Diptera: Hippoboscidae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Blowflies of California
BULLETIN OF THE CALIFORNIA INSECT SURVEY VOLUME 4,NO. 1 THE BLOWFLIES OF CALIFORNIA (Diptera: Calliphoridae) BY MAURICE T. JAMES (Department of Zo'dlogy, State College of Washington, Pullman) UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES 1955 BULLETIN OF THE CALIFORNIA INSECT SURVEY Editors: E. G. Linsley, S. B. Freeborn, R. L. Usinger Volume 4, No. 1, pp. 1-34, plates 1-2, 1 figure in text Submitted by Editors, January 13, 1955 Issued October 28, 1955 Price, 50 cents UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES CALIFORNIA CAMBRIDGE UNIVERSITY PRESS LONDON. ENGLAND PRINTED BY OFFSET IN THE UNITED STATES OF AMERICA THE BLOWFLIES OF CALIFORNIA (Diptera: Calliphoridae) by Maurice T. James Identification of the blowflies of North America Blowflies are important from a medical and has been made much easier and more secure in veterinary standpoint. Some are obligatory or recent years by the publication of the monograph facultative parasites on man or on domestic or of that family by Hall (1948). However, there other useful animals. In our area, the primary exists ti0 regional treatment that covers any screwworm, Callitroga hominivorax (Coquerel), definite part of the United States. Hall's mono- 'is the only obligatory parasite that invades graph gives only general information about the living tissue, although larvae of Pmtocalliphora, geographical distribution of most of the species. represented in the Califdrnia fauna by seven These considerations, together with the fact that known species, feed on the blood of nesting Hall had obviously examined an insufficient birds, often with fatal results. Of the facultative amount of material from the western states, parasites, Callitroga macellaria (Fabricius), makes a review of the California species partic- Phaenicia sericata (Meigen), and Phormia regina ularly desirable. -
Redalyc.New Records of Three Hippoboscid Species on Newly Captured Birds from Nature in Paraná, Brazil
Revista Brasileira de Parasitologia Veterinária ISSN: 0103-846X [email protected] Colégio Brasileiro de Parasitologia Veterinária Brasil Fontanelli Vaz, Frederico; Natascha Teixeira, Valéria New records of three hippoboscid species on newly captured birds from nature in Paraná, Brazil Revista Brasileira de Parasitologia Veterinária, vol. 25, núm. 4, octubre-diciembre, 2016, pp. 501-503 Colégio Brasileiro de Parasitologia Veterinária Jaboticabal, Brasil Available in: http://www.redalyc.org/articulo.oa?id=397848910019 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Research Note Braz. J. Vet. Parasitol., Jaboticabalv. 25, n. 4, p. 501-503, out.-dez. 2016 ISSN 0103-846X (Print) / ISSN 1984-2961 (Electronic) Doi: http://dx.doi.org/10.1590/S1984-29612016056 New records of three hippoboscid species on newly captured birds from nature in Paraná, Brazil Novos registros de três espécies de hipoboscídeos em aves recém-capturadas da natureza no Paraná, Brasil Frederico Fontanelli Vaz1*; Valéria Natascha Teixeira2 1 Centro de Triagem de Animais Silvestres, Pontifícia Universidade Católica do Paraná – PUCPR, Tijucas do Sul, PR, Brasil 2 Laboratório de Parasitologia Veterinária, Escola de Ciências Agrárias e Medicina Veterinária, Pontifícia Universidade Católica do Paraná – PUCPR, Curitiba, PR, Brasil Received April 4, 2015 Accepted August 23, 2016 Abstract The aims of this study was to provide new records of hippoboscid flies collected over an one-year period on newly captured birds from nature in the state of Paraná, Brazil. -
Diptera: Brachycera: Calyptratae) Inferred from Mitochondrial Genomes
