Farmer Classification. an Approach to Soil Qualityin Murcia, SE of Spain

Total Page:16

File Type:pdf, Size:1020Kb

Farmer Classification. an Approach to Soil Qualityin Murcia, SE of Spain EUROPEAN SOIL BUREAU RESEARCH REPORT NO. 7 Farmer classification. An approach to soil qualityin Murcia, SE of Spain ANDRADE-LIMAS1 Elizabeth, FAZ-CANO Ángel2, GARCÍA-FERNÁNDEZ Gregorio2 & ARNALDOS-LOZANO Raquel2 1División de Estudios de Postgrado e Investigación. Universidad Autónoma de Tamaulipas, México. E-mail: eandrade @uamac.uat.mx 2Departamento de Producción Agraria. Universidad Politécnica de Cartagena, Murcia, España. E-mail: [email protected] Abstract There has been very commonly an absence of correspondence between modern systems of soil taxonomic classification and the agronomical qualities of the soils. For this reason, this study has resorted to tapping the knowledge of the farmers that know best these agronomical properties in a practical sense, in order to obtain an agronomical classification of the soils. This rural classification has been determined for three typical agricultural zones near the Mediterranean coast of Spain. Four types of soils located in the study area and characterized according to the World Reference Base as Luvisol, Calcisol, Regosol and Fluvisol, were differentiated on the basis of physical and agronomics characteristics into 8 different classes according to the local farmers. The names given by the farmers, which refer to some distinctive feature of the soil’s physiognomy, are the following: "black", "mud", "red", "slate" or "sluggish”, "coloured ("red") or "moyas", "sand", "smooth" and "hard" soils. To this effect, this system exhibited a very high knowledge of the physical, chemical and agronomics properties of the soils. In a sense, this rural classification can be very helpful for a better knowledge of the soils, and to establish more effective technologies for the management and conservation of the agricultural lands. Keywords: rural soil classification, ethnoedaphology, soil quality. Introduction The Region of Murcia, located in SE Spain, has a semiarid climate that determines sparse vegetation and a high rate of erosion. It has been formed by a complex geological process (Arana Castillo et al., 1999). These particular geological conditions have given rise to prevalence of a mining industry in the region. The semiarid landscape of the Spanish South-east constitutes one of the European enclaves where the fingerprints of geological processes can be more clearly observed (Arana Castillo et al., 1999). Under these environmental conditions, a variety of soils have been formed a long thousands of years, with well developed profiles and differentiated horizons. Inside the studied area, four groups of soils have been found (FAO-ISRIC-ISSS, 1998): Luvisols, Calcisols, Regosols and Fluvisols (Alías Pérez et al., 1986). Most of these soils present a great agricultural potential, and they has been traditionally used for agriculture for centuries. Nevertheless, the traditional use of them have been altered since two decades ago, due to the construction of a big hydraulic system that has made possible the irrigation of thousands of hectares, which previously were devoted to rain fed crops. On the other hand, and due to the mining activity, many soils in the Region of Murcia have been, directly or indirectly, affected by this activity. Agriculture always implies the modification to a smaller or greater extent of both physical and chemical properties of soils. In SE Spain, where agriculture is one of the most intensive in Europe, the lack of An approach to soil quality in Murcia, SE of Spain. Andrade-Limas et al.. 157 EUROPEAN SOIL BUREAU RESEARCH REPORT NO. 7 rainfall and the increase in irrigated crop cultivation due to external demands has sometimes led to the use of irrigation water with a high salt content. Incorrect or intensive ploughing and excessive use of agrochemical compounds are other features that may lead to soil degradation. Consequently, soils of these agricultural areas are exposed to a very high erosion problem, and sometimes to a high salinity level. This has led to the plantation of salt-resistant crops in places. Some mineralogical, physical and chemical properties of the soils have been considered, which have served for its classification in the World Reference Base (FAO-ISRIC-ISSS, 1998). In this respect, it is convenient to highlight the lack of correspondence between the agronomical qualities of soils of similar typology, which seems to be related with the lack of detail and the technical limitations that the proper system of classification presents. Another common situation solved by this farmer’s approach is when the investigator tries to classify a soil and faces a scarcity of information. The present work had as general aim to demonstrate the usefulness of the rural knowledge on the different classes of soils placed in the Region of Murcia, as a frame of reference for the macromorphologic characterization and for the knowledge of use and management of these soils facing its conservation. Materials and methods Location of the studied area The present study was realized from February to April 