Part I. the Reactions of 2-Oximino-Cholesta-4, 6-Diene-3

Total Page:16

File Type:pdf, Size:1020Kb

Part I. the Reactions of 2-Oximino-Cholesta-4, 6-Diene-3 This dissertation has been microfilmed exactly as received ® 7-2401 AHMED, Quazi Anwaruddin, 1938- PART I. THE REACTIONS OF 2-OXIMINO-CHOLESTA-4,6-DIENE-3-ONE. PART n. THE ALKALOIDAL CONSTITUENTS OF TABERNAEMONTANA RIGIDA. The Ohio State University, Ph.D„ 1966 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan PART I THE REACTIONS OP 2-0XIMIN0-CH0LESTA-^,6-DIENE-3-0NE PART I I THE ALKALOIDAL CONSTITUENTS OP TABERNAEMONTANA RIGIDA DISSERTATION Presented in Partial Pulfillment of the Requirements for the Degree of Philosophy in the Graduate School of the Ohio S tate U niversity By Quazi Anwaruddin Ahmed, B .Sc..(Honours), M.Sc, ****** The Ohio State U niversity 1966 Approved by Adviser Department of Chemistry ACKNOWLEDGMENTS I wish to express my sincere thanks and appreciation to Professor Michael P. Cava for the guidance and encourage­ ment received during the course of these problems' and to Dr. G. Praenkel for acting as a temporary adviser. I am indebted to Dr. B. H. Bhat for many helpful dis­ cussions both in and outside the laboratory. I also thanlc Dr. ,M. J. Mitchell, Dr. K. V. Rao and.Dr. K. Bessho for their helpful suggestions. Lastly, I owe a debt of gratitude to my parents-and most esp ecially to my wife Verena,. l i VITA September 1938 Born - Rajshahi, East Pakistan November, 1958 B. Sc. (Hons.) in Chemistry, Dacca Uni­ versity, Dacca, East Palcistan November,, 1959 M. Sc. (Thesis Gr.) in Chemistry, Dacca University, Dacca, East Pakistan 1961-1963 . Teaching Assistant, Department of Chemis­ try , The Ohio S tate U niversity, Columbus, Ohio 1961+-1966 . Research Assistant, Department of Chemis­ try , The Ohio State U niversity, Columbus, Ohio FIELDS OP STUDY Major Field; Organic Chemistry i l l CONTENTS ■ Pap:e Acknowledgmants ................................. i l V ita ...........................; ......................................... i l l Part I - The Reactions of 2-oximino-choiesta- l+,6-diene-3-one Introduction and Statement of Problem ........................... 1 Historical ............................................................ 5 D isc u ss io n......................................... 38 Experimental ................................................................................... 77 Cholesta-^,6-diene-3-one (CXXII) .................................. 77 2-Oximino-cholesta-^H,6 -diene-3-one (CXXIII) .......... 78 Beckmann rearrangement of 2-oximino-cholesta- . ^-,6-diene-3-one (CXXIII) ............................................... 79 Alkaline degradation of the Beclonann.rearrange­ ment product CXXIV .......................... 80 Estérification of the acidic degradation product CXXVI ........................................................................ 81 Methyl 2,3-secocholesta-^-,6-diene-2-nitrile- 3-oate (CXXV) ................................. 84 3-Hydroxy-3,3-diphenyl-2,3-secocholesta- 4.6-diene-2-nitrile (CXLVI) ............................ 84 3-Hydroxy-3,3-dimethyl-2,3-secocholesta- 4.6-diene-2-nitrile (CXLVII) ...................................... .86 2,3“Secocholesta-4,6-diene-2-nitrile-3-oic acid-3-amide (CXLV) .......................................................... 87 2,3-Secocholesta-4,6-diene-2-nitrile-3-oic acid-3-N-phenylamide (CXLVIII) ........... 87 Attempted hydrolysis of methyl 2,3-secocholesta- 4 .6 -d io n e -2 -n itrile -3 -o a te (CX:^) ........................... 88 i v CONTENTS (contd.) P a_ge Estérification of 2 , 3-secocholesta-^, 6 -diene- 2.3-dioic acid-2-amide (CXLIX) ........... 