University of Wollongong Research Online Faculty of Science, Medicine and Health - Papers: part A Faculty of Science, Medicine and Health 1-1-2015 The phylogeny and evolutionary timescale of muscoidea (diptera: brachycera: calyptratae) inferred from mitochondrial genomes Shuangmei Ding China Agricultural University Xuankun Li China Agricultural University Ning Wang China Agricultural University Stephen L. Cameron Queensland University of Technology Meng Mao University of Wollongong, [email protected] See next page for additional authors Follow this and additional works at: https://ro.uow.edu.au/smhpapers Part of the Medicine and Health Sciences Commons, and the Social and Behavioral Sciences Commons Recommended Citation Ding, Shuangmei; Li, Xuankun; Wang, Ning; Cameron, Stephen L.; Mao, Meng; Wang, Yuyu; Xi, Yuqiang; and Yang, Ding, "The phylogeny and evolutionary timescale of muscoidea (diptera: brachycera: calyptratae) inferred from mitochondrial genomes" (2015). Faculty of Science, Medicine and Health - Papers: part A. 3178. https://ro.uow.edu.au/smhpapers/3178 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] The phylogeny and evolutionary timescale of muscoidea (diptera: brachycera: calyptratae) inferred from mitochondrial genomes Abstract Muscoidea is a significant dipteran clade that includes house flies (Family Muscidae), latrine flies (F. Fannidae), dung flies (F. Scathophagidae) and root maggot flies (F. Anthomyiidae). It is comprised of approximately 7000 described species. The monophyly of the Muscoidea and the precise relationships of muscoids to the closest superfamily the Oestroidea (blow flies, flesh flies etc)e ar both unresolved. Until now mitochondrial (mt) genomes were available for only two of the four muscoid families precluding a thorough test of phylogenetic relationships using this data source. -
Terry Whitworth 3707 96Th ST E, Tacoma, WA 98446
Terry Whitworth 3707 96th ST E, Tacoma, WA 98446 Washington State University E-mail: [email protected] or [email protected] Published in Proceedings of the Entomological Society of Washington Vol. 108 (3), 2006, pp 689–725 Websites blowflies.net and birdblowfly.com KEYS TO THE GENERA AND SPECIES OF BLOW FLIES (DIPTERA: CALLIPHORIDAE) OF AMERICA, NORTH OF MEXICO UPDATES AND EDITS AS OF SPRING 2017 Table of Contents Abstract .......................................................................................................................... 3 Introduction .................................................................................................................... 3 Materials and Methods ................................................................................................... 5 Separating families ....................................................................................................... 10 Key to subfamilies and genera of Calliphoridae ........................................................... 13 See Table 1 for page number for each species Table 1. Species in order they are discussed and comparison of names used in the current paper with names used by Hall (1948). Whitworth (2006) Hall (1948) Page Number Calliphorinae (18 species) .......................................................................................... 16 Bellardia bayeri Onesia townsendi ................................................... 18 Bellardia vulgaris Onesia bisetosa ..................................................... -
Dating Pupae of the Blow Fly Calliphora Vicina Robineau
G C A T T A C G G C A T genes Article Dating Pupae of the Blow Fly Calliphora vicina Robineau–Desvoidy 1830 (Diptera: Calliphoridae) for Post Mortem Interval—Estimation: Validation of Molecular Age Markers Barbara K. Zajac *, Jens Amendt, Marcel A. Verhoff and Richard Zehner Institute of Legal Medicine, Goethe University, 60596 Frankfurt, Germany; [email protected] (J.A.); [email protected] (M.A.V.); [email protected] (R.Z.) * Correspondence: [email protected]; Tel.: +49-163-865-3366 Received: 31 December 2017; Accepted: 5 March 2018; Published: 9 March 2018 Abstract: Determining the age of juvenile blow flies is one of the key tasks of forensic entomology when providing evidence for the minimum post mortem interval. While the age determination of blow fly larvae is well established using morphological parameters, the current study focuses on molecular methods for estimating the age of blow flies during the metamorphosis in the pupal stage, which lasts about half the total juvenile development. It has already been demonstrated in several