Nearby Genes Coding for JAZF1, TSPAN8&Sol;LGR5 And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of the Binding Partners for Hspb2 and Cryab Reveals
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity. -
Interactome-Transcriptome Analysis Discovers Signatures
www.nature.com/scientificreports OPEN Interactome-transcriptome analysis discovers signatures complementary to GWAS Loci of Received: 26 November 2015 Accepted: 26 September 2016 Type 2 Diabetes Published: 18 October 2016 Jing-Woei Li1,2, Heung-Man Lee3,4,5, Ying Wang3,4, Amy Hin-Yan Tong4, Kevin Y. Yip1,5,6, Stephen Kwok-Wing Tsui1,2,5, Si Lok4, Risa Ozaki3,4,5, Andrea O Luk3,4,5, Alice P. S. Kong3,4,5, Wing-Yee So3,4,5, Ronald C. W. Ma3,4,5, Juliana C. N. Chan3,4,5 & Ting-Fung Chan1,5,6 Protein interactions play significant roles in complex diseases. We analyzed peripheral blood mononuclear cells (PBMC) transcriptome using a multi-method strategy. We constructed a tissue- specific interactome (T2Di) and identified 420 molecular signatures associated with T2D-related comorbidity and symptoms, mainly implicated in inflammation, adipogenesis, protein phosphorylation and hormonal secretion. Apart from explaining the residual associations within the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) study, the T2Di signatures were enriched in pathogenic cell type-specific regulatory elements related to fetal development, immunity and expression quantitative trait loci (eQTL). The T2Di revealed a novel locus near a well-established GWAS loci AChE, in which SRRT interacts with JAZF1, a T2D-GWAS gene implicated in pancreatic function. The T2Di also included known anti-diabetic drug targets (e.g. PPARD, MAOB) and identified possible druggable targets (e.g. NCOR2, PDGFR). These T2Di signatures were validated by an independent computational method, and by expression data of pancreatic islet, muscle and liver with some of the signatures (CEBPB, SREBF1, MLST8, SRF, SRRT and SLC12A9) confirmed in PBMC from an independent cohort of 66 T2D and 66 control subjects. -
Comparative Transcriptome Analysis of Embryo Invasion in the Mink Uterus
Placenta 75 (2019) 16–22 Contents lists available at ScienceDirect Placenta journal homepage: www.elsevier.com/locate/placenta Comparative transcriptome analysis of embryo invasion in the mink uterus T ∗ Xinyan Caoa,b, , Chao Xua,b, Yufei Zhanga,b, Haijun Weia,b, Yong Liuc, Junguo Caoa,b, Weigang Zhaoa,b, Kun Baoa,b, Qiong Wua,b a Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China b State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China c Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, College of Biological and Food Engineering, Fuyang Teachers College, Fuyang, China ABSTRACT Introduction: In mink, as many as 65% of embryos die during gestation. The causes and the mechanisms of embryonic mortality remain unclear. The purpose of our study was to examine global gene expression changes during embryo invasion in mink, and thereby to identify potential signaling pathways involved in implantation failure and early pregnancy loss. Methods: Illumina's next-generation sequencing technology (RNA-Seq) was used to analyze the differentially expressed genes (DEGs) in implantation (IMs) and inter- implantation sites (inter-IMs) of uterine tissue. Results: We identified a total of 606 DEGs, including 420 up- and 186 down-regulated genes in IMs compared to inter-IMs. Gene annotation analysis indicated multiple biological pathways to be significantly enriched for DEGs, including immune response, ECM complex, cytokine activity, chemokine activity andprotein binding. The KEGG pathway including cytokine-cytokine receptor interaction, Jak-STAT, TNF and the chemokine signaling pathway were the most enriched. -
Supplemental Table 1. Complete Gene Lists and GO Terms from Figure 3C
