plants Article Tomato Metabolic Changes in Response to Tomato-Potato Psyllid (Bactericera cockerelli) and Its Vectored Pathogen Candidatus Liberibacter solanacearum 1,2, 3, 1,2 Jisun H.J. Lee y, Henry O. Awika y, Guddadarangavvanahally K. Jayaprakasha , Carlos A. Avila 2,3,* , Kevin M. Crosby 1,2,* and Bhimanagouda S. Patil 1,2,* 1 Vegetable and Fruit Improvement Center, Texas A&M University, 1500 Research Parkway, A120, College Station, TX 77845-2119, USA;
[email protected] (J.H.L.);
[email protected] (G.K.J.) 2 Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA 3 Texas A&M AgriLife Research and Extension Center, 2415 E Hwy 83, Weslaco, TX 78596, USA;
[email protected] * Correspondence:
[email protected] (C.A.A.);
[email protected] (K.M.C.);
[email protected] (B.S.P.) Author contributed equally to this work. y Received: 1 August 2020; Accepted: 3 September 2020; Published: 6 September 2020 Abstract: The bacterial pathogen ‘Candidatus Liberibacter solanacearum’ (Lso) is transmitted by the tomato potato psyllid (TPP), Bactericera cockerelli, to solanaceous crops. In the present study, the changes in metabolic profiles of insect-susceptible (cv CastleMart) and resistant (RIL LA3952) tomato plants in response to TPP vectoring Lso or not, were examined after 48 h post infestation. Non-volatile and volatile metabolites were identified and quantified using headspace solid-phase microextraction equipped with a gas chromatograph-mass spectrometry (HS-SPME/GC-MS) and ultra-high pressure liquid chromatography coupled to electrospray quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS), respectively.