A Method to Merge WSR-88D Data with ARM SGP Millimeter Cloud Radar Data by Studying Deep Convective Systems

Total Page:16

File Type:pdf, Size:1020Kb

A Method to Merge WSR-88D Data with ARM SGP Millimeter Cloud Radar Data by Studying Deep Convective Systems 958 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 26 A Method to Merge WSR-88D Data with ARM SGP Millimeter Cloud Radar Data by Studying Deep Convective Systems ZHE FENG,XIQUAN DONG, AND BAIKE XI Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota (Manuscript received 18 June 2008, in final form 8 December 2008) ABSTRACT A decade of collocated Atmospheric Radiation Measurement Program (ARM) 35-GHz Millimeter Cloud Radar (MMCR) and Weather Surveillance Radar-1988 Doppler (WSR-88D) data over the ARM Southern Great Plains (SGP) site have been collected during the period of 1997–2006. A total of 28 winter and 45 summer deep convective system (DCS) cases over the ARM SGP site have been selected for this study during the 10-yr period. For the winter cases, the MMCR reflectivity, on average, is only 0.2 dB lower than that of the WSR-88D, with a correlation coefficient of 0.85. This result indicates that the MMCR signals have not been attenuated for ice-phase convective clouds, and the MMCR reflectivity measurements agree well with the WSR-88D, regardless of their vastly different characteristics. For the summer nonprecipitating convective clouds, however, the MMCR reflectivity, on average, is 10.6 dB lower than the WSR-88D mea- surement, and the average differences between the two radar reflectivities are nearly constant with height above cloud base. Three lookup tables with Mie calculations have been generated for correcting the MMCR signal attenuation. After applying attenuation correction for the MMCR reflectivity measurements, the averaged difference between the two radars has been reduced to 9.1 dB. Within the common sensitivity range (210 to 20 dBZ), the mean differences for the uncorrected and corrected MMCR reflectivities have been reduced to 6.2 and 5.3 dB, respectively. The corrected MMCR reflectivities were then merged with the WSR- 88D data to fill in the gaps during the heavy precipitation periods. This merged dataset provides a more complete radar reflectivity profile for studying convective systems associated with heavier precipitation than the original MMCR dataset. It also provides the intensity, duration, and frequency of the convective systems as they propagate over the ARM SGP for climate modelers. Eventually, it will be possible to improve understanding of the cloud-precipitation processes, and evaluate GCM predictions using the long-term merged dataset, which could not have been done with either the MMCR or the WSR-88D dataset alone. 1. Introduction with global climate models (GCMs) (Cess et al. 1996; Randall et al. 2006). The deep convection parameteriza- Clouds are one of the most fundamental aspects of tion of GCMs has the greatest uncertainty because the our climate system and have significant impacts on cli- formative and dissipative processes of convective clouds mate change by reflecting solar radiation back to space are poorly understood (Xu and Krueger 1991). A deep and absorbing longwave radiation from the surface and convective system (DCS) normally consists of two parts: the atmosphere (Wielicki et al. 1996). They are also one the convective core (precipitation) and the stratiform of the most important elements in the hydrology and region (cirrus anvil with or without precipitation). The energy cycle of our planet, particularly in the process of former is important for the atmospheric hydrological cy- producing precipitation (Del Genio et al. 2005). Yet, cle, whereas the latter is dominant in atmospheric radia- understanding of the interaction between clouds and the tion because of its large spatial coverage (Lin et al. 2006). climate, namely, cloud feedback, remains the major To understand the fundamental physics and the in- source of uncertainty in estimating climate sensitivity teractions between clouds and their radiative feedbacks in the atmosphere, the Atmospheric Radiation Mea- surement Program (ARM; Ackerman and Stokes 2003) Corresponding author address: Mr. Zhe Feng, Dept. of Atmo- spheric Sciences, University of North Dakota, 4149 University Dr., supported by the U.S. Department of Energy (DOE) Stop 9006, Grand Forks, ND 58202-9006. established the research site at the Southern Great Plains E-mail: [email protected] (SGP) in 1992. The centerpiece of the ARM cloud DOI: 10.1175/2008JTECHA1190.1 Ó 2009 American Meteorological Society Unauthenticated | Downloaded 09/27/21 01:13 AM UTC MAY 2009 F E N G E T A L . 