studies that the intraspecific variance in expression of so far used genes in blow flies is often too high to assign a certain expression level to a distinct age, leading to an inaccurate prediction. To overcome this problem, we previously identified new markers, which show a very sharp age dependent expression course during pupal development of the forensically-important blow fly Calliphora vicina Robineau–Desvoidy 1830 (Diptera: Calliphoridae) by analyzing massive parallel sequencing (MPS) generated transcriptome data. We initially designed and validated two quantitative polymerase chain reaction (qPCR) assays for each of 15 defined pupal ages representing a daily progress during the total pupal development if grown at 17 ◦C. -
Biological-Control-Programmes-In
Biological Control Programmes in Canada 2001–2012 This page intentionally left blank Biological Control Programmes in Canada 2001–2012 Edited by P.G. Mason1 and D.R. Gillespie2 1Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada; 2Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada iii CABI is a trading name of CAB International CABI Head Offi ce CABI Nosworthy Way 38 Chauncey Street Wallingford Suite 1002 Oxfordshire OX10 8DE Boston, MA 02111 UK USA Tel: +44 (0)1491 832111 T: +1 800 552 3083 (toll free) Fax: +44 (0)1491 833508 T: +1 (0)617 395 4051 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org Chapters 1–4, 6–11, 15–17, 19, 21, 23, 25–28, 30–32, 34–36, 39–42, 44, 46–48, 52–56, 60–61, 64–71 © Crown Copyright 2013. Reproduced with the permission of the Controller of Her Majesty’s Stationery. Remaining chapters © CAB International 2013. All rights reserved. No part of this publication may be reproduced in any form or by any means, electroni- cally, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Biological control programmes in Canada, 2001-2012 / [edited by] P.G. Mason and D.R. Gillespie. p. cm. Includes bibliographical references and index. ISBN 978-1-78064-257-4 (alk. paper) 1. Insect pests--Biological control--Canada. 2. Weeds--Biological con- trol--Canada. 3. Phytopathogenic microorganisms--Biological control- -Canada. -
Evaluating the Effects of Temperature on Larval Calliphora Vomitoria (Diptera: Calliphoridae) Consumption
Evaluating the effects of temperature on larval Calliphora vomitoria (Diptera: Calliphoridae) consumption Kadeja Evans and Kaleigh Aaron Edited by Steven J. Richardson Abstract: Calliphora vomitoria (Diptera: Calliphoridae) are responsible for more cases of myiasis than any other arthropods. Several species of blowfly, including Cochliomyia hominivorax and Cocholiomya macellaria, parasitize living organisms by feeding on healthy tissues. Medical professionals have taken advantage of myiatic flies, Lucillia sericata, through debridement or maggot therapy in patients with necrotic tissue. This experiment analyzes how temperature influences blue bottle fly, Calliphora vomitoria. consumption of beef liver. After rearing an egg mass into first larval instars, ten maggots were placed into four containers making a total of forty maggots. One container was exposed to a range of temperatures between 18°C and 25°C at varying intervals. The remaining three containers were placed into homemade incubators at constant temperatures of 21°C, 27°C and 33°C respectively. Beef liver was placed into each container and weighed after each group pupation. The mass of liver consumed and the time until pupation was recorded. Three trials revealed that as temperature increased, the average rate of consumption per larva also increased. The larval group maintained at 33°C had the highest consumption with the shortest feeding duration, while the group at 21°C had lower liver consumption in the longest feeding period. Research in this experiment was conducted to understand the optimal temperature at which larval consumption is maximized whether in clinical instances for debridement or in myiasis cases. Keywords: Calliphora vomitoria, Calliphoridae, myiasis, consumption, debridement As an organism begins to decompose, target open wounds or necrotic tissue. -
On the Genus Pseudolynchia Bequaert