Supplemental Table 1. Complete gene lists and GO terms from Figure 3C. Path 1 Genes: RP11-34P13.15, RP4-758J18.10, VWA1, CHD5, AZIN2, FOXO6, RP11-403I13.8, ARHGAP30, RGS4, LRRN2, RASSF5, SERTAD4, GJC2, RHOU, REEP1, FOXI3, SH3RF3, COL4A4, ZDHHC23, FGFR3, PPP2R2C, CTD-2031P19.4, RNF182, GRM4, PRR15, DGKI, CHMP4C, CALB1, SPAG1, KLF4, ENG, RET, GDF10, ADAMTS14, SPOCK2, MBL1P, ADAM8, LRP4-AS1, CARNS1, DGAT2, CRYAB, AP000783.1, OPCML, PLEKHG6, GDF3, EMP1, RASSF9, FAM101A, STON2, GREM1, ACTC1, CORO2B, FURIN, WFIKKN1, BAIAP3, TMC5, HS3ST4, ZFHX3, NLRP1, RASD1, CACNG4, EMILIN2, L3MBTL4, KLHL14, HMSD, RP11-849I19.1, SALL3, GADD45B, KANK3, CTC- 526N19.1, ZNF888, MMP9, BMP7, PIK3IP1, MCHR1, SYTL5, CAMK2N1, PINK1, ID3, PTPRU, MANEAL, MCOLN3, LRRC8C, NTNG1, KCNC4, RP11, 430C7.5, C1orf95, ID2-AS1, ID2, GDF7, KCNG3, RGPD8, PSD4, CCDC74B, BMPR2, KAT2B, LINC00693, ZNF654, FILIP1L, SH3TC1, CPEB2, NPFFR2, TRPC3, RP11-752L20.3, FAM198B, TLL1, CDH9, PDZD2, CHSY3, GALNT10, FOXQ1, ATXN1, ID4, COL11A2, CNR1, GTF2IP4, FZD1, PAX5, RP11-35N6.1, UNC5B, NKX1-2, FAM196A, EBF3, PRRG4, LRP4, SYT7, PLBD1, GRASP, ALX1, HIP1R, LPAR6, SLITRK6, C16orf89, RP11-491F9.1, MMP2, B3GNT9, NXPH3, TNRC6C-AS1, LDLRAD4, NOL4, SMAD7, HCN2, PDE4A, KANK2, SAMD1, EXOC3L2, IL11, EMILIN3, KCNB1, DOK5, EEF1A2, A4GALT, ADGRG2, ELF4, ABCD1 Term Count % PValue Genes regulation of pathway-restricted GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, SMAD protein phosphorylation 9 6.34 1.31E-08 ENG pathway-restricted SMAD protein GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, phosphorylation -
A Functional Study of ADAMTS7 Gene Variants
A functional study of ADAMTS7 gene variants Xiangyuan Pu A thesis submitted to the University of London for the degree of Doctor of Philosophy Centre for Clinical Pharmacology William Harvey Research Institute Barts and the London School of Medicine and Dentistry Queen Mary, University of London March, 2014 I dedicate this thesis to my parents and my fiancée. Without their endless love, support and encouragement, none of my achievements would be possible. 2 Abstract Background: Recent studies have revealed an association between genetic variants at the ADAMTS7 (a disintegrin-like and metalloprotease with thrombospondin type 1 motif, 7) locus and susceptibility to coronary artery disease (CAD). ADAMTS-7 has been reported to facilitate vascular smooth muscle cell (VSMC) migration and promote neointima formation. We sought to study the functional mechanisms underlying this relationship and to further investigate the role of ADAMTS-7 in atherosclerosis. Methods and Results: In vitro assays showed that the CAD-associated non-synonymous single nucleotide polymorphism rs3825807, which results in a serine to proline (Ser-to- Pro) substitution at residue 214 in the ADAMTS-7 pro-domain, affected ADAMTS-7 pro- domain cleavage. Immunohistochemical analyses showed that ADAMTS-7 localised to vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) in human coronary and carotid atherosclerotic plaques. Cell migration assays demonstrated that VSMCs and ECs from individuals who were homozygous for the adenine (A) allele (encoding the Ser214 isoform) had increased migratory ability compared with cells from individuals who were homozygous for the G allele (encoding the Pro214 isoform). Western blot analyses revealed that media conditioned by VSMCs of the A/A genotype contained more cleaved ADAMTS-7 pro-domain and more of the cleaved form of thrombospondin-5 (TSP-5, an ADAMTS-7 substrate that had been shown to be produced by VSMCs and inhibit VSMC migration). -
Multi-Trait GWAS Using Imputed High- Density Genotypes from Whole-Genome Sequencing Identifies Genes Associated with Body Traits in Nile Tilapia Grazyella M