90 2 .3-S.ecocholesta-^, 6 -d ien e- 2- n i t r i l e - 3-oio acid (CXXVI) ..................................................................................... 91 Conversion of 2, 3- s e co choie s t a-4-, 6 -d i ene- 2- nitrile-3-oic acid (CXXVI) to 2,3-secocholesta- ^,6-diene-2-nitrile-3-oic acid-3-aiïiide (CXLV).. 91 Attempted isolation of 3-imino-A-homo-cholesta- ^-a,6-diene-^-one-2-methyl ether (CXXIX) .............. 92 2.3-Secocholesta-^,6“diene-2,3-dinitrile (CLII).. 92 Attempted preparation of 2-oximino-3“-phenyl- cholesta— 6 —diene—3^—ol (CXL) ................ 93 Beckmann rearrangement of 2-oximino-3a-phenyl- cholesta-^j6-diene-3i8-ol (CXL) ...................................... 9^- 2- 0ximino-3a-methylcholesta-^, 6 -d ien e- 3;8-o l (CXXXVIII). ....................................................................... 95 Beclcmann rearrangement of 2-oximino-3»-methyl- cholesta-^,6-diene-3i8-ol (CXXXVIII) .............. 96 2- Diazo- choie s ta-^-, 6-diene-3-one (CLV) ................... • 96 Photolysis of 2-diazo-cholesta-l+,6-diene-3-one (CLV) ......................................................... 97 Attempted lithium and liquid ammonia reduction of 2-oxim ino-cholesta-^,6-diene-3-one (CXXIII) . 99 ; Catalytic hydrogenation of 2-oximino-cholesta- 4 ,6-diene-3-one (CXXIII) ........................................ 100 Catalytic hydrogenation of methyl 2.3-seco- cholesta-'+,6-diene-2-nitrile-3-oate (CXXV) .... 103 Methyl 2,3“Seco-5®-cholestan-2-nitrile>^3-oate (CLXVIII) ................................................................... 10^- Catalytic hydrogenation of 2,3-secocholesta- lf,6-diene-2,3-dinitrile (CLII) ........................ 10^- V CONTENTS (contd.) Pa^e 2,3“Seco-5“-cholestan-2~nitrile-3-oic acid- 3-amide (CLXX) ...................... 105 2,3-Seco-5®“Cholest9n-2,3-dlnitrile (CLXIX) .... 106 Part II - Tlie Alkaloidal Constituents of Tabernaemontana' Rigida Intro d u ctio n and Statement ofProblem ............................ 107 Discussion ........................................................ '............................. 120 Experimental ........................ 132 Basic hydrolysis of dl-vincamine (XVIII) to dl-vincaminic acid (XIX) ............................................. 13^ Silver oxide oxidation of dl-vincaminic acid (XIX) to dl-eburnamonine (XX) .......................•............ 135 Dehydration of dl-vincamine (XVIII) to dl-apovincamine (XXI) ................................................ 136 Sodium borohydride reduction of dl-vincamine (XVIII) to dl-vincam inol (XXII) ................................. 137 % Attempted preparation of the quarternary salt XXIII ...................... • 138 Isolation of alkaloids from the crude amorphous tertiary bases B ............................................................. 138 Isolation of alkaloids from P-la .................................... 137 Isolation of alkaloids from F-lb .......................... I^Ai- Chromatography of pH 6,6 fraction of F-lb ...... 1,^5 Chromatography of pH 6.0 fraction of F-lb 1^ Chromatography of pH 5.0 fraction of F-lb 1^7 V i CONTENTS (contd.). Appendix Page I. Infrared Spectra ...................... 1^9 II. Ultraviolet Spectra .................... 159 III. Nuclear Magnetic Resonance Spectra ................ 172 v ii Charts P art I I Tentative structure of the dimeric product CXXIV ■.................................................. ^5 P art I I I Alkaloids isolated from Tabernaemontana-... 116 II KnoTOi structures of alkaloids isolated from Tabernaemontana ..................................................' 118 III Plow sheet for the extraction of the total alkaloids ............ 