959 instrument array is the millimeter wavelength cloud the MMCR reflectivity (corrected for attenuation) to fill radar (MMCR; Moran et al. 1998), which has excellent in the gaps during the heavy precipitation periods. This sensitivity and large dynamic range to detect small hy- merged dataset provides a more complete radar re- drometeors, such as cloud droplets and ice crystals, but flectivity profile for convective systems associated with the signals can be significantly attenuated during the heavier precipitation than the original MMCR dataset. heavy precipitation periods (Lhermitte 1990). The It also provides the intensity, duration, and frequency of MMCR provides long-term continuous profiles of the convective systems as they propagate over the ARM equivalent radar reflectivity factor and vertical velocity SGP for climate modelers. Eventually, we can improve at the SGP site. When combined with other ARM in- our understanding of the cloud-precipitation processes, struments, such as the laser ceilometer, micropulse li- and evaluate GCM predictions using the long-term dar, or microwave radiometer (MWR), the hydrome- merged dataset, which could not have been done with teor profiles of the atmosphere can be retrieved (e.g., either the MMCR or the WSR-88D dataset alone. For Dong and Mace 2003; Matrosov et al. 2006). These example, the precipitating part of DCS might be missed valuable long-term datasets facilitate the progress of if using the MMCR only, whereas the cirrus anvil from research on understanding cloud microphysics and their the DCS might not be detected by the WSR-88D. effects on climate (e.g., Clothiaux et al. 2000; Mace and Benson-Troth 2002; Dong et al. 2005, 2006). Because the MMCR signals could be attenuated 2. Data during the heavy precipitating periods, the MMCR a. ARM data reflectivity measurements have some gaps and discon- tinuities, especially when deep convective clouds pass The ARM MMCR operates at a wavelength of 8 mm over the MMCR. Therefore, the MMCR measurements (Ka band) in a vertically pointing mode and measures during the precipitation periods, even for nonprecipitating continuous reflectivity profiles as clouds and hydrome- DCSs with large cloud liquid water path (LWP), are teors pass over the radar field of view (Clothiaux et al. questionable (Moran et al. 1998; Kollias et al. 2007; 2000). It records equivalent radar reflectivity factors Dong et al. 2008). Dong et al. (2008) found that the (Ze) with a 90-m vertical resolution; a total of 167 levels ARM MMCR-derived cloud-top height is much lower starting from 105 m above ground level. The MMCR (;2 km) than the Moderate Resolution Imaging Spec- uses a 3-m-diameter antenna and has a 0.28 beamwidth, troradiometer (MODIS)-retrieved effective cloud height which yields lateral resolution of 35 m at the height of at the ARM Tropical Western Pacific (TWP) site for 10 km for a vertically directed beam. The minimum nonprecipitating DCSs. They suspected that some radar detectable Ze of MMCR are 255 dBZ at 1 km and signals were attenuated near cloud tops because of the 235 dBZ at 10 km (Moran et al. 1998). For cumulus clouds, 22 high LWP (;5000 g m ) measured at the ARM TWP the MMCR can detect Ze up to about 120 dBZ, but Mie site. The results in the Dong et al. (2008) study moti- scattering due to increasing hydrometeor size and signal vated us to investigate precipitating and nonprecipitating attenuation make it difficult to penetrate deep convec- DCSs at the ARM SGP site. As demonstrated in Fig. 1, tive clouds within heavy precipitation. A constant cor- the MMCR signals have been severely attenuated by rection of 3 dB to all levels as well as near-field cor- heavy rainfall (rain rate . 40 mm h21), and completely rections have been added to the MMCR reflectivities attenuated above 2 km between 0250 and 0300 UTC. To (Sekelsky 2002). The MMCR has four operational provide a more complete reflectivity profile, that is, to modes optimized for various clouds types and runs fill in the gaps of the MMCR reflectivity measurements, consecutively in a 36-s cycle (Clothiaux et al. 1999). The other types of radars designed for detecting precipita- data used in this study are 5-min averages (the Mace PI tion are required. product; more information is available online at http:// The Weather Surveillance Radar-1988 Doppler iop.archive.arm.gov/arm-iop/0pi-data/). The Mace PI (WSR-88D) near the SGP site is a good complementary product (Mace et al. 2006) mimics the Active Remote instrument to the MMCR because it has the particular Sensing of Clouds (ARSCL) product (Clothiaux et al. advantage of providing the vertical distribution and 1999, 2000), but the key difference between the two horizontal coverage of precipitation (Miller et al. 1998). products is how the profiles from the four operational In this study, we used the collocated WSR-88D radar modes are merged. For the ARSCL product, they per- volumetric scans over the SGP site and reconstructed formed interpolation to a 9-s temporal grid (the tem- the WSR-88D reflectivity into a time–height series that poral spacing of the individual modes), whereas for the matched the MMCR data format during the period of Mace PI product, they estimated the most reasonable 1997–2006. The WSR-88D data were then merged with measurements for a given 90-m vertical bin from one of Unauthenticated | Downloaded 09/27/21 01:13 AM UTC 960 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 26 FIG.