Pacific Insects Monograph 10: 125-138 November 30, 1966 ON THE GENUS PSEUDOLYNCHIA BEQUAERT (Diptera : Hippoboscidae) * By T. C. Maa2 Abstract: Pseudolynchia serratipes from New Guinea is described as new. Known species are redescribed together with suggestion of several new characters including sensoria on hind tibiae and sensilla on hind tarsi. A new key to species and remarks on the inter- and intrageneric relationships are appended. Since erected in 1926, Pseudolynchia has been the subject of several regional and world revisions (Bequaert 1926 b, 1935 a, 1938 d, 1955; Maa 1963; Theodor & Oldroyd 1964). Comprehensive bibliographies and digest of literature on the biology of the species have also been provided by Bequaert (1953 a, 1953 b, 1955). The following notes include chiefly a description of an unusual new species, and redescriptions of known ones. Generic Characters. To the detailed descriptions by Bequaert (1955) and Theodor et al (1964), the following points may be added: Hind tibia with a group of large sensoria on posterior surface near apex. Segments 2 to 4 of hind tarsus slightly to strongly asymmetrical, each with 2 longitudinal series of sensilla. Parameres ($) un usually strongly articulated with aedeagal apodeme and gonocoxal base, their common basal margin deeply concave; aedeagal apodeme in sexually matured 8 quite long and narrow in lateral view. Male differing from 9 in having wing shorter and broader in proportion, fore and mid tarsi ventrally with more apical spines, segment 1 of mid tarsus ventrally with a small patch of short, stout, and either sharp or peg-like spines (absent in 9), tergite 5 almost always represented by a pair of small transverse plates (not definable in 9). -
Tsetse Fly Evolution, Genetics and the Trypanosomiases - a Review E
Entomology Publications Entomology 10-2018 Tsetse fly evolution, genetics and the trypanosomiases - A review E. S. Krafsur Iowa State University, [email protected] Ian Maudlin The University of Edinburgh Follow this and additional works at: https://lib.dr.iastate.edu/ent_pubs Part of the Ecology and Evolutionary Biology Commons, Entomology Commons, Genetics Commons, and the Parasitic Diseases Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ ent_pubs/546. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Tsetse fly evolution, genetics and the trypanosomiases - A review Abstract This reviews work published since 2007. Relative efforts devoted to the agents of African trypanosomiasis and their tsetse fly vectors are given by the numbers of PubMed accessions. In the last 10 years PubMed citations number 3457 for Trypanosoma brucei and 769 for Glossina. The development of simple sequence repeats and single nucleotide polymorphisms afford much higher resolution of Glossina and Trypanosoma population structures than heretofore. Even greater resolution is offered by partial and whole genome sequencing. Reproduction in T. brucei sensu lato is principally clonal although genetic recombination in tsetse salivary glands has been demonstrated in T. b. brucei and T. b. rhodesiense but not in T. b. -
A Revised Annotated Checklist of Louse Flies (Diptera, Hippoboscidae) from Slovakia
A peer-reviewed open-access journal ZooKeys 862: A129–152 revised (2019) annotated checklist of louse flies (Diptera, Hippoboscidae) from Slovakia 129 doi: 10.3897/zookeys.862.25992 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A revised annotated checklist of louse flies (Diptera, Hippoboscidae) from Slovakia Jozef Oboňa1, Oldřich Sychra2, Stanislav Greš3, Petr Heřman4, Peter Manko1, Jindřich Roháček5, Anna Šestáková6, Jan Šlapák7, Martin Hromada1,8 1 Laboratory and Museum of Evolutionary Ecology, Department of Ecology, Faculty of Humanities and Na- tural Sciences, University of Presov, 17. novembra 1, SK – 081 16 Prešov, Slovakia 2 Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, CZ – 612 42 Brno, Czech Republic 3 17. novembra 24, SK – 083 01 Sabinov, Slovakia 4 Křivoklát 190, CZ – 270 23, Czech Republic 5 Department of Entomology, Silesian Museum, Tyršova 1, CZ-746 01 Opava, Czech Republic 