131 v i i i . PART I INTRODUCTION • Steroids are organic molecules ^lÆiich have in common a perhydrocyclopentanophenanthrene nucleus (Fig. 1). Fig. 1 They are so named because they are related to, and in most cases derived from, sterols which are found abundantly in nature, usually in the non-saponifiable fraction of ani­ mal and plant fats."* The commonest example of a steroid is cholesterol, first isolated from human gallstones, which occurs practically in all animal tissue. It has been found, for example, in beef brain and spinal cord or sheep wool grease. Sitosterol and, "*N. A. Applezweig, "Steroid Drugs," McGraw-Hill Book Co., Inc., New York, N.Y,, 1962, p. 9* 2 stigmasterol, found in vegetable oils, and ergosterol, deri- ved from yeast and other microbiological sources, are all higher alcohols of cyclopentanophenanthrene, having a hydrox­ yl group at the 3 position"and differing primarily in the side chain at 17. In addition, these naturally occurring ste­ rols have a double bond between positions 5 and 6. Among other important steroids of natural origin are testosterone, progesterone and estrone. Most of these hormones have a car­ bonyl group at position 3 and a double bond between positions and 5» There is also a hydroxyl group or side chain at po­ s itio n 17 and another hydroxyl group or carbonyl group at . position 11 in the case of cortisol-and cortisone respectively. The structure of an insect hormone, ecdysone, has been deter­ mined and it. was found to be a complex cholesterol derivative. Recently, Kerb and his co-workers^ have synthesized this hormone from a rea d ily av ailab le ste ro id d e riv a tiv e . In recent years, many.authors have reported the prepa­ ration of modified steroids which have biological activities greater than those of naturally occurring steroids. In these studies, modifications of pharmacological activity resulting from the introduction of halogen atoms, double bonds, hydrox- ^U. Kerb, P. Hocks, and R. Wiechert, Tetrahedron L e tte rs, I 387 (1966 ). 3 yl group,3 methyl groups,^.cyano groups,^ thiocyano groups^ as well as combinations of these functions^ have been exam­ ined. The continuing search for modified steroids with hormonal or antihormonai activity is currently emphasizing structures vri.th hetero atoms such as nitrogen incorporated in the polycyclic nucleus,^ Although some work has been done on the synthesis of aza-steroids
Recommended publications
  • (12) United States Patent (10) Patent No.: US 8,940,728 B2
    USOO894.0728B2 (12) UnitedO States Patent (10) Patent No.: US 8,940,728 B2 Mash et al. (45) Date of Patent: Jan. 27, 2015 (54) SUBSTITUTED NORIBOGAINE 5,152.994. A 10/1992 Lotsof 5,283,247 A 2f1994 Dwivedi et al. (71) Applicant: DemeRx, Inc., Miami, FL (US) 5,316,7595,290,784. A 3/19945/1994 Quetal.Rose et al. 5,382,657 A 1/1995 K. tal. (72) Inventors: Deborah C. Mash, Miami, FL (US); 5,426,112 A 6, 1995 ity a Richard D. Gless, Jr., Oakland, CA 5,552,406 A 9, 1996 Mendelson et al. (US); Robert M. Moriarty, Michiana 5,574,052 A 1 1/1996 Rose et al. Shores, IN (US) 5,578,645 A 11/1996 Askanazi et al. s 5,580,876 A 12/1996 Crain et al. 5,591,738 A 1, 1997 LotSof (73) Assignee: DemeRx, Inc., Miami, FL (US) 5,618,555 A 4/1997 Tokuda et al. - 5,703,101 A 12/1997 Rose et al. (*) Notice: Subject to any disclaimer, the term of this 5,726, 190 A 3, 1998 Rose et al. patent is extended or adjusted under 35 S.S.; A s 3. th. 1 U.S.C. 154(b)(b) bybV 144 davs.ayS 5,865.444.wwk A 2/1999 KempfetOSe et al. al. 5,925,634 A 7/1999 Olney (21) Appl. No.: 13/732,751 5,935,975 A 8/1999 Rose et al. 6,211,360 B1 4/2001 Glicket al. (22) Filed: Jan. 2, 2013 6,291.675 B1 9/2001 Coop et al.