2001, in three clearly delimitated stands sited around areas of Cartagena and Murcia city (SE of Spain), close to the Mediterranean sea. These different places were located in the central and east part of the Region of Murcia, two close to the locality of Cartagena and one near Murcia city, were considered. In three different typical agricultural areas of Murcia, SE Spain, an ethno-edaphological study has been carried out. The management of these soils was quite different in each case: dry lands in La Azohía (Table 3), drip irrigation in El Beal (Table 2) and flood irrigation in the Huerta de la Vega Media del Río Segura (Table 4). These three areas were selected because the farmers have traditionally worked these soils using traditional land management and the obtained production is used for the family consumption. Likewise, the land uses are representative of the different forms of traditional management of the soils in the Region of Murcia. The used methodology recognizes the existence of the empirical knowledge of the use of the natural resources, which has allowed to the peasants to establish an environmental nomenclature, which is neither commercial nor technical, but has a semantic soundness to name to the soils. The climatic characteristics of this area are determined by its geographical situation in the south east of the Iberian Peninsula characterized by summer drought, scanty cloud cover and a high index of radiation. Physiographically there is a big contrast between the mountainous –forest- and the plain –agricultural- areas, so that vegetation changes depend on the climate and the relief (ITGME, 1999). Precipitation ranges from 200 mm to 300 mm, and temperature averages 18 °C throughout the year. The agriculture of the zone is of great importance with crops such as almond tree and cereals in dry lands, and vegetables as potatoes, cabbage and pepper among others, and irrigated fruit trees such as the lemon tree, orange tree, peach and plum tree. In rain fed lands sheep keeping was of great importance, principally ovine and caprine production. Field and laboratory work Several soil types were located in each study site (Table 1) according to the rural classification system of soils (Ortiz et al., 1990). It includes open interviews to the farmers joint with a direct observation in the field and complemented with the use of air photographs, edaphology maps, topographic maps and plans of the communities. Besides, conventional soil profiles classified by World Reference Base soil classification system (FAO-ISRIC-ISSS, 1998) were used for comparison purposes. The knowledge of the soil resource generated by the farmers, based on his traditional experience, leads to a better and more practical agronomic denomination. This is a rural classification of soils or ethnoedaphology (Ortiz et al., 1990). 158 An approach to soil quality in Murcia, SE of Spain. Andrade-Limas et al.. EUROPEAN SOIL BUREAU RESEARCH REPORT NO. 7 The guide of interviews carried out included questions about the sowed surface, types of farming, ways of sowing, types of fertilizers and plants that are used (forage, medicinal, ornamental), labors of farming, types of lands and its management. Fields tours were realized to locate the information, and to establish the boundaries of the different classes of soils in its plots. In the second stage, several representative points were selected for every study locality (from two to three per class). Profiles were realized for its field description, according to F.A.O.-I.S.R.I.C. (1990) guidelines. Results and discussions Data related to the description of the different soil types according to the rural classification (Ortiz et al., 1990) are presented. An essential part of this work has been the use of farmer’s knowledge as an information source. When they were contacted it was important to look for expert farmers, with good field knowledge. The process was developed in a soft way, with no pressure at all and in a spontaneous way to enable a quiet conversation. They were in advance informed about our interest in their rural knowledge about the different soils qualities, and about alternative management and conservation techniques of the soils. Using the ethnoedaphologic methodology, soils were classified in each studied site, having in account the interaction between the different soil types and its uses and management techniques. Classification was done to a plot level according to agricultural, livestock and forest production criteria. In this respect, a significant relationship has been found between the soil type and its management, and the soil use and the soil quality. Table 1 presents the data about the different soil types found following the rural classification of soils in three localities in the Region of Murcia, to the southeast of Spain. Eight soil classes according to the methodology published by Ortiz et al. (1990) were found: “black”, “mud”, “red”, “slate”, “reddish o moya”, “sand”, “smooth” and “hard” (Tables 1, 2, 3 and 4). These correspond to just four soil groups according to World Reference Base system (FAO-ISRIC-ISSS, 1998): Calcisols, Luvisols, Regosols and Fluvisols at the Reference Group level.