Recommended publications
  • P4b.7 Mixed-Phase Cloud Retrievals Using Doppler Radar Spectra
    P4B.7 MIXED-PHASE CLOUD RETRIEVALS USING DOPPLER RADAR SPECTRA Matthew D. Shupe* NOAA Environmental Technology Laboratory, Boulder, CO 80305 Pavlos Kollias University of Miami, Miami, FL Sergey Y. Matrosov and Timothy L. Schneider NOAA Environmental Technology Laboratory, Boulder, CO 1. INTRODUCTION 2. MEASUREMENTS The radar Doppler spectrum contains a wealth of All measurements discussed here were made by information on cloud microphysical properties. Typically, ground-based remote-sensors at the CRYSTAL-FACE radar-based cloud retrievals use only the zeroth or first eastern ground site located in Miami, Florida (25° 39' N, 80° moments of the Doppler spectrum – reflectivity and mean 26' W) on 29 July, 2002. Measurements of the radar Doppler velocity – to derive quantities such as cloud water Doppler spectrum were made by a vertically-pointing, 35- content and particle characteristic size (e.g., Liou and GHz, millimeter cloud radar (MMCR). The MMCR has 45 m Sassen 1994; Matrosov et al. 2002). When using only the vertical resolution and resolves the Doppler spectrum over moments of the Doppler spectrum, important spectral the range of -4.1 to +4.1 m s -1 to 0.064 m s -1 using 128 fast information can be lost, particularly when the spectrum is Fourier transform points. We utilize one of four alternating multi-modal. Multi-modal spectra are possible when a operational modes that samples for 1.8 seconds at 35- mixture of two or more cloud particle phases, habits, or second intervals. Radar reflectivities for the half-hour long, sizes exist in the same volume (e.g., Gossard et al.
    [Show full text]
  • Use of Cloud Radar Observations for Model Evaluation: a Probabilistic Approach Christian Jakob Bureau of Meteorology Research Centre, Melbourne, Australia
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, D03202, doi:10.1029/2003JD003473, 2004 Use of cloud radar observations for model evaluation: A probabilistic approach Christian Jakob Bureau of Meteorology Research Centre, Melbourne, Australia Robert Pincus and Ce´cile Hannay Climate Diagnostics Center, National Oceanic and Atmospheric Administration Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado, USA Kuan-Man Xu NASA Langley Research Center, Hampton, Virginia, USA Received 30 January 2003; revised 21 October 2003; accepted 17 November 2003; published 5 February 2004. [1] The use of narrow-beam, ground-based active remote sensors (such as cloud radars and lidars) for long-term observations provides valuable new measurements of the vertical structure of cloud fields. These observations might be quite valuable as tests for numerical simulations, but the vastly different spatial and temporal scales of the observations and simulation must first be reconciled. Typically, the observations are averaged over time and those averages are claimed to be representative of a given model spatial scale, though the equivalence of temporal and spatial averages is known to be quite tenuous. This paper explores an alternative method of model evaluation based on the interpretation of model cloud predictions as probabilistic forecasts at the observation point. This approach requires no assumptions about statistical stationarity and allows the use of an existing, well- developed suite of analytic tools. Time-averaging and probabilistic evaluation techniques are contrasted, and their performance is explored using a set of ‘‘perfect’’ forecasts and observations extracted from a long cloud system model simulation of continental convection. This idealized example demonstrates that simple time averaging always obscures forecast skill regardless of model domain size.
    [Show full text]
  • Cloud Classification and Distribution of Cloud Types in Beijing Using Ka
    ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 36, AUGUST 2019, 793–803 • Original Paper • Cloud Classification and Distribution of Cloud Types in Beijing Using Ka-Band Radar Data Juan HUO∗, Yongheng BI, Daren LU,¨ and Shu DUAN Key Laboratory for Atmosphere and Global Environment Observation, Chinese Academy of Sciences, Beijing, China 100029 (Received 27 December 2018; revised 15 April 2019; accepted 23 April 2019) ABSTRACT A cloud clustering and classification algorithm is developed for a ground-based Ka-band radar system in the vertically pointing mode. Cloud profiles are grouped based on the combination of a time–height clustering method and the k-means clustering method. The cloud classification algorithm, developed using a fuzzy logic method, uses nine physical parameters to classify clouds into nine types: cirrostratus, cirrocumulus, altocumulus, altostratus, stratus, stratocumulus, nimbostratus, cumulus or cumulonimbus. The performance of the clustering and classification algorithm is presented by comparison with all-sky images taken from January to June 2014. Overall, 92% of the cloud profiles are clustered successfully and the agree- ment in classification between the radar system and the all-sky imager is 87%. The distribution of cloud types in Beijing from January 2014 to December 2017 is studied based on the clustering and classification algorithm. The statistics show that cirrostratus clouds have the highest occurrence frequency (24%) among the nine cloud types. High-level clouds have the maximum occurrence frequency and low-level clouds the minimum occurrence frequency. Key words: clouds, clustering algorithm, classification algorithm, radar, cloud type Citation: Huo, J., Y. H. Bi, D. R. Lu,¨ and S. Duan, 2019: Cloud classification and distribution of cloud types in Beijing using Ka-band radar data.
    [Show full text]
  • The Tropical Warm Pool International Cloud Experiment
    THE TROPICAL WARM POOL INTERNATIONAL CLOUD EXPERIMENT BY PETER T. MAY, JAMES H. MATHER, GERAINT VAUGHAN, CHRISTIAN JAKOB, GREG M. MCFARQUHAR, KEITH N. BOWER, AND GERALD G. MACE A comprehensive observing campaign in Darwin, including a ship, five aircraft, and frequent soundings, is furthering weather and climate change studies through improved understanding and modeling of cloud and aerosol processes in tropical cloud systems. crucial factor in our ability to forecast future of this region and through it the global stratosphere climate change is a better representation (e.g., Russell et al. 1993; Folkins 2002). Understanding A of tropical cloud systems, and their heating and the transport of gases and particles in deep convec- radiative impacts in climate models (Stephens 2005; tion is also therefore of global importance. Del Genio and Kovari 2002; Neale and Slingo 2003; As a response to this challenge, a major field Spencer and Slingo 2003). This requires a better experiment named the Tropical Warm Pool Interna- understanding of the factors that control tropical tional Cloud Experiment (TWP-ICE), including the convection as well as an improved understanding of U.K. Aerosol and Chemical Transport in Tropical how the characteristics of the convection affect the Convection (ACTIVE) consortium, was undertaken nature of the cloud particles that are found in deep in the Darwin, Northern Australia, area in January convective anvils and tropical cirrus. Deep convec- and February 2006. The experiment was designed tion also lifts boundary layer air into the tropical to provide a comprehensive dataset for the develop- tropopause layer (TTL), affecting the composition ment of cloud remote-sensing retrievals and initial- AFFILIATIONS: MAY—Centre for Australian Weather and CORRESPONDING AUTHOR: Peter T.
    [Show full text]
  • ICECAPS: New Observations of Clouds, Atmosphere, and Precipitation at Summit, Greenland Matthew Shupe David Turner Von Walden Ralf Bennartz with Contributions From: M
    ICECAPS: New Observations of Clouds, Atmosphere, and Precipitation at Summit, Greenland Matthew Shupe David Turner Von Walden Ralf Bennartz With contributions from: M. Cadeddu, B. Castellani, CIRES, Univ. of Colorado & NOAA/ESRL NOAA/NSSL University of Idaho University of Wisconsin - Madison C. Cox, D. Hudak, M. Kulie, N. Miller, R. Neely, W. Neff Instrument Suite Operating at Summit Tropopause variability Atmospheric Structure As part of the NSF Arctic Observing Network, the Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit (ICECAPS) project is providing a first look at detailed atmosphere and cloud properties over the central Greenland Ice Sheet. These observations are an important The ICECAPS twice-daily radiosonde program provides an contribution towards the IASOA network of Arctic atmospheric observatories, and offer exciting new perspectives on this unique environment. unprecedented perspective on atmospheric structure above the Instruments Measurements Geophysical Parameters Possible min T record central Greenland Ice Sheet. Millimeter Cloud Radar (MMCR) 35-GHz Doppler spectra and moments Cloud phase, microphysics, dynamics MicroPulse Lidar (MPL) 532 nm Backscatter, quasi-circular depol ratio Cloud phase, microphysics, optics • Periodic, warm, moist, and cloudy air masses advect onto the ice Cloud-Aerosol Polarization & Backscatter Lidar (CAPABL) 523 nm Backscatter, linear depol radio, diattenuation Cloud phase, microphysics, optics Warm, moist pulses sheet. There is a clear distinction between air masses containing Sonic Detection and Ranging System (SODAR) 2.1 kHz Reflectivity Boundary layer depth clouds and those without. • A temperature inversion has occurred in every ICECAPS sounding Precipitation Occurrence Sensor System (POSS) 10.5 GHz Reflectivity Snowfall rate except one. Humidity and Temp.
    [Show full text]
  • 12A1 the Tropical Warm Pool International Cloud Experiment (TWP-ICE)
    12A1 The Tropical Warm Pool International Cloud Experiment (TWP-ICE) Peter T. May1, James H. Mather2, Geraint Vaughan3, Christian Jakob1, Greg M. McFarquhar4, Keith N. Bower3, and Gerald G. Mace5 1 Bureau of Meteorology Research Centre, Melbourne, Australia 2. Pacific Northwest National Laboratory, Richland, Washington, USA 3. School of Earth, Atmospheric and Environmental Sciences, University of Manchester, UK 4. Department of Atmospheric Sciences, University of Illinois, Illinois, USA 5. Meteorology Department, University of Utah, Utah, USA physical and chemical properties of cirrus and 1. Introduction the upper troposphere region. A crucial factor for our ability to forecast future The experiment was designed to provide a climate change is a better representation of comprehensive data set for the development of tropical convection and clouds in climate cloud remote sensing retrievals and initialising models. This requires a better understanding of and verifying a range of process-scale models, the multi-scale factors that control tropical with a view to improving the parameterisation convection as well as an improved of tropical convection and clouds in numerical understanding of how the characteristics of the weather prediction and climate models. convection affect the density and nature of the Accordingly, a surface measurement network cloud particles that are found in deep (including a research ship) of unprecedented convective anvils and tropical cirrus. Deep coverage for a tropical experiment was convection also lifts boundary-layer air into the combined with a fleet of five research aircraft to Tropical Tropopause Layer (TTL), affecting the enable in-situ and remote-sensing composition of this region and through it the measurements of clouds, meteorological global stratosphere.
    [Show full text]
  • Amf2 Facility Overview
    AMF2 FACILITY OVERVIEW The following slides illustrate the basic AMF2 configuration. All systems are configurable and the foot print can be adjusted to meet the particular requirements of a deployment such as locating on ships. The modules can be distributed remotely from other AMF2 systems, taking advantage of limited space or complex configurations. Instrumentation in the OPS van is somewhat fixed but some subsystems can be removed and run independently if needed. Power requirements are only estimates and they will vary depending on the cooling and/or heating requirements of a deployment. Most systems are designed to accept 120 up to 480 VAC input power. For additional information please contact: Brad Orr Mike Ritsche (Manager) (Technical Operations Manager) 630-252-8665 (w) 630-252-1554 (w) 630-485-8004 (c) 630-777-1169 (c) [email protected] [email protected] AMF2 OPS Van Typical instrument configuration •MPL •HSRL •ASSIST II •Wind Profiler •MWR •Power Requirements: 10 KVA AMF2 General Purpose Van Typical instrument configuration •Radiosonde launch support •Ceilometer, general surface support •Guest instrument support •Instrument spare and tools •Power requirements: 10 kW Modules • 120 VAC Operation • 10-20 amps per module • Wireless communication Aerosol Observing System Current Instrument List • Aerosol Inlet/Manifold • DMT CCN-200 • Radiance PSAP • TSI Nephelometer I • TSI Nephelometer II • TSI CNC 3772 • Humidigraph • TEI O3 Analyzer • HTDMA Power requirement: 10 KVA ARM X/Ka-band Scanning Cloud radar The AMF2 radar is similar to the one above but it will have two large antennae instead of one large and one small as shown. Estimated Power requirement: 10 KVA Active Sensors Micropulse Lidar (MPL) Nd:YAG laser, 1.0 watt IR CW (30 mW pulses), 523 um, 8” telescope, eye safe Ka-band Zenith Pointing Radar (KAZR) Ka-band: 34.83–34.89 GHz, 200 W peak power High Spectral Resolution Lidar (HSRL) Nd:YAG laser, 0.6 W average power, 532 nm, 15” telescope, eye safe Radar Wind Profiler (RWP) Foreign deployments: 1283-1290 MHz, 1000 W peak power U.S.
    [Show full text]
  • Validation of a Radiosonde-Based Cloud Layer Detection Method
    JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES, VOL. 118, 846–858, doi:10.1029/2012JD018515, 2013 Validation of a radiosonde-based cloud layer detection method against a ground-based remote sensing method at multiple ARM sites Jinqiang Zhang,1,2 Zhanqing Li,1,2,3 Hongbin Chen,1 and Maureen Cribb2 Received 19 July 2012; revised 18 December 2012; accepted 5 October 2012; published 31 January 2013. [1] Cloud vertical structure is a key quantity in meteorological and climate studies, but it is also among the most difficult quantities to observe. In this study, we develop a long-term (10 years) radiosonde-based cloud profile product for the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP), Tropical Western Pacific (TWP), and North Slope of Alaska (NSA) sites and a shorter-term product for the ARM Mobile Facility (AMF) deployed in Shouxian, Anhui Province, China (AMF-China). The AMF-China site was in operation from 14 May to 28 December 2008; the ARM sites have been collecting data for over 15 years. The Active Remote Sensing of Cloud (ARSCL) value-added product (VAP), which combines data from the 95-GHz W-band ARM Cloud Radar (WACR) and/or the 35-GHz Millimeter Microwave Cloud Radar (MMCR), is used in this study to validate the radiosonde-based cloud layer retrieval method. The performance of the radiosonde-based cloud layer retrieval method applied to data from different climate regimes is evaluated. Overall, cloud layers derived from the ARSCL VAP and radiosonde data agree very well at the SGP and AMF-China sites.
    [Show full text]
  • Identification and Analysis of Atmospheric States and Associated Cloud Properties for Darwin, Australia S
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, D06204, doi:10.1029/2011JD017010, 2012 Identification and analysis of atmospheric states and associated cloud properties for Darwin, Australia S. M. Evans,1,2 R. T. Marchand,1,2 T. P. Ackerman,1,2 and N. Beagley3 Received 13 October 2011; revised 18 January 2012; accepted 30 January 2012; published 21 March 2012. [1] An iterative automated classification technique that combines European Centre for Medium-Range Weather Forecasts analysis data and vertically pointing millimeter wavelength cloud radar observations is used to identify commonly occurring atmospheric patterns or states around Darwin, Australia. The technique defines the atmospheric states by large-scale, synoptic variables such that, once defined, these states will be suitable to composite climate model output. Radar observations of clouds are used to test the statistical significance of each state and prompt the automated refinement of the states until each state produces a statistically stable and unique hydrometeor occurrence profile. The technique identifies eight atmospheric states: two monsoon states, two transition season states, and four dry season states. The two monsoon states can be identified as the active monsoon and the break monsoon. Among the dry season states, periods of isolated and suppressed convection can be identified. We use these states as the basis for compositing hydrometeor occurrence, precipitation rate, outgoing longwave radiation, and Madden-Julian Oscillation phase to further understand the meteorology of each state. Citation: Evans, S. M., R. T. Marchand, T. P. Ackerman, and N. Beagley (2012), Identification and analysis of atmospheric states and associated cloud properties for Darwin, Australia, J.