    [Show full text]
  • The Alkaloids: Chemistry and Biology
    CONTRIBUTORS Numbers in parentheses indicate the pages on which the authors’ contributions begin. B. EMMANUEL AKINSHOLA (135), Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, eakinshola@ howard.edu NORMA E. ALEXANDER (293), NDA International, 46 Oxford Place, Staten Island, NY 10301, [email protected] SYED F. ALI (79, 135), Division of Neurotoxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, [email protected] KENNETH R. ALPER (1, 249), Departments of Psychiatry and Neurology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, [email protected] MICHAEL H. BAUMANN (79), Clinical Psychopharmacology Section, Intra- mural Research Program, NIDA, National Institutes of Health, Baltimore, MD 21224, [email protected] DANA BEAL (249), Cures-not-Wars, 9 Bleecker Street, New York, NY 10012, [email protected] ZBIGNIEW K. BINIENDA (193), Division of Neurotoxicology, National Cen- ter for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, [email protected] WAYNE D. BOWEN (173), Laboratory of Medicinal Chemistry, NIDDK, NIH, Building 8 B1-23, 8 Center Drive, MSC 0820, Bethesda, MD 20892, [email protected] FRANK R. ERVIN (155), Department of Psychiatry and Human Genetics, McGill University, Montreal, Quebec H3A 2T5, Canada, md18@musica. mcgill.ca JAMES W. FERNANDEZ (235), Department of Anthropology, University of Chicago, 1126 E. 59th Street, Chicago, IL 60637, jwfi@midway. uchicago.edu xi xii CONTRIBUTORS RENATE L. FERNANDEZ (235), Department of Anthropology, University of Chicago, 1126 E. 59th Street, Chicago, IL 60637, rlf2@midway. uchicago.edu GEERTE FRENKEN (283), INTASH, P.O.
    [Show full text]
  • Alkaloids with Anti-Onchocercal Activity from Voacanga Africana Stapf (Apocynaceae): Identification and Molecular Modeling
    molecules Article Alkaloids with Anti-Onchocercal Activity from Voacanga africana Stapf (Apocynaceae): Identification and Molecular Modeling Smith B. Babiaka 1,2,*, Conrad V. Simoben 3 , Kennedy O. Abuga 4, James A. Mbah 1, Rajshekhar Karpoormath 5 , Dennis Ongarora 4 , Hannington Mugo 4, Elvis Monya 6, Fidelis Cho-Ngwa 6, Wolfgang Sippl 3 , Edric Joel Loveridge 7,* and Fidele Ntie-Kang 1,3,8,* 1 Department of Chemistry, Faculty of Science, University of Buea, P.O. Box 63, Buea CM-00237, Cameroon; [email protected] 2 AgroEco Health Platform, International Institute of Tropical Agriculture, Cotonou, Abomey-Calavi BEN-00229, Benin 3 Institute for Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany; [email protected] (C.V.S.); [email protected] (W.S.) 4 Department of Pharmaceutical Chemistry, School of Pharmacy, University of Nairobi, Nairobi P.O. Box 19676–00202, Kenya; [email protected] (K.O.A.); [email protected] (D.O.); [email protected] (H.M.) 5 Department of Pharmaceutical Chemistry, School of Chemistry, University of KwaZulu-Natal, Durban 4001, South Africa; [email protected] 6 ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, P.O. Box 63, Buea CM-00237, Cameroon; [email protected] (E.M.); fi[email protected] (F.C.-N.) 7 Department of Chemistry, Swansea University, Singleton Park, Swansea SA2 8PP, UK 8 Institute of Botany, Technical University of Dresden, 01217 Dresden, Germany * Correspondence: [email protected] or [email protected] (S.B.B.); Citation: Babiaka, S.B.; Simoben, C.V.; [email protected] (E.J.L.); ntiekfi[email protected] or fi[email protected] (F.N.-K.) Abuga, K.O.; Mbah, J.A.; Karpoormath, R.; Ongarora, D.; Abstract: A new iboga-vobasine-type isomeric bisindole alkaloid named voacamine A (1), along with Mugo, H.; Monya, E.; Cho-Ngwa, F.; eight known compounds—voacangine (2), voacristine (3), coronaridine (4), tabernanthine (5), iboxy- Sippl, W.; et al.