Recommended publications
  • Keynote: Soil Conservation for C Sequestration R
    This paper was not peer-reviewed. Pages 459-465. In: D.E. Stott, R.H. Mohtar and G.C. Steinhardt (eds). 2001. Sustaining the Global Farm. Selected papers from the 10th International Soil Conservation Organization Meeting held May 24-29, 1999 at Purdue University and the USDA-ARS National Soil Erosion Research Laboratory. Keynote: Soil Conservation For C Sequestration R. Lal* ABSTRACT fragile ecosystems such as the Himalyan-Tibean ecoregion, The atmospheric concentration of greenhouse gases the Andeas, the West African Sahel, East African Highlands, (GHG) is increasing at the rate of 0.5% yr-1 (3.2 Pg C and the Caribbean region (Scherr and Yadav, 1995; Scherr, -1 -1 -1 yr ) for CO2, 0.6% yr for CH4 and 0.25 ppbv yr for 1999). In addition to effects on productivity, soil erosion N2O. The global radiative forcing due to three GHGs is also profoundly impacts the environment. contributed by 20% due to agricultural activities and Two principal impacts of erosion on environment include 14% to change in land use and attendant deforestation. reduction in quality of water and air through pollution and Principal agricultural activities that contribute to eutrophication of surface water, and emissions of emission of GHGs include plowing, application of radioactively-active gases (e.g., CO2, CH4 and N2O) to the fertilizers and manures, soil drainage, biomass burning, atmosphere. Increasing atmospheric concentration of -1 -1 residue removal. The loss of soil C is accentuated by soil radioactively-active gases (0.5% yr for CO2, 0.6% yr for -1 degradation (due to erosion, compaction, salinization CH4, 0.25% yr for N2O) (IPCC, 1995) necessitates etc.) and the attendant decline in soil quality.
    [Show full text]
  • Contaminated Soil in Gardens
    Contaminated Soil in Gardens How to avoid the harmful effects EUR/ICP/LVNG 03 01 02(A) E64737 EUROPEAN HEALTH21 TARGET 11 HEALTHIER LIVING By the year 2015, people across society should have adopted healthier patterns of living (Adopted by the WHO Regional Committee for Europe at its forty-eighth session, Copenhagen, September 1998) Abstract In many cities, gardens are located on old, abandoned landfills and dumping sites. Cities have expanded by filling up spaces around the city with garbage, rubble and earth. The places where old landfills were have often become gardens where citizens can get away and enjoy the open air away from the noise and racket of cities. Normal garbage and rubble in landfills do not present a problem, however industrial and chemical waste can present a health hazard, especially when concentrations of contaminants are above acceptable limits. Some special precautions are proposed in this booklet so that the potential ill effects of contaminated soil can be avoided. Keywords SOIL POLLUTANTS RISK MANAGEMENT GUIDELINES URBAN HEALTH Contents The soil is contaminated – what then? .......................................................1 What is in the ground under us?.................................................................2 How harmful substances may affect the body ............................................3 How to reduce the risk................................................................................4 The best way to garden..............................................................................5
    [Show full text]
  • Agricultural Soil Compaction: Causes and Management
    October 2010 Agdex 510-1 Agricultural Soil Compaction: Causes and Management oil compaction can be a serious and unnecessary soil aggregates, which has a negative affect on soil S form of soil degradation that can result in increased aggregate structure. soil erosion and decreased crop production. Soil compaction can have a number of negative effects on Compaction of soil is the compression of soil particles into soil quality and crop production including the following: a smaller volume, which reduces the size of pore space available for air and water. Most soils are composed of • causes soil pore spaces to become smaller about 50 per cent solids (sand, silt, clay and organic • reduces water infiltration rate into soil matter) and about 50 per cent pore spaces. • decreases the rate that water will penetrate into the soil root zone and subsoil • increases the potential for surface Compaction concerns water ponding, water runoff, surface soil waterlogging and soil erosion Soil compaction can impair water Soil compaction infiltration into soil, crop emergence, • reduces the ability of a soil to hold root penetration and crop nutrient and can be a serious water and air, which are necessary for water uptake, all of which result in form of soil plant root growth and function depressed crop yield. • reduces crop emergence as a result of soil crusting Human-induced compaction of degradation. • impedes root growth and limits the agricultural soil can be the result of using volume of soil explored by roots tillage equipment during soil cultivation or result from the heavy weight of field equipment. • limits soil exploration by roots and Compacted soils can also be the result of natural soil- decreases the ability of crops to take up nutrients and forming processes.