Yoshida and Yáñez BMC Genomics (2021) 22:57 https://doi.org/10.1186/s12864-020-07341-z RESEARCH ARTICLE Open Access Multi-trait GWAS using imputed high- density genotypes from whole-genome sequencing identifies genes associated with body traits in Nile tilapia Grazyella M. Yoshida1 and José M. Yáñez1,2* Abstract Background: Body traits are generally controlled by several genes in vertebrates (i.e. polygenes), which in turn make them difficult to identify through association mapping. Increasing the power of association studies by combining approaches such as genotype imputation and multi-trait analysis improves the ability to detect quantitative trait loci associated with polygenic traits, such as body traits. Results: A multi-trait genome-wide association study (mtGWAS) was performed to identify quantitative trait loci (QTL) and genes associated with body traits in Nile tilapia (Oreochromis niloticus) using genotypes imputed to whole-genome sequences (WGS). To increase the statistical power of mtGWAS for the detection of genetic associations, summary statistics from single-trait genome-wide association studies (stGWAS) for eight different body traits recorded in 1309 animals were used. The mtGWAS increased the statistical power from the original sample size from 13 to 44%, depending on the trait analyzed. The better resolution of the WGS data, combined with the increased power of the mtGWAS approach, allowed the detection of significant markers which were not previously found in the stGWAS. Some of the lead single nucleotide polymorphisms -
RET Gene Fusions in Malignancies of the Thyroid and Other Tissues
G C A T T A C G G C A T genes Review RET Gene Fusions in Malignancies of the Thyroid and Other Tissues Massimo Santoro 1,*, Marialuisa Moccia 1, Giorgia Federico 1 and Francesca Carlomagno 1,2 1 Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; [email protected] (M.M.); [email protected] (G.F.); [email protected] (F.C.) 2 Institute of Endocrinology and Experimental Oncology of the CNR, 80131 Naples, Italy * Correspondence: [email protected] Received: 10 March 2020; Accepted: 12 April 2020; Published: 15 April 2020 Abstract: Following the identification of the BCR-ABL1 (Breakpoint Cluster Region-ABelson murine Leukemia) fusion in chronic myelogenous leukemia, gene fusions generating chimeric oncoproteins have been recognized as common genomic structural variations in human malignancies. This is, in particular, a frequent mechanism in the oncogenic conversion of protein kinases. Gene fusion was the first mechanism identified for the oncogenic activation of the receptor tyrosine kinase RET (REarranged during Transfection), initially discovered in papillary thyroid carcinoma (PTC). More recently, the advent of highly sensitive massive parallel (next generation sequencing, NGS) sequencing of tumor DNA or cell-free (cfDNA) circulating tumor DNA, allowed for the detection of RET fusions in many other solid and hematopoietic malignancies. This review summarizes the role of RET fusions in the pathogenesis of human cancer. Keywords: kinase; tyrosine kinase inhibitor; targeted therapy; thyroid cancer 1. The RET Receptor RET (REarranged during Transfection) was initially isolated as a rearranged oncoprotein upon the transfection of a human lymphoma DNA [1]. -
(ADAMTS9) Expression by Chondrocytes During Endochondral Ossification*
Arch Histol Cytol, 72 (3): 175-185 (2009) A disintegrin and metalloproteinase with thrombospondin motifs 9 (ADAMTS9) expression by chondrocytes during endochondral ossification* Kanae Kumagishi1, Keiichiro Nishida1, Tomoichiro Yamaai2, Ryusuke Momota1, Shigeru Miyaki3, Satoshi Hirohata4, Ichiro Naito1, Hiroshi Asahara3, Yoshifumi Ninomiya4, and Aiji Ohtsuka1 Departments of 1Human Morphology, 2Oral Function and Anatomy, and 4Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama; and 3Department of Regenerative Biology and Medicine, National Research Institute for Child Health and Development, Tokyo, Japan S u m m a r y . A d i s i n t e g r i n a n d m e t a l l o p r o t e i n a s e chondrocyte phenotypes, respectively. We found the gene with thrombospondin motifs 9 (ADAMTS9) is known expression of ADAMTS9 by ATDC5 cells as a dual mode, to influence aggrecan degradation in