    [Show full text]
  • A Review on Tabernaemontana Spp.: Multipotential Medicinal Plant
    Online - 2455-3891 Vol 11, Issue 5, 2018 Print - 0974-2441 Review Article A REVIEW ON TABERNAEMONTANA SPP.: MULTIPOTENTIAL MEDICINAL PLANT ANAN ATHIPORNCHAI* Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Bangsaen, Chonburi 20131 Thailand. Email: [email protected] Received: 01 March 2016, Revised and Accepted: 29 January 2018 ABSTRACT Plants in the genus Tabernaemontana have been using in Thai and Chinese traditional medicine for the treatment several diseases. The great majority constituents of Tabernaemontana species have already been subjected to isolation and identification of monoterpene indole alkaloids present in their several parts. Many of monoterpene indole alkaloids exhibited a wide array of several activities. The biogenesis, classification, and biological activities of these alkaloids which found in Tabernaemontana plants were discussed in this review and its brings the research up-to-date on the bioactive compounds produced by Tabernaemontana species, directly or indirectly related to human health. Keywords: Tabernaemontana plants, Phytochemistry, Biogenesis, Terpene indole alkaloids, Biological activities. © 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i5.11478 INTRODUCTION alkaloids are investigated. All monoterpene indole alkaloids are derived from aromatic amino acid tryptophan and the iridoid terpene Several already drugs were discovered from the natural products. secologanin (Scheme 1). Tryptophan converts to tryptamine using Especially, the treatments of infectious diseases and oncology have tryptophan decarboxylase which is a pyridoxal-dependent enzyme. benefited from numerous drugs which were found in natural product The specific iridoid precursor was subsequently identified as sources.
    [Show full text]
  • Gastroprotective Effect of Tabernaemontana Divaricata (Linn.) R.Br
    British Journal of Pharmaceutical Research 1(3): 88-98, 2011 SCIENCEDOMAIN international www.sciencedomain.org Gastroprotective Effect of Tabernaemontana divaricata (Linn.) R.Br. Flower Methanolic Extract in Wistar Rats Mohammed Safwan Ali Khan1,2&3* 1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia. 2Department of Pharmacognosy, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad 500001, Andhra Pradesh, India. 3Department of Pharmaceutical Sciences, Nims University, Shobha Nagar, Delhi Highway, Jaipur - 303 121, Rajasthan, India. Received 24th April 2011 Accepted 2nd June 2011 Research Article Online Ready 6th June 2011 ABSTRACT Tabernaemontana divaricata (L.) R.Br belonging to Apocynaceae family is traditionally used by people in many parts of the world to treat various disorders. The present study was undertaken to investigate anti-ulcer property of Tabernaemontana divaricata flower methanolic extract (TDFME 500 mg/kg, p.o) by pyloric ligation induced gastric ulceration model using Omeprazole (8mg/kg, p.o) as a standard drug in wistar rats. Five parameters i.e., volume of gastric juice, pH, free & total acidities and ulcer index were assessed. The test extract significantly (p< 0.01) decreased volume of gastric juice, free & total acidities and ulcer index. Like standard, it also raised pH of gastric acid. The observed percentage protection for standard and test were 89.84% and 79.53%, respectively. Thus, TDFME 500 mg/kg had a positive effect on all the parameters under study and the results were similar to that of standard. From the above results, it can be concluded that TDFME exhibits remarkable gastroprotective effect.
