method of ion chromatography. The results showed a decrease of ions concentrations after a depth of Ͱ.6 m.
    [Show full text]
  • Drained Organic Soils Under Agriculture
    Geoderma 355 (2019) 113911 Contents lists available at ScienceDirect Geoderma journal homepage: www.elsevier.com/locate/geoderma Drained organic soils under agriculture — The more degraded the soil the higher the specific basal respiration T ⁎ Annelie Säuricha,1, Bärbel Tiemeyera, , Axel Dona, Sabine Fiedlerb, Michel Bechtolda,2, Wulf Amelungc, Annette Freibauera,3 a Thünen Institute of Climate-Smart Agriculture, Bundesallee 65, 38116 Braunschweig, Germany b Institute for Geography, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany c University of Bonn, Institute of Crop Science and Resource Conservation, Soil Science and Soil Ecology, Nussallee 13, 53115 Bonn, Germany ARTICLE INFO ABSTRACT Handling Editor: Ingrid Kögel-Knabner Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agricultural soils. As a consequence of Keywords: both drainage-induced mineralisation and anthropogenic mixing with mineral soils, large areas of former Carbon dioxide peatlands under agricultural use underwent a secondary transformation of the peat (e.g. formation of ag- Peatland agriculture gregates). These soils show contents of soil organic carbon (SOC) at the boundary between mineral and organic Heinemeyer incubation soils. However, the carbon (C) dynamics of such soils have rarely been studied so far. The aim of the present Anthropogenic disturbance study was to evaluate the vulnerability of soil organic matter (SOM) to decomposition over the whole range of − Peat-sand-mixing peat-derived soils under agriculture including very carbon rich mineral soils (76–526 g kg 1 SOC). A total of 62 soil samples covering a broad range of soil and site characteristics were selected from the sample set of the German Agricultural Soil Inventory.
    [Show full text]
  • Are CH4, CO2, and N2O Emissions from Soil Affected by the Sources and Doses of N in Warm-Season Pasture?
    atmosphere Article Are CH4, CO2, and N2O Emissions from Soil Affected by the Sources and Doses of N in Warm-Season Pasture? Darlena Caroline da Cruz Corrêa, Abmael da Silva Cardoso * , Mariane Rodrigues Ferreira, Débora Siniscalchi, Ariana Desie Toniello, Gilmar Cotrin de Lima, Ricardo Andrade Reis and Ana Claudia Ruggieri Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, UNESP—Universty Estadual Paulista, Jaboticabal 14884-900, SP, Brazil; [email protected] (D.C.d.C.C.); [email protected] (M.R.F.); [email protected] (D.S.); [email protected] (A.D.T.); [email protected] (G.C.d.L.); [email protected] (R.A.R.); [email protected] (A.C.R.) * Correspondence: [email protected] Abstract: The intensification of pasture production has increased the use of N fertilizers—a practice that can alter soil greenhouse gas (GHG) fluxes. The objective of the present study was to evaluate the fluxes of CH4, CO2, and N2O in the soil of Urochloa brizantha ‘Marandu’ pastures fertilized with different sources and doses of N. Two field experiments were conducted to evaluate GHG fluxes following N fertilization with urea, ammonium nitrate, and ammonium sulfate at doses of 0, 90, 180, and 270 kg N ha−1. GHG fluxes were quantified using the static chamber technique and gas chromatography. In both experiments, the sources and doses of N did not significantly affect cumulative GHG emissions, while N fertilization significantly affected cumulative N O and CO 2 2 emissions compared to the control treatment. The N2O emission factor following fertilization with urea, ammonium nitrate, and ammonium sulfate was lower than the United Nations’ Intergovern- Citation: Corrêa, D.C.d.C.; Cardoso, A.d.S.; Ferreira, M.R.; Siniscalchi, D.; mental Panel on Climate Change standard (0.35%, 0.24%, and 0.21%, respectively, with fractionation Toniello, A.D.; Lima, G.C.d.; Reis, fertilization and 1.00%, 0.83%, and 1.03%, respectively, with single fertilization).
    [Show full text]
  • Effect in the Physical and Chemical Properties of Gleysol Soil After an Electro-Kinetic Treatment in Presence of Surfactant Triton X - 114 to Remove Hydrocarbon
    Int. J. Electrochem. Sci., 6 (2011) 1250 - 1268 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Effect in the Physical and Chemical Properties of Gleysol Soil after an Electro-kinetic Treatment in Presence of Surfactant Triton X - 114 to Remove Hydrocarbon Erika Méndez1, D. Castellanos1, G. I. Alba1, Gilberto Hernández2, Sara Solís2, Gilles Levresse2, Marina Vega2, Francisco Rodríguez3, Eleazar Urbina3, M. C. Cuevas4, M. G. García5, Erika Bustos1,* 1 Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo, 76703, Querétaro. 2 Centro de Geociencias, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Querétaro 76230, México. 3 Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Querétaro, Juriquilla, Santiago de Querétaro, México. 4 Universidad Veracruzana, Campus Región Coatzacoalcos, Chihuahua 803, Petrolera, Coatzacoalcos, Veracruz, 96400, México. 5 Universidad de Guanajuato, Cerro de la Venada, Pueblito de Rocha, Guanajuato, Gto. 36040, México. *E-mail: [email protected] Received: 6 March 2011 / Accepted: 9 April 2011 / Published: 1 May 2011 The effects of the electro - kinetic treatment in presence of surfactant Triton X – 114 on the physical and chemical properties of Gleysol soil were investigated. With the characterization of polluted Gleysol soil, the results showed the highest concentration of greases and oils related with hydrocarbon content in the fraction of soil between 50 and 100 m, which is the smallest group of particle size with 4 452 mg kg-1 of light and medium petroleum fraction. This sand fraction of polluted soil showed a decrease of real density with an increase of organic matter content, because they have low densities than saturated fractions and are more easily oxidized by the Walkley - Black method.