    [Show full text]
  • World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
    ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Topsoil Characterization for Sustainable Land Management 1
    DRAFT FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS TOPSOIL CHARACTERIZATION FOR SUSTAINABLE LAND MANAGEMENT Land and Water Development Division Soil Resources, Management and Conservation Service Rome 1998 2 ACKNOWLEDGEMENTS This study is based upon earlier work by O.C. Spaargaren "Framework for Characterization and Classification of Topsoils in the World" (1992 unpublished) and A. Hebel "Soil Characterization and Evaluation System (SCE) with Emphasis on Topsoils and their Fertility-related Characteristics" (1994 unpublished). We would also like to acknowledge the cooperation of the University of Hohenheim, especially Dr. Gaiser and Prof. Stahr for testing the system, and various contributions, suggestions and constructive criticism received from Ms L.M. Jansen, Ms A Bot, Mr F. Nachtergaele, and last but not least, Mr M.F. Purnell. CONTENTS 1. Introduction 1 2. Topsoil Characterization Within Existing Soil Classification Systems 3 2.1 Introduction 3 2.2 Fertility Capability Classification (FCC) 3 2.3 Soil Classification Systems 3 3. Factors Influencing Topsoil Properties 7 3.1 Climate 7 3.2 Vegetation and Organic Matter 7 3.3 Topography and Physiography 8 3.4 Mineralogical Soil Constituents 9 3.5 Surface Processes 9 3.6 Biological Activity 10 3.7 Human Activity 10 4. Definition of Topsoil Properties and Modifiers 13 4.1 Texture 13 4.2 Organic Material 13 4.3 Organic Matter Status 14 4.4 Physical Features 16 4.5 Chemical Features 18 4.6 Biological Features 20 4.7 Drainage Features 21 4.8 Land Use 21 4.9 Erosion or Degradation 23 4.10 External Physical Conditions 25 4.11 Slope 26 4.12 Examples of Topsoil Characterization 26 5.
    [Show full text]
  • Soils and Soil-Forming Material Technical Information Note 04 /2017 30Th November 2017
    Soils and Soil-forming Material Technical Information Note 04 /2017 30th November 2017 Contents 1. Introduction to Soils ........................................................................................................................ 2 2. Components and Properties of Soil ................................................................................................ 7 3. Describing and Categorising soils .................................................................................................. 29 4. Policy, Regulation and Roles ......................................................................................................... 34 5. Soil Surveys, Handling and Management ..................................................................................... 40 6. Recommended Soil Specifications ................................................................................................ 42 7. References .................................................................................................................................... 52 “Upon this handful of soil our survival depends. Husband it and it will grow our food, our fuel, and our shelter and surround us with beauty. Abuse it and the soil will collapse and die, taking humanity with it.” From Vedas Sanskrit Scripture – circa 1500 BC The aim of this Technical Information Note is to assist Landscape Professionals (primarily landscape architects) when considering matters in relation to soils and soil-forming material. Soil is an essential requirement for providing
    [Show full text]
  • Addressing Pasture Compaction
    Addressing Pasture Compaction Weighing the Pros and Cons of Two Options UVM Project team: Dr. Josef Gorres, Dr. Rachel Gilker, Jennifer Colby, Bridgett Jamison Hilshey Partners: Mark Krawczyk (Keyline Vermont) and farmers Brent & Regina Beidler, Guy & Beth Choiniere, John & Rocio Clark, Lyle & Kitty Edwards, and Julie Wolcott & Stephen McCausland Writing: Josef Gorres, Rachel Gilker and Jennifer Colby • Design and Layout: Jennifer Colby • Photos: Jennifer Colby and Rachel Gilker Additional editing by Cheryl Herrick and Bridgett Jamison Hilshey Th is is dedicated to our farmer partners; may our work help you farm more productively, profi tably, and ecologically. VT Natural Resources Conservation Service UVM Center for Sustainable Agriculture http://www.vt.nrcs.usda.gov http://www.uvm.edu/sustainableagriculture UVM Plant & Soil Science Department http://pss.uvm.edu Financial support for this project and publication was provided through a VT Natural Resources Conservation Service (NRCS) Conservation Innovation Grant (CIG). We thank VT-NRCS for their eff orts to build a 2 strong natural resource foundation for Vermont’s farming systems. Introduction A few years ago, some grass-based dairy farmers came to us with the question, “You know, what we really need is a way to fi x the compaction in pastures.” We started digging for answers. Th is simple request has led us on a lively journey. We began by adapting methods to alleviate compac- tion in other climates and cropping systems. We worked with fi ve Vermont dairy farmers to apply these practices to their pastures, where other farmers could come and observe them in action. We assessed the pros and cons of these approaches and we are sharing those results and observations here.