    [Show full text]
  • On the Retrieval of Effective Radius with Cloud Radarsmarc…
    On the Retrieval of Effective Radius with Cloud Radars Shelby Frisch1, Matthew Shupe2, Irina Djalalova2, Graham Feingold3, and Mike Poellot4 Abstract. In-situ sampling of cloud droplets by aircraft in Oklahoma in 1997 , SHEBA – 1FIREACE in 1998 and from a collection of droplet spectra measured from various locations around the world are used to evaluate the potential for a ground-based remote-sensing technique for retrieving profiles of cloud droplet effective radius. The technique uses vertically-pointing measurements from a high-sensitivity millimeter- wavelength radar to obtain height-resolved estimates of the effective radius in clouds. Although most meteorological radars lack the sensitivity to detect small cloud droplets, millimeter-wavelength Acloud@ radars provide opportunities for remotely monitoring the properties of non-precipitating clouds. These high-sensitivity radars can reveal detailed reflectivity and velocity structure of most clouds within several kilometers range. In order to put these reflectivity ad velocity measurements into usable microphysical quantities, relationships between the measured quantities and the desired quantities must be developed. This can be done through theoretical analysis, modeling, or empirical measurements. Then the problem is determining the uncertainty of each procedure in order to know which to use. A number of procedures have been developed recently to estimate the microphysical features of clouds from millimeter-wave radar observations. In this article we restrict our attention to liquid-water clouds; retrievals for ice clouds are described in other studies (e.g., Matrosov [1997]). Approaches for retrieving cloud radar reflectivity and ice and liquid water content were suggested by Liao and Sassen, 1994, which was expanded on and validated by Sassen et al, 1999 .
    [Show full text]
  • High Resolution Modeling of Cloud Fields at the TWP Site with MM5
    Tenth ARM Science Team Meeting Proceedings, San Antonio, Texas, March 13-17, 2000 High Resolution Modeling of Cloud Fields at the TWP Site with MM5 K. Wyser, C. Gautier, C. Jones, and W. O'Hirok Institute for Computational Earth System Science University of California, Santa Barbara Santa Barbara, California Introduction The advent of powerful computers has enabled atmospheric scientists to run weather forecast and climate models at ever increasing resolutions. Of particular interest are limited area models with high temporal and spatial resolution that can be run affordably on workstations. These models, initialized and forced at the boundaries with data from large-scale models with coarse resolution, resolve fine-scale features in the interior, a process generally known as dynamical downscaling (e.g., Murphy 1999). However, the success of a high-resolution simulation depends on a number of factors such as the coupling at the boundaries or the representation of physical processes. These processes are treated differently at different resolutions; convection, for example, is parameterized at coarse resolution but cumulus clouds are explicitly resolved at finer scales. Furthermore, the values of model parameters may be optimal at certain scales but inappropriate at others. The selection of the right combination of parameterizations is therefore a difficult task in complex numerical models of the atmosphere. Our main objective in this paper is to study the capabilities of the Pennsylvania State University (PSU)/National Center for Atmospheric Research (NCAR) mesoscale model (MM5) for regional climate simulations. We are also interested in the generation of realistic three-dimensional (3-D) distributions of clouds for separate studies with a 3-D radiative transfer model.
    [Show full text]
  • Daytime Global Cloud Typing from AVHRR and VIIRS: Algorithm Description, Validation, and Comparisons
    804 JOURNAL OF APPLIED METEOROLOGY VOLUME 44 Daytime Global Cloud Typing from AVHRR and VIIRS: Algorithm Description, Validation, and Comparisons MICHAEL J. PAVOLONIS Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin ANDREW K. HEIDINGER NOAA/NESDIS Office of Research and Applications, Madison, Wisconsin TANEIL UTTAL Environmental Technology Laboratory, NOAA, Boulder, Colorado (Manuscript received 11 June 2004, in final form 30 November 2004) ABSTRACT Three multispectral algorithms for determining the cloud type of previously identified cloudy pixels during the daytime, using satellite imager data, are presented. Two algorithms were developed for use with 0.65-, 1.6-/3.75-, 10.8-, and 12.0-␮m data from the Advanced Very High Resolution Radiometer (AVHRR) on board the National Oceanic and Atmospheric Administration (NOAA) operational polar-orbiting sat- ellites. The AVHRR algorithms are identical except for the near-infrared data that are used. One algorithm uses AVHRR channel 3a (1.6 ␮m) reflectances, and the other uses AVHRR channel 3b (3.75 ␮m) reflec- tance estimates. Both of these algorithms are necessary because the AVHRRsonNOAA-15 through NOAA-17 have the capability to transmit either channel 3a or 3b data during the day, whereas all of the other AVHRRs on NOAA-7 through NOAA-14 can only transmit channel 3b data. The two AVHRR cloud-typing schemes are used operationally in NOAA’s extended Clouds from AVHRR (CLAVR)-x processing system. The third algorithm utilizes additional spectral bands in the 1.38- and 8.5-␮m regions of the spectrum that are available on the Moderate Resolution Imaging Spectroradiometer (MODIS) and will be available on the Visible–Infrared Imaging Radiometer Suite (VIIRS).
    [Show full text]