endochondral both before the expression of type X collagen and after ossification, but its role has not been well understood. hypertrophic differentiation. The immunoreactivity of In the present study, in vitro gene expression of ADAMTS9 ADAMTS9 was observed in chondrocytes of proliferative was investigated by RT-PCR in ATDC5 cells in which and hypertrophic zones in the growth plate. The experimentally chondrogenic differentiation had been population of ADAMTS9 positive cells decreased with age. induced. We also investigated the protein localization The results of the present study suggest that ADAMTS9 and gene expression pattern of ADAMTS9 in the tibia might have a role in aggrecan cleavage around the growth plate cartilage of male mice in a day 1 neonate, chondrocytes to allow chondrocyte proliferation and 7-week-old young adult, and a 12-week-old adult by hypertrophy. -
ADAMTS-9 Is Synergistically Induced by Interleukin-1 and Tumor Necrosis Factor in OUMS-27 Chondrosarcoma Cells and in Human Chondrocytes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Okayama University Scientific Achievement Repository Medicine Internal Medicine fields Okayama University Year 2005 ADAMTS-9 is synergistically induced by interleukin-1 and tumor necrosis factor in OUMS-27 chondrosarcoma cells and in human chondrocytes Kadir Demircan∗ Satoshi Hirohatay Keiichiro Nishidaz Omer F. Hatipoglu∗∗ Toshitaka Oohashiyy Tomoko Yonezawazz Suneel S. Aptex Yoshifumi Ninomiya{ ∗Okayama University yOkayama University, [email protected] zOkayama University ∗∗Okayama University yyOkayama University zzOkayama University xCleveland Clinic Foundation {Okayama University This paper is posted at eScholarship@OUDIR : Okayama University Digital Information Repository. http://escholarship.lib.okayama-u.ac.jp/internal medicine/5 Demircan et al . ADAMTS9 is synergistically induced by IL -1 and TNF - in OUMS -27 chondrosarcoma cells and in human chondrocytes Kadir Demircan 1§, Satoshi Hirohata 1§*, Keiichiro Nishida 2, Omer F. Hatipoglu 1, Toshitaka Oohashi 1, Tomoko Y onezawa 1, Suneel S. Apte 3 and Yosh ifumi Ninomiya 1 1Dep artmen t of Molecular Biology and Biochemistry and 2Dep artmen t of Human Morphology, Okayama University Graduate School of Medicine and Dentistry and 3Department of Biomedical Engineering and Orthopaedic Research Center, Lerner Research Institute, Cleveland Clinic Foundation § Both authors contributed equally to this work . *Address c orrespondence and reprint requests to : Satoshi Hirohata M.D., Ph.D., Dep artmen t of Molecular Biology and Biochemistry , Okayama University Graduate School of M edicine and Dentistry , 2 -5-1 Shikata -cho, Okayama, 700 -8558, Japan . Phone : 81 -86 -235 -7129; Fax : 81 -86 -22 2-7768 ; E-mail: [email protected] -u.ac.jp Keyword s: ADAMTS; aggrecanase; arthritis ; chondrocyt e; metalloproteinases ; IL -1 menclature : ADAMTS9 refe rs to the protein, ADAMTS9 to the gene. -
Comparison of Expression Profiles in Ovarian Epithelium in Vivo and Ovarian Cancer Identifies Novel Candidate Genes Involved in Disease Pathogenesis
Comparison of Expression Profiles in Ovarian Epithelium In Vivo and Ovarian Cancer Identifies Novel Candidate Genes Involved in Disease Pathogenesis The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Emmanuel, Catherine, Natalie Gava, Catherine Kennedy, Rosemary L. Balleine, Raghwa Sharma, Gerard Wain, Alison Brand, et al. 2011. Comparison of expression profiles in ovarian epithelium in vivo and ovarian cancer identifies novel candidate genes involved in disease pathogenesis. PLoS ONE 6(3): e17617. Published Version doi:10.1371/journal.pone.0017617 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:5358880 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Comparison of Expression Profiles in Ovarian Epithelium In Vivo and Ovarian Cancer Identifies Novel Candidate Genes Involved in Disease Pathogenesis Catherine Emmanuel1,2*, Natalie Gava1,2, Catherine Kennedy1,2, Rosemary L. Balleine2, Raghwa Sharma3, Gerard Wain1, Alison Brand1, Russell Hogg1, Dariush Etemadmoghadam4, Joshy George4, Australian Ovarian Cancer Study Group, Michael J. Birrer7, Christine L. Clarke2, Georgia Chenevix- Trench5, David D. L. Bowtell4,6, Paul R. Harnett1,2, Anna deFazio1,2 1 Department of Gynaecological Oncology, Westmead Hospital, Westmead, New South Wales, Australia, -