    [Show full text]
  • Preventing Soil Compaction Preserving and Restoring Soil Fertility
    Preventing Soil Compaction Preserving and Restoring Soil Fertility Including the Classification Key for Detection and Evaluation of Harmful Soil Compaction in the Field www.umwelt.nrw.de Content Preface ............................................of the minister 2 1. Introduction ...................................................... 4 2. The importance of soil structure......................... 6 3. Causes of harmful soil compaction..................... 13 4. Effects of harmful soil compaction...................... 18 5. Detecting harmful soil compaction..................... 21 6. Preserving and improving soil structure ................ 25 7. What to do, if the soil is already compacted?...... 32 8. Final remarks.................................................... 36 Literature .............................................................. 37 4 1. Introduction Agricultural soil cultivation and harvest inevitably cause slight soil compaction. Especially detrimental is soil compaction which occurs deep in the subsoil, as this compaction cannot be reversed with normal soil cultiva- tion. Due to expected future warmer winters in Germany as a result of climate change, fewer and shorter frost periods are to be expected and with that the so-called “frost action” with its soil loosening effect will occur less frequently. This means that a natural way to loosen soil structure will be lost. Field traffic, with heavy loads on wet soils, is an especially critical contributor to severe soil compaction. With the increasing “just in time” harvest practice of farmers, this is a potential source of conflict. To address this, improved techniques to reduce soil pressure and to understand actual soil water content can be helpful. The steady increase in weight of agricultural machinery and field traffic frequency – both have increased by three- to fourfold within the last 40 years – in combina- tion with the technical ability to drive on increasingly wet soils, has led to ever greater compaction of our soils.
    [Show full text]
  • Science Literacy Warm Up
    ecology á environmental issues ENDANGERED SOIL 20 (1) The United Nations declared 2015 The International Year of Soils. There has been a growing awareness that soil isn’t only important for healthy ecosystems, but that soil is also critical to our ability to make enough food to feed the world. Food security, which is the access that humans have to healthy food, is threatened when soil is threatened. Science Literacy Warm Up (2) The way we have been conducting intensive modern agriculture, polluting our lands and expanding urban cities has had a huge effect on the Earth’s soil for the last two centuries. These things, along with the effects of climate through contact with the forces of nature. change, have made soil endangered and has Once weathering forms the initial cracks in the increased concerns over food security. rock, the eroding actions of water, chemical reactions and living organisms (like plants) can (3) Let’s first examine the soil itself. If you start to erode and break apart the rock even think that soil is just simply dirt, then you are further. This process takes a long time causing mistaken. Dirt isn’t alive while soil is brimming topsoil to form very slowly. with life. Besides minerals, water and decomposing organic matter, soil also contains (7) Edaphology helps us study and examine thousands of species of small insects, worms, how altering our soil affects the plants grown fungi and microorganisms. A handful of soil in it. Proper soil conditions are vital for healthy contains more microorganisms than there are plant growth.