    [Show full text]
  • Microbial Biomass and Basal Respiration of Selected Sub-Antarctic and Antarctic Soils in the Areas of Some Russian Polar Stations
    Solid Earth, 5, 705–712, 2014 www.solid-earth.net/5/705/2014/ doi:10.5194/se-5-705-2014 © Author(s) 2014. CC Attribution 3.0 License. Microbial biomass and basal respiration of selected Sub-Antarctic and Antarctic soils in the areas of some Russian polar stations E. Abakumov and N. Mukhametova Department of Applied Ecology, Saint Petersburg State University, 199178, 16-line Vasilyevskiy Island, 29, Russia Correspondence to: E. Abakumov ([email protected]) Received: 6 February 2014 – Published in Solid Earth Discuss.: 18 March 2014 Revised: 25 May 2014 – Accepted: 22 June 2014 – Published: 29 July 2014 Abstract. Antarctica is a unique place for soil, biological, preted as a result of higher amounts of fresh organic rem- and ecological investigations. Soils of Antarctica have been nants in organic and organo-mineral horizons. The soils of studied intensively during the last century, when different na- King George Island also have higher portions of micro- tional Antarctic expeditions visited the sixth continent with bial biomass (max 1.54 mg g−1) compared to coastal (max the aim of investigating nature and the environment. Antarc- 0.26 mg g−1) and continental (max 0.22 mg g−1) Antarctic tic investigations are comprised of field surveys mainly in soils. Sub-Antarctic soils differ from Antarctic ones mainly the terrestrial landscapes, where the polar stations of differ- by having increased organic layer thickness and total organic ent countries are situated. That is why the main and most de- carbon content, higher microbial biomass carbon content, tailed soil surveys were conducted in the McMurdo Valleys, basal respiration, and metabolic activity levels.
    [Show full text]
  • Influence of Soil Type on the Reliability of the Prediction Model
    agronomy Article Influence of Soil Type on the Reliability of the Prediction Model for Bioavailability of Mn, Zn, Pb, Ni and Cu in the Soils of the Republic of Serbia Jelena Maksimovi´c*, Radmila Pivi´c,Aleksandra Stanojkovi´c-Sebi´c , Marina Jovkovi´c,Darko Jaramaz and Zoran Dini´c Institute of Soil Science, Teodora Drajzera 7, 11000 Belgrade, Serbia; [email protected] (R.P.); [email protected] (A.S.-S.); [email protected] (M.J.); [email protected] (D.J.); [email protected] (Z.D.) * Correspondence: [email protected] Abstract: The principles of sustainable agriculture in the 21st century are based on the preservation of basic natural resources and environmental protection, which is achieved through a multidisciplinary approach in obtaining solutions and applying information technologies. Prediction models of bioavailability of trace elements (TEs) represent the basis for the development of machine learning and artificial intelligence in digital agriculture. Since the bioavailability of TEs is influenced by the physicochemical properties of the soil, which are characteristic of the soil type, in order to obtain more reliable prediction models in this study, the testing set from the previous study was grouped based on the soil type. The aim of this study was to examine the possibility of improvement in the prediction of bioavailability of TEs by using a different strategy of model development. After the training set was grouped based on the criteria for the new model development, the developed basic models were compared to the basic models from the previous study. The second step was to develop Citation: Maksimovi´c,J.; Pivi´c,R.; models based on the soil type (for the eight most common soil types in the Republic of Serbia—RS) Stanojkovi´c-Sebi´c,A.; Jovkovi´c,M.; and to compare their reliability to the basic models.
    [Show full text]
  • Rare Earth Elements Dynamics Along Pedogenesis in a Chronosequence
    Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils Marie Vermeire, Sophie Cornu, Zuzana Fekiacova, Marie Detienne, Bruno Delvaux, Jean-Thomas Cornélis To cite this version: Marie Vermeire, Sophie Cornu, Zuzana Fekiacova, Marie Detienne, Bruno Delvaux, et al.. Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils. Chemical Geology, Elsevier, 2016, 446, pp.163 - 174. 10.1016/j.chemgeo.2016.06.008. hal-01466196 HAL Id: hal-01466196 https://hal.archives-ouvertes.fr/hal-01466196 Submitted on 13 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Chemical Geology 446 (2016) 163–174 Contents lists available at ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils Marie-Liesse Vermeire a,⁎, Sophie Cornu b, Zuzana Fekiacova b, Marie Detienne a, Bruno Delvaux a,Jean-ThomasCornélisc a Université catholique de Louvain, Earth and Life Institute, ELIe, Croix du Sud 2 bte L7.05.10, 1348, Louvain-la-Neuve, Belgium b Aix-Marseille Université, CNRS, IRD, CEREGE UM34 et USC INRA, 13545, Aix en Provence, France c Soil-Water-Plant Exchanges, Gembloux Agro-Bio Tech, University of Liège, Avenue Maréchal Juin 27, 5030 Gembloux, Belgium article info abstract Article history: Rare earth elements (REE) total concentration and signature in soils are known to be impacted by successive soil- Received 30 September 2015 forming processes.
    [Show full text]