CDC123 Antibody (RQ6088)
CDC123 Antibody (RQ6088) Catalog No. Formulation Size RQ6088 0.5mg/ml if reconstituted with 0.2ml sterile DI water 100 ug Bulk quote request Availability 1-3 business days Species Reactivity Human Format Antigen affinity purified Clonality Polyclonal (rabbit origin) Isotype Rabbit IgG Purity Affinity purified Buffer Lyophilized from 1X PBS with 2% Trehalose and 0.025% sodium azide UniProt O75794 Localization Cytoplasmic Applications Western blot : 1-2ug/ml Immunohistochemistry (FFPE) : 2-5ug/ml Immunofluorescence : 5ug/ml Flow cytometry : 1-3ug/million cells Direct ELISA : 0.1-0.5ug/ml Limitations This CDC123 antibody is available for research use only. Immunofluorescent staining of FFPE human A431 cells with CDC123 antibody (green) and DAPI nuclear stain (blue). HIER: steam section in pH6 citrate buffer for 20 min. IHC staining of FFPE human pancreatic cancer with CDC123 antibody. HIER: boil tissue sections in pH8 EDTA for 20 min and allow to cool before testing. IHC staining of FFPE human bladder cancer with CDC123 antibody. HIER: boil tissue sections in pH8 EDTA for 20 min and allow to cool before testing. IHC staining of FFPE human appendicitis tissue with CDC123 antibody. HIER: boil tissue sections in pH8 EDTA for 20 min and allow to cool before testing. IHC staining of FFPE human ovarian cancer with CDC123 antibody. HIER: boil tissue sections in pH8 EDTA for 20 min and allow to cool before testing. IHC staining of FFPE human liver cancer with CDC123 antibody. HIER: boil tissue sections in pH8 EDTA for 20 min and allow to cool before testing. IHC staining of FFPE human gastric cancer with CDC123 antibody. -
GATA2 Regulates Mast Cell Identity and Responsiveness to Antigenic Stimulation by Promoting Chromatin Remodeling at Super- Enhancers
ARTICLE https://doi.org/10.1038/s41467-020-20766-0 OPEN GATA2 regulates mast cell identity and responsiveness to antigenic stimulation by promoting chromatin remodeling at super- enhancers Yapeng Li1, Junfeng Gao 1, Mohammad Kamran1, Laura Harmacek2, Thomas Danhorn 2, Sonia M. Leach1,2, ✉ Brian P. O’Connor2, James R. Hagman 1,3 & Hua Huang 1,3 1234567890():,; Mast cells are critical effectors of allergic inflammation and protection against parasitic infections. We previously demonstrated that transcription factors GATA2 and MITF are the mast cell lineage-determining factors. However, it is unclear whether these lineage- determining factors regulate chromatin accessibility at mast cell enhancer regions. In this study, we demonstrate that GATA2 promotes chromatin accessibility at the super-enhancers of mast cell identity genes and primes both typical and super-enhancers at genes that respond to antigenic stimulation. We find that the number and densities of GATA2- but not MITF-bound sites at the super-enhancers are several folds higher than that at the typical enhancers. Our studies reveal that GATA2 promotes robust gene transcription to maintain mast cell identity and respond to antigenic stimulation by binding to super-enhancer regions with dense GATA2 binding sites available at key mast cell genes. 1 Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA. 2 Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA. 3 Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, ✉ CO 80045, USA. email: [email protected] NATURE COMMUNICATIONS | (2021) 12:494 | https://doi.org/10.1038/s41467-020-20766-0 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20766-0 ast cells (MCs) are critical effectors in immunity that at key MC genes.