    [Show full text]
  • Improving Garden Soils with Organic Matter, EC 1561
    EC 1561 • May 2003 $2.50 Improving Garden Soils with Organic Matter N. Bell, D.M. Sullivan, L.J. Brewer, and J. Hart This publication will help you understand the • Tomatoes and peppers get blossom-end rot, importance of soil organic matter levels to good even if fertilized with calcium. plant performance. It also contains suggestions • Water tends to pool on the soil surface and to for suitable soil amendments. Any soil, no drain slowly, or it runs off the surface. matter how compacted, can be improved by the addition of organic matter. The result will be a nnnn better environment for almost any kind of plant. What makes a productive soil? nnnn A productive soil provides physical support, water, air, and nutrients to plants and soil- What gardening problems are dwelling organisms (see “What is soil?” caused by poor soil quality? page 2). Like humans, roots and soil organisms Many problems with home vegetable gar- breathe and require sufficient air and water to dens, fruit trees, shrubs, and flower gardens are live. As a result, a good soil is not “solid”; caused not by pests, diseases, or a lack of rather, between 40 and 60 percent of the soil nutrients, but by poor soil physical conditions. volume is pores. The pores may be filled with Symptoms of poor soil quality include the water or air, making both available to plants following. (see illustration on page 3). • The soil is dried and cracked in summer. The largest pores control aeration and move- • Digging holes in the soil is difficult, whether ment of water through the soil and are largely it is wet or dry.
    [Show full text]
  • Influence of Soil Type on the Reliability of the Prediction Model
    agronomy Article Influence of Soil Type on the Reliability of the Prediction Model for Bioavailability of Mn, Zn, Pb, Ni and Cu in the Soils of the Republic of Serbia Jelena Maksimovi´c*, Radmila Pivi´c,Aleksandra Stanojkovi´c-Sebi´c , Marina Jovkovi´c,Darko Jaramaz and Zoran Dini´c Institute of Soil Science, Teodora Drajzera 7, 11000 Belgrade, Serbia; [email protected] (R.P.); [email protected] (A.S.-S.); [email protected] (M.J.); [email protected] (D.J.); [email protected] (Z.D.) * Correspondence: [email protected] Abstract: The principles of sustainable agriculture in the 21st century are based on the preservation of basic natural resources and environmental protection, which is achieved through a multidisciplinary approach in obtaining solutions and applying information technologies. Prediction models of bioavailability of trace elements (TEs) represent the basis for the development of machine learning and artificial intelligence in digital agriculture. Since the bioavailability of TEs is influenced by the physicochemical properties of the soil, which are characteristic of the soil type, in order to obtain more reliable prediction models in this study, the testing set from the previous study was grouped based on the soil type. The aim of this study was to examine the possibility of improvement in the prediction of bioavailability of TEs by using a different strategy of model development. After the training set was grouped based on the criteria for the new model development, the developed basic models were compared to the basic models from the previous study. The second step was to develop Citation: Maksimovi´c,J.; Pivi´c,R.; models based on the soil type (for the eight most common soil types in the Republic of Serbia—RS) Stanojkovi´c-Sebi´c,A.; Jovkovi´c,M.; and to compare their reliability to the basic models.
    [Show full text]
  • Distribution and Classification of Volcanic Ash Soils
    83 Distribution and Classification of Volcanic Ash Soils 1* 2 Tadashi TAKAHASHI and Sadao SHOJI 1 Graduate School of Agricultural Science, Tohoku University 1-1, Tsutsumidori, Amamiya-machi, Aoba-ku, Sendai, 981-8555 Japan e-mail: [email protected] 2 Professor Emeritus, Tohoku University 5-13-27, Nishitaga, Taihaku-ku, Sendai, 982-0034 Japan *corresponding author Abstract Volcanic ash soils are distributed exclusively in regions where active and recently extinct volcanoes are located. The soils cover approximately 124 million hectares, or 0.84% of the world’s land surface. While, thus, volcanic ash soils comprise a relatively small extent, they represent a crucial land resource due to the excessively high human populations living in these regions. However, they did not receive worldwide recognition among soil scientists until the middle of the 20th century. Development of international classification systems was put forth by the 1978 Andisol proposal of G. D. Smith. The central concept of volcanic ash soils was established after the finding of nonallophanic volcanic ash soils in Japan in 1978. Nowadays, volcanic ash soils are internationally recognized as Andisols in Soil Taxonomy (United States Department of Agriculture) and Andosols in the World Reference Base for Soil Resources (FAO, International Soil Reference and Information Centre and International Society of Soil Science). Several countries including Japan and New Zealand have developed their own national classification systems for volcanic ash soils. Finally correlation of the international and domestic classification systems is described using selected volcanic ash soils. Key words: Andisols, Andosols, Japanese Cultivated Soil Classification, New Zealand Soil Classification, Soil Taxonomy, World Reference Base for Soil Resources (WRB) 1.
    [Show full text]