    [Show full text]
  • The Iboga Alkaloids
    The Iboga Alkaloids Catherine Lavaud and Georges Massiot Contents 1 Introduction ................................................................................. 90 2 Biosynthesis ................................................................................. 92 3 Structural Elucidation and Reactivity ...................................................... 93 4 New Molecules .............................................................................. 97 4.1 Monomers ............................................................................. 99 4.1.1 Ibogamine and Coronaridine Derivatives .................................... 99 4.1.2 3-Alkyl- or 3-Oxo-ibogamine/-coronaridine Derivatives . 102 4.1.3 5- and/or 6-Oxo-ibogamine/-coronaridine Derivatives ...................... 104 4.1.4 Rearranged Ibogamine/Coronaridine Alkaloids .. ........................... 105 4.1.5 Catharanthine and Pseudoeburnamonine Derivatives .. .. .. ... .. ... .. .. ... .. 106 4.1.6 Miscellaneous Representatives and Another Enigma . ..................... 107 4.2 Dimers ................................................................................. 108 4.2.1 Bisindoles with an Ibogamine Moiety ....................................... 110 4.2.2 Bisindoles with a Voacangine (10-Methoxy-coronaridine) Moiety ........ 111 4.2.3 Bisindoles with an Isovoacangine (11-Methoxy-coronaridine) Moiety . 111 4.2.4 Bisindoles with an Iboga-Indolenine or Rearranged Moiety ................ 116 4.2.5 Bisindoles with a Chippiine Moiety ... .....................................
    [Show full text]
  • Microgram Journal, Vol 3, Number 2
    MICROGRAM Laboratory Operations Division Office Of Science And Drug Abuse Prevention BUREAU OF NARCOTICS & DANGEROUS DRUGS / U.S. DEPARTMENT OF JUSTICE / WASHINGTION, D.C. 20537 Vol.III, No. 2 March-April, 1970 STP (4-Methyl-2,5-dimethoxyamphetamine) hydrochloride was found coating the inside of capsules sent to BNDDfrom Germany. The capsules were clear, hard gelatin, standard shape size No. o. Average weight was 114 milligrams. Each capsule had a white crystalline coating on inner surface of capsule body. Apparently a measu~ed amount of solution had been placedin the cap·sule body, after which it was rotated to spread the solution on the inner surface. The substance contained 8. 7 milli­ grams STP (DOM)HCl per ca·psule. · These were the first STP capsules of this type seen by our laboratory. A few years ago, capsules were ob­ tained in the U.S. similarly coated with LSD. STP (Free Base) on laboratory filter paper, also from Germany, was seen for the first time in our laboratory. The STP spots, containing approxi­ mately 8 miliigrams STP base each, were 5/8 to 3/4 inch in diameter. The paper was 1\ inches square. Phencyclidine (Free Base) was recently analyzed on parsley leaves. Called "Angel DUst, 11 the phencyclidine on two samples of leaves was 2.6% and 3.6%. Approximately thirty pounds of 94% pure powder was also analyzed. (For identification of phencyclidine base, see Microgram, II, 1, p.3 (Jan 1969). IMITATIONSof well-known drug products are examined frequently in our Special Testing and Research Laboratory. Many of these are well made preparations and closely resemble the imitated product.
    [Show full text]
  • Biosynthesis by in Situ Hybridization (ISH)
    Localization of monoterpenoid indole alkaloid (MIA) biosynthesis by in situ hybridization (ISH) By Elizabeth Edmunds, Hons. B.Sc. A Thesis Submitted to the Department of Biotechnology In partial fulfillment of the requirements For the degree of Masters of Science August, 2012 Brock University St. Catha rines, Ontario ©Elizabeth Edmunds, 2012 ii Acknowledgments First and foremost I would like to thank Dr. Vincenzo Deluca for the opportunity to work in his laboratory under his mentorship. I have appreciated the helpful insight that has guided me through the course of this project. I have gained a valuable experience being able to learn from such an established and knowledgeable researcher. Secondly, I would like to thank my committee members Dr. Jeffrey Atkinson and Dr. Heather Gordon for their support and advice and their time to serve on my advisory committee. Thirdly, I would like to thank my colleagues and co-workers for their patience and helpful advice throughout my project. Particular mention must be given to Dr. Carlone's lab for their assistance and insight into in situ hybridization techniques. Finally, I would like to express my sincerest gratitude and appreciation towards my family and friends for their support. I would not be where I am today without the support and love from my mother and father, as well as Craig Easton. iii Abstract Monoterpenoid indole alkaloids (MIA) are among the largest and most complex group of nitrogen containing secondary metabolites that are characteristic of the Apocynaceae plant family including the most notable Catharanthus roseus. These compounds have demonstrated activity as successful drugs for treating various cancers, neurological disorders and cardiovascular conditions.