6 The Western Slovakia Museum, Múzejné námestie 3, SK – 918 09 Trnava, Slovakia 7 Vojtaššákova 592, SK – 027 44 Tvrdošín, Slovakia 8 Faculty of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65–516 Zielona Gora, Poland Corresponding author: Jozef Oboňa ([email protected]) Academic editor: Pierfilippo Cerretti | Received 4 June 2018 | Accepted 22 April 2019 | Published 9 July 2019 http://zoobank.org/00FA6B5D-78EF-4618-93AC-716D1D9CC360 Citation: Oboňa J, Sychra O, Greš S, Heřman P, Manko P, Roháček J, Šestáková A, Šlapák J, Hromada M (2019) A revised annotated checklist of louse flies (Diptera, Hippoboscidae) from Slovakia. ZooKeys 862: 129–152.https://doi. -
Molecular Phylogenetic Analysis of Nycteribiid and Streblid Bat Flies (Diptera: Brachycera, Calyptratae): Implications for Host
Molecular Phylogenetics and Evolution 38 (2006) 155–170 www.elsevier.com/locate/ympev Molecular phylogenetic analysis of nycteribiid and streblid bat Xies (Diptera: Brachycera, Calyptratae): Implications for host associations and phylogeographic origins Katharina Dittmar a,¤, Megan L. Porter b, Susan Murray c, Michael F. Whiting a a Department of Integrative Biology, Brigham Young University, 401 WIDB, Provo, UT 84602, USA b Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA c Department of Biology, Boston University, Boston, MA, USA Received 1 April 2005; revised 25 May 2005; accepted 6 June 2005 Available online 8 August 2005 Abstract Bat Xies are a small but diverse group of highly specialized ectoparasitic, obligatory bloodsucking Diptera. For the Wrst time, the phylogenetic relationships of 26 species and Wve subfamilies were investigated using four genes (18S rDNA, 16S rDNA, COII, and cytB) under three optimality criteria (maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference). Tree topol- ogy tests of previous hypotheses were conducted under likelihood (Shimodaira–Hasegawa test). Major Wndings include the non- monophyly of the Streblidae and the recovery of an Old World- and a New World-Clade of bat Xies. These data ambiguously resolve basal relationships between Hippoboscidae, Glossinidae, and bat Xies. Recovered phylogenies resulted in either monophyly (Bayes- ian approach) or paraphyly (MP/ML topologies) of the bat Xies, thus obscuring the potential number of possible associations with bats throughout the history of this group. Dispersal-vicariance analysis suggested the Neotropical region as the possible ancestral distribution area of the New World Streblidae and the Oriental region for the Old World bat Xies. -
Unprecedented Genomic Diversity of RNA Viruses In
RESEARCH ARTICLE elifesciences.org Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses Ci-Xiu Li1,2†, Mang Shi1,2,3†, Jun-Hua Tian4†, Xian-Dan Lin5†, Yan-Jun Kang1,2†, Liang-Jun Chen1,2, Xin-Cheng Qin1,2, Jianguo Xu1,2, Edward C Holmes1,3, Yong-Zhen Zhang1,2* 1State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; 2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China; 3Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia; 4Wuhan Center for Disease Control and Prevention, Wuhan, China; 5Wenzhou Center for Disease Control and Prevention, Wenzhou, China Abstract Although arthropods are important viral vectors, the biodiversity of arthropod viruses, as well as the role that arthropods have played in viral origins and evolution, is unclear. Through RNA sequencing of 70 arthropod species we discovered 112 novel viruses that appear to be ancestral to much of the documented genetic diversity of negative-sense RNA viruses, a number of which are also present as endogenous genomic copies. With this greatly enriched diversity we revealed that arthropods contain viruses that fall basal to major virus groups, including the vertebrate-specific *For correspondence: arenaviruses, filoviruses, hantaviruses, influenza viruses, lyssaviruses, and paramyxoviruses. We [email protected] similarly documented a remarkable diversity of genome structures in arthropod viruses, including †These authors contributed a putative circular form, that sheds new light on the evolution of genome organization.