Pdfs/ Endosulfan/Enviro Fate3.Pdf)

Total Page:16

File Type:pdf, Size:1020Kb

Pdfs/ Endosulfan/Enviro Fate3.Pdf) ANNÉE 2014 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Biologie et Sciences de la Santé École doctorale Vie-Agro-Santé présentée par Camille Savary Préparée à l’unité de recherche INSERM UMR 991 Foie, Métabolismes et Cancer (Pharmacie) Thèse soutenue à Rennes le 2 Juillet 2014 devant le jury composé de : Étude de la toxicité Pr François SICHEL Professeur des Universités chronique et du Université de Caen / rapporteur Dr Martine AGGERBECK potentiel cancérogène Chargé de recherche Paris Descartes, INSERM UMR-S 1124 / rapporteur de contaminants de Dr Brigitte LE MAGUERESSE Directeur de recherche l’environnement Université de Lyon, INSERM U1060 / examinateur Pr Lydie SPARFEL-BELIVET séparément et en Professeur des Universités Université de Rennes, IRSET / examinateur mélange sur les Pr André GUILLOUZO Professeur des Universités Université de Rennes 1, Inserm UMR 991 / directeur cellules HepaRG de thèse Dr Marie-Anne ROBIN Directeur de recherche Université de Rennes 1, Inserm UMR 991 / co- directeur de thèse Table des matières Index des Figures ............................................................................................................ 5 Index des tableaux .......................................................................................................... 7 Principales abréviations ................................................................................................... 8 Introduction générale ..................................................................................................... 13 I. Le foie, ses fonctions et les modèles d’études in vitro ............................................... 13 A. Le foie .................................................................................................................. 13 1. Les cellules hépatiques .................................................................................... 13 2. Le foie et ses principales fonctions ................................................................... 14 3. Les fonctions de détoxication du foie ................................................................ 16 B. Les modèles cellulaires hépatiques in vitro .......................................................... 30 1. Les différents modèles hépatiques in vitro ....................................................... 30 2. Le cas particulier de la lignée HepaRG ............................................................ 31 II. Les pesticides ............................................................................................................ 35 A. Avant-propos ....................................................................................................... 35 B. Les pesticides ...................................................................................................... 36 1. Les organophosphorés (OP) ............................................................................ 36 2. Les organochlorés (OC) ................................................................................... 37 C. Dispersion et devenir des pesticides dans l’environnement ............................. 39 1. Dispersion dans l’air, pollution atmosphérique ................................................. 39 2. Pollution des milieux aquatiques ...................................................................... 40 3. Migration et dégradation des pesticides dans les sols ...................................... 40 D. Les risques pour la santé humaine ................................................................... 41 1. Expositions ....................................................................................................... 41 2. Principaux effets des pesticides sur la santé humaine ..................................... 42 3. Mécanismes moléculaires liant pathologies chroniques et exposition aux pesticides ................................................................................................................ 47 E. Pesticides et la problématique des mélanges ...................................................... 51 1. La reconnaissance des risques liés aux mélanges de pesticides ..................... 51 2. L’approche expérimentale des effets de mélanges .......................................... 53 III. Cancérogenèse chimique ......................................................................................... 57 A. Généralité sur la transformation des cellules cancéreuses .................................. 57 1. Étapes de la cancérogénèse ............................................................................ 57 1 2. Propriétés des cellules tumorales ..................................................................... 58 B. Cancérogenèse chimique .................................................................................... 66 1. Les atteintes de l’ADN ...................................................................................... 66 2. Mécanismes de réparation de l’ADN ................................................................ 67 3. Les mécanismes épigénétiques ....................................................................... 68 4. Le stress oxydant et inflammation .................................................................... 69 C. Classification du risque carcinogène des composés chimiques ....................... 70 1. UE .................................................................................................................... 70 2. CIRC ................................................................................................................. 71 D. Les modèles utilisés pour la cancérogenèse chimique ..................................... 72 1. Les tests de génotoxicité .................................................................................. 72 2. Les tests in vitro de transformation cellulaire .................................................... 73 3. Les tests de cancérogenèse sur les rongeurs .................................................. 74 4. Études de cancérogenèse chimique à long terme in vitro ................................ 75 5. Recherche de biomarqueurs par les approches « omiques » .......................... 77 Objectifs de la thèse ...................................................................................................... 79 Chapitre 1 : Cellules HepaRG : évaluation fonctionnelle à confluence et stabilité au cours du temps .............................................................................................................. 81 I. Evaluation de la stabilité des cellules HepaRG : étude transcriptomique ................... 81 A. Article ................................................................................................................... 81 B. Résultats complémentaires : activités des CYPs dans les conditions de culture utilisées ...................................................................................................................... 83 II. Biocinétique de 4 médicaments après traitement unique ou répété dans les cellules HepaRG ......................................................................................................................... 84 A. Médicaments étudiés ........................................................................................... 84 1. Ciclosporine (CsA) ............................................................................................ 84 2. Chlorpromazine ................................................................................................ 85 3. Amiodarone ...................................................................................................... 86 4. Ibuprofène (IBU) ............................................................................................... 86 B. Matériel et méthodes ........................................................................................... 88 1. Le protocole expérimental ................................................................................ 88 2. Exposition aux médicaments ............................................................................ 89 3. La mesure analytique des produits et métabolites............................................ 90 C. Résultats .......................................................................................................... 91 1. Ciclosporine ...................................................................................................... 91 2 2. Chlorpromazine ................................................................................................ 93 3. Amiodarone ...................................................................................................... 94 4. Ibuprofène ........................................................................................................ 96 D. Discussion ........................................................................................................ 97 E. Conclusion ........................................................................................................... 99 Chapitre 2 : Effets des pesticides individuellement ou en mélange sur les cellules HepaRG après exposition aigüe ou répétée ................................................................ 101 I. Impact de l’isomalathion sur la cytotoxicité du malathion dans les cellules HepaRG 101 A. Résumé de l’étude ............................................................................................. 101
Recommended publications
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • The Genetic Architecture of NAFLD Among Inbred Strains of Mice
    RESEARCH ARTICLE elifesciences.org The genetic architecture of NAFLD among inbred strains of mice Simon T Hui1*, Brian W Parks1, Elin Org1, Frode Norheim2, Nam Che1, Calvin Pan1, Lawrence W Castellani1, Sarada Charugundla1, Darwin L Dirks1, Nikolaos Psychogios3, Isaac Neuhaus4, Robert E Gerszten3,5, Todd Kirchgessner6, Peter S Gargalovic4, Aldons J Lusis1* 1Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States; 2Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; 3Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, United States; 4Department of Computational Genomics, Bristol-Myers Squibb, Princeton, United States; 5Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, United States; 6Department of Cardiovascular Drug Discovery, Bristol-Myers Squibb, Princeton, United States Abstract To identify genetic and environmental factors contributing to the pathogenesis of non- alcoholic fatty liver disease, we examined liver steatosis and related clinical and molecular traits in more than 100 unique inbred mouse strains, which were fed a diet rich in fat and carbohydrates. A >30-fold variation in hepatic TG accumulation was observed among the strains. Genome-wide association studies revealed three loci associated with hepatic TG accumulation. Utilizing transcriptomic data from the liver and adipose tissue, we identified several high-confidence candidate genes for hepatic steatosis, including Gde1, a glycerophosphodiester phosphodiesterase not previously implicated in triglyceride metabolism. We confirmed the role of Gde1 by in vivo *For correspondence: sthui@ hepatic over-expression and shRNA knockdown studies. We hypothesize that Gde1 expression mednet.ucla.edu (STH); JLusis@ increases TG production by contributing to the production of glycerol-3-phosphate.
    [Show full text]
  • Abstracts from the 51St European Society of Human Genetics Conference: Electronic Posters
    European Journal of Human Genetics (2019) 27:870–1041 https://doi.org/10.1038/s41431-019-0408-3 MEETING ABSTRACTS Abstracts from the 51st European Society of Human Genetics Conference: Electronic Posters © European Society of Human Genetics 2019 June 16–19, 2018, Fiera Milano Congressi, Milan Italy Sponsorship: Publication of this supplement was sponsored by the European Society of Human Genetics. All content was reviewed and approved by the ESHG Scientific Programme Committee, which held full responsibility for the abstract selections. Disclosure Information: In order to help readers form their own judgments of potential bias in published abstracts, authors are asked to declare any competing financial interests. Contributions of up to EUR 10 000.- (Ten thousand Euros, or equivalent value in kind) per year per company are considered "Modest". Contributions above EUR 10 000.- per year are considered "Significant". 1234567890();,: 1234567890();,: E-P01 Reproductive Genetics/Prenatal Genetics then compared this data to de novo cases where research based PO studies were completed (N=57) in NY. E-P01.01 Results: MFSIQ (66.4) for familial deletions was Parent of origin in familial 22q11.2 deletions impacts full statistically lower (p = .01) than for de novo deletions scale intelligence quotient scores (N=399, MFSIQ=76.2). MFSIQ for children with mater- nally inherited deletions (63.7) was statistically lower D. E. McGinn1,2, M. Unolt3,4, T. B. Crowley1, B. S. Emanuel1,5, (p = .03) than for paternally inherited deletions (72.0). As E. H. Zackai1,5, E. Moss1, B. Morrow6, B. Nowakowska7,J. compared with the NY cohort where the MFSIQ for Vermeesch8, A.
    [Show full text]
  • The Genetics of Nonalcoholic Fatty Liver Disease: Spotlight on PNPLA3 and TM6SF2
    270 The Genetics of Nonalcoholic Fatty Liver Disease: Spotlight on PNPLA3 and TM6SF2 Quentin M. Anstee, BSc, MBBS, PhD, MRCP(UK)1 Christopher P. Day, MD, PhD, FMedSci1 1 Liver Research Group, Institute of Cellular Medicine, The Medical Address for correspondence Quentin M. Anstee, BSc, MBBS, PhD, School, Newcastle University, Framlington Place, Newcastle-upon- MRCP(UK), Institute of Cellular Medicine, The Medical School, Tyne, United Kingdom Newcastle University, 4th Floor, William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, Great Britain Semin Liver Dis 2015;35:270–290. (e-mail: [email protected]). Abstract Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum that spans simple steatosis, through nonalcoholic steatohepatitis (NASH) to fibrosis and ultimately cirrhosis. Nonalcoholic fatty liver disease is characterized by substantial interpatient variation in rate of progression and disease outcome: Although up to 25% of the general population are at risk of progressive disease, only a minority experience associated liver- related morbidity. Nonalcoholic fatty liver disease is considered a complex disease trait Keywords that occurs when environmental exposures act upon a susceptible polygenic back- ► nonalcoholic fatty ground composed of multiple independent modifiers. Recent advances include the liver disease identification of PNPLA3 as a modifier of disease outcome across the full spectrum of ► TM6SF2 NAFLD from steatosis to advanced fibrosis and hepatocellular carcinoma; and the ► PNPLA3 discovery of TM6SF2 as a potential “master regulator” of metabolic syndrome outcome, ► gene determining not only risk of advanced liver disease, but also cardiovascular disease ► steatohepatitis outcomes. In this article, the authors will review the field, discussing in detail the current ► fibrosis status of research into these important genetic modifiers of NAFLD progression.
    [Show full text]
  • Lineage-Specific Effector Signatures of Invariant NKT Cells Are Shared Amongst Δγ T, Innate Lymphoid, and Th Cells
    Downloaded from http://www.jimmunol.org/ by guest on September 26, 2021 δγ is online at: average * The Journal of Immunology , 10 of which you can access for free at: 2016; 197:1460-1470; Prepublished online 6 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600643 http://www.jimmunol.org/content/197/4/1460 Lineage-Specific Effector Signatures of Invariant NKT Cells Are Shared amongst T, Innate Lymphoid, and Th Cells You Jeong Lee, Gabriel J. Starrett, Seungeun Thera Lee, Rendong Yang, Christine M. Henzler, Stephen C. Jameson and Kristin A. Hogquist J Immunol cites 41 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2016/07/06/jimmunol.160064 3.DCSupplemental This article http://www.jimmunol.org/content/197/4/1460.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 26, 2021. The Journal of Immunology Lineage-Specific Effector Signatures of Invariant NKT Cells Are Shared amongst gd T, Innate Lymphoid, and Th Cells You Jeong Lee,* Gabriel J.
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses By
    Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 Inducing is online at: average * The Journal of Immunology , 11 of which you can access for free at: 2013; 191:2956-2966; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication August 2013; doi: 10.4049/jimmunol.1300376 http://www.jimmunol.org/content/191/6/2956 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol cites 49 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 This article http://www.jimmunol.org/content/191/6/2956.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 23, 2021. The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]
  • Transgenerational Epigenetic Mechanisms of Stress Axis Programming
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2015 Transgenerational Epigenetic Mechanisms of Stress Axis Programming Alison Buch Rodgers University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Neuroscience and Neurobiology Commons Recommended Citation Rodgers, Alison Buch, "Transgenerational Epigenetic Mechanisms of Stress Axis Programming" (2015). Publicly Accessible Penn Dissertations. 1979. https://repository.upenn.edu/edissertations/1979 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1979 For more information, please contact [email protected]. Transgenerational Epigenetic Mechanisms of Stress Axis Programming Abstract Altered stress reactivity is a predominant feature of sex-biased neuropsychiatric diseases, with hyperreactivity and hyporeactivity of the hypothalamic-pituitary-adrenal (HPA) stress reported in affective, neurotic, and psychotic disorders. Stress dysregulation may precede symptom onset, and has been characterized as a vulnerability that predisposes males and females to disease. Environmental factors, particularly prior stress history, contribute to the developmental programming of stress reactivity in exposed individuals and their offspring. Epigenetic marks in the brain are uniquely positioned to act at the interface of stress and lasting changes in behavior and physiology, and epigenetic signatures in germ cells are similarly poised to communicate
    [Show full text]
  • Identification of Novel Regulatory Genes in Acetaminophen
    IDENTIFICATION OF NOVEL REGULATORY GENES IN ACETAMINOPHEN INDUCED HEPATOCYTE TOXICITY BY A GENOME-WIDE CRISPR/CAS9 SCREEN A THESIS IN Cell Biology and Biophysics and Bioinformatics Presented to the Faculty of the University of Missouri-Kansas City in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY By KATHERINE ANNE SHORTT B.S, Indiana University, Bloomington, 2011 M.S, University of Missouri, Kansas City, 2014 Kansas City, Missouri 2018 © 2018 Katherine Shortt All Rights Reserved IDENTIFICATION OF NOVEL REGULATORY GENES IN ACETAMINOPHEN INDUCED HEPATOCYTE TOXICITY BY A GENOME-WIDE CRISPR/CAS9 SCREEN Katherine Anne Shortt, Candidate for the Doctor of Philosophy degree, University of Missouri-Kansas City, 2018 ABSTRACT Acetaminophen (APAP) is a commonly used analgesic responsible for over 56,000 overdose-related emergency room visits annually. A long asymptomatic period and limited treatment options result in a high rate of liver failure, generally resulting in either organ transplant or mortality. The underlying molecular mechanisms of injury are not well understood and effective therapy is limited. Identification of previously unknown genetic risk factors would provide new mechanistic insights and new therapeutic targets for APAP induced hepatocyte toxicity or liver injury. This study used a genome-wide CRISPR/Cas9 screen to evaluate genes that are protective against or cause susceptibility to APAP-induced liver injury. HuH7 human hepatocellular carcinoma cells containing CRISPR/Cas9 gene knockouts were treated with 15mM APAP for 30 minutes to 4 days. A gene expression profile was developed based on the 1) top screening hits, 2) overlap with gene expression data of APAP overdosed human patients, and 3) biological interpretation including assessment of known and suspected iii APAP-associated genes and their therapeutic potential, predicted affected biological pathways, and functionally validated candidate genes.
    [Show full text]
  • Deregulation of the Endogenous C/EBP{Beta} LIP Isoform Predisposes to Tumorigenesis
    Repository of the Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association http://edoc.mdc-berlin.de/14447 Deregulation of the endogenous C/EBP{beta} LIP isoform predisposes to tumorigenesis Begay, V., Smink, J.J., Loddenkemper, C., Zimmermann, K., Rudolph, C., Scheller, M., Steinemann, D., Leser, U., Schlegelberger, B., Stein, H., Leutz, A. This is the final version of the manuscript. The original article has been published in final edited form in: Publication 2015 JAN ; 93(1): 39-49 The final publication is available at Springer via http://dx.doi.org/10.1007/s00109-014-1215-5 Springer Verlag Deregulation of the endogenous C/EBPβ LIP isoform predisposes to tumorigenesis Valérie Bégay, Jeske J Smink, Christoph Loddenkemper, Karin Zimmermann, Cornelia Rudolph, Marina Scheller, Doris Steinemann, Ulf Leser, Brigitte Schlegelberger, Harald Stein and Achim Leutz Affiliations: V. Bégay, JJ. Smink, M. Scheller Max Delbrueck Center for Molecular Medicine, Berlin, Germany; C. Loddenkemper, H. Stein Charité-Universitätmedizin Berlin, Department of Pathology, Campus Benjamin Franklin, Berlin, Germany; K. Zimmermann, U. Leser Institute for Computer Science, Berlin, Humboldt-University of Berlin, Berlin, Germany; C. Rudolph, D. Steinemann, B. Schlegelberger Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany; A. Leutz Max Delbrueck Center for Molecular Medicine, Berlin, Germany; Humboldt-University of Berlin, Institute of Biology, 6Brandenburg Center for Regenerative Therapies, Berlin, Germany.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary method: Cloning human TM6SF2 cDNA into pCMV6-Entry vector Human wild-type TM6SF2 was amplified by PCR from a human cDNAs library using primers containing Mlu I and EcoR I restriction sites and was sub cloned into the pCMV6-Entry vector (OriGene, Rockville, MD) using the Gibson cloning kit with Q5 High-Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA). The sequences of TM6SF2 insert was confirmed by Sanger sequencing with 3X coverage of sequencing (UM Sequencing Core). Preparation of human pCMV6-TM6SF2 (E167K) mutant cDNA plasmid The coding sequence for the human TM6SF2 mutant variant (E167K) cDNA was amplified from wild- type TM6SF2 cDNA plasmid (pCMV6-TM6SF2 plasmid DNA as PCR template) by PCR site-directed mutagenesis using QuikChangeTM Site-Directed Mutagenesis Kit (Stratagene, San Diego, CA). The sequences of TM6SF2 mutant variant (E167K) construct was confirmed by Sanger sequencing with 3X coverage of sequencing (UM Sequencing Core). Overexpression of TM6SF2 (wild-type and E167K mutant) genes in cultured human hepatoma cells Huh-7 cells were grown to 70% confluence in DMEM medium with 10% FBS plus 100 IU/ml penicillin and 100 µg/ml streptomycin. For TM6SF2 overexpression, Huh-7 cells were transfected with the pCMV6-Entry vector expressing TM6SF2 (wild-type or E167K mutant) genes or a control empty pCMV6-Entry vector using FuGENE transfection reagent (Thermo Scientific). Post transfection (48 hours), cells stably expressing these genes were selected with G-418 (10 µg/mL) for 72 hours. Culture DMEM medium was freshly changed and fresh G-418 was added every 2 days. After 3 days, cells stably overexpressing the TM6SF2 (wild-type or E167K mutant) gene were collected and the total cellular RNA was extracted using TRIzol reagent (Thermal Fisher Scientific).
    [Show full text]