    [Show full text]
  • Uses of Voaca Nga Species
    USES OF VOACA NGA SPECIES N.G.BISSET PharmacognosyResearch Laboratories, Department of Pharmacy, Chelsea College, Universityof London, Manresa Road, London SW36LX Received4-II-198 5 Dateo fPublicatio n 16-VIII-1985 INTRODUCTION None of the species of the genus has attained any widespread application and evenV. afriLa, the one with the greatest distribution range and the one to which most of the uses described apply, has rather tainted localu e..A few ofti e medicinalapplication s appear to reflect theactivxt.e so fth ealkaloid spre - luntoriEnte (cf. Phytochemistry,Sectio n 3).Th efollowin g paragraphsgiv e aSoutline ox the uses which have been reported in the literature and as annotations on specimenskep ti nth eherbari a listedo np .00 . 1. THE PLANTS 1.1. V.AFRICANA (ANGUSTIFOLIA ?,LUTESCENS, PUBERULA) West Africa: The latex is said to be a rubber adul^t^dU i^put into acariou s tooth (Dalziel, 1937).Th e plant xs reported tob euse dm treatin g scabies (Janot and Goutarel, 1955).Senegal :Th e^amnk a (or Serere^) eat the fruit; theytrea t woundswit hth elatex .Th eplan tx sals oco n^ *obea pan a cea - the leafy branches are put into baths morning and ev«J^d a ^. prepared from them is given to people affected ^r^^S^ss. tierx of the leaves isdrun k as a tonic and against fatigue due^ obr«h^n Inth eCasamanc ea decoctio n ofth eroot stake nthre etime sdad y« . ecomme ed for women to counteract the effects of premature and rapid birth it » a 19 giveninternall y for hernial pain (Kerharo and Adam, ^' ^^hoca; Theleave shav esevera luses :A decoctio ni sapplie da sa wash •aganistduur t , it is put into baths against generalized oedema; it xs, utxhzea a fnction in a drink in the treatment of leprosy; a lotion is ^^^^ (possibly in children; and the juice is placed in the nostrlis oca^.^ Zernal v0 through confusion with other Apocynaceae- *«"* ™""£ °ossibly used -—^(Bouquetand^^ l for adulterating rubber (F.
    [Show full text]
  • Tabernaemotana Divaricata
    Imperial Journal of Interdisciplinary Research (IJIR) Vol-2, Issue-10, 2016 ISSN: 2454-1362, http://www.onlinejournal.in Quantification of Phytochemicals and HPTLC Finger Printing of Stem and Leaf Extracts of Tabernaemotana divaricata. Dr. Anubha Arora, Dr. Yashwant Rai & Dr. Sunder Pal Department of Botany, V.M.K (P.G) College, Mangalore, Green Planet Welfare Association Meerut, Uttar Pradesh, Department of Chemistry, D.N. (P.G) College, Meerut Abstract: - HPTLC is an analytical technique used It is an evergreen glabrous and dichotomously for the qualitative and quantitative evalution of branched about 2-3 m high shrub and commonly polyherbal formulations. Tabernaemotana called Pinwheel flower, Crape jasmine , East India divaricata an important medicinal plant wide rose bay and Nero’s crown (Dasturet.al 1962). medicinal value is frequently used in a large no of Ethnobotanically have been known to possess traditional herbal preparations. For HPTLC antimicrobial , anthelmintic, antioxidant , curative statinory phase was silica gel 60 F254 plate. The properties against nervous disorders, skin mobile phase consisted of Toluene: Ethylacetate: problems, respiratory and eyeailments,veneral Formic acd (7:2:0.5). In the present study the diseases, diabetes , chronic bronchitis , snake bite Preliminary Phytochemical screening of and cardiotonic ailments.(Ignacimutu et.al 2006 Tabernaemotana divaricata stem and leaf and Sathishkumar et.al 2012). Rootsare extraction has been done to dentify the chemical emmenagogue aphrodisiac tonic ,puragative , constituents and HPTLC fingerprinting of astrigent to the bowels and tonic to the brains , Tabernaemotana divaricata stem and leaf tracts lever and spleen , and useful in paralysis. has been performed which may be used as marks for quality evaluation and standardization of the Rahmanet.al (2011) observed the antibacterial drug.
    [Show full text]
  • Isohtion of Alkaloids and Structural Identification of Two Dimers
    Indole Alkaloids from Ervatamia ouientaiis. I Isohtion of Alkaloids and Structural Identification of Two Dimers ., John R. Knox and Jacob Slobbe I 9 1;:’ ,di Department of Organic Chemistry, University of Western Australia, ,;,, ,A>.i I Nedlands, W.A. 6009. Abstract Ethanol extracts of Eruafamia orientalis have yielded the following known alkaloids: ibogaine, iboxygaine, voacristine, vobasine, dregamine, tabernaemontanine, apparicine, voacamine and 16-demethoxycarbonylvoacamine. In addition, two new dimeric alkaloids of the voacamine group and the novel 2-acylindoles ervatamine, 2O-epiervatamine and 19-dehydroervatamine have been isolated from the extracts. The two new dimeric compounds have been identified by physical and chemical methods as lddemethoxycarbonyldihydrovoacamine and 16-demethoxycarbonyl-20’-epi- dihydrovoacamine. Plants classified in the Tabernaemontaneaetribe (Apocynaceae) have proved to be a rich source of indole alkaloids. ’ The tribe is the sole plant source of the iboga type alkaloids (with one exception’), the related voacamine group of dimeric alkaloids and the vobtusine group of dimeric alkaloids; it is also an important source of the 2-acylindole class and has afforded miscellaneousother types of indole alkaloids.1*3r4 The second largest of the 20 genera in the tribe is Eruatamia’ but rela- tively few of the 92-95 species in the genus have been examined for alkaloids. Iboga- type alkaloids have been obtained from E. dichotoma (coronaridine,6 heyneanine,’ voacristine hydroxyindolenine’), E. coronaria (coronaridine, voacangine’) and E. pandacaqui (coronaridine”), 2-acylindoles from E. coronaria (dregamine, tabernae- montanine’), E. divaricata (tabernaemontanine”) and E. pandacaqui (tabernae- montanine”) and aspidospermine types from E. dichotoma (tabersonine”) and E. dioaricafa (lochnericine, voaphylline”). E. pandacaqui has also afforded 20-epilochneridine and three dimeric alkaloids (ervafoline, ervafolidine, isoerva- r Hegnauer, R., ‘Chemotaxonomie der Pflanzen’ Vol.
    [Show full text]
  • Regulation of Alkaloid Biosynthesis in Plants
    CONTRIBUTORS Numbers in parentheses indicate the pages on which the authors’ contributions begin. JAUME BASTIDA (87), Departament de Productes Naturals, Facultat de Farma` cia, Universitat de Barcelona, 08028 Barcelona, Spain YEUN-MUN CHOO (181), Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia PETER J. FACCHINI (1), Department of Biological Sciences, University of Calgary, Calgary, AB, Canada TOH-SEOK KAM (181), Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia RODOLFO LAVILLA (87), Parc Cientı´fic de Barcelona, Universitat de Barcelona, 08028 Barcelona, Spain DANIEL G. PANACCIONE (45), Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506-6108, USA CHRISTOPHER L. SCHARDL (45), Department of Plant Pathology, University of Kentucky, Lexington, KY 40546-0312, USA PAUL TUDZYNSKI (45), Institut fu¨r Botanik, Westfa¨lische Wilhelms Universita¨tMu¨nster, Mu¨nster D-48149, Germany FRANCESC VILADOMAT (87), Departament de Productes Naturals, Facultat de Farma` cia, Universitat de Barcelona, 08028 Barcelona, Spain vii PREFACE This volume of The Alkaloids: Chemistry and Biology is comprised of four very different chapters; a reflection of the diverse facets that comprise the study of alkaloids today. As awareness of the global need for natural products which can be made available as drugs on a sustainable basis increases, so it has become increas- ingly important that there is a full understanding of how key metabolic pathways can be optimized. At the same time, it remains important to find new biologically active alkaloids and to elucidate the mechanisms of action of those that do show potentially useful or novel biological effects. Facchini, in Chapter 1, reviews the significant studies that have been conducted with respect to how the formation of alkaloids in their various diverse sources are regulated at the molecular